Distributed systems
Lecture 16: Security and NASD/AFS/Coda case studies

Michaelmas 2018

Dr Richard Mortier and
Dr Anil Madhavapeddy

(With thanks to Dr Robert N. M. Watson
and Dr Steven Hand)



Last time

* Looked at replication in distributed systems

* Strong consistency:
— Approximately as if only one copy of object
— Requires considerable coordination on updates
— Transactional consistency & quorum systems
 Weak consistency:
— Allow clients to potentially read stale values

— Some guarantees can be provided (FIFO, eventual,
session), but at additional cost to availability

 Amazon/Google case studies
— Dynamo, MapReduce, BigTable, Spanner



Distributed-system security

* Distributed systems span administrative domains
 Natural to extend authentication, access control, audit, to
distributed system, but can we:
— Distribute local notions of a user over many machines?
— Enforce system-wide properties — e.g., personal data privacy?
— Allow systems operated by multiple parties to interact safely?
— Not require that networks be safe from monitoring/tampering?
— Tolerate compromise a subset of nodes in the system?
— Provide reliable service to most users even under attack?
— Accept and tolerate nation-state actors as adversaries?

* For a system to offer secure services, it must be secure

— Trusted Computing Base (TCB) — minimum software (or
hardware) required for a system to be secure

— Deploy compartmentalization-style sandboxing structures



Access control

* Distributed systems may want to allow access to
resources based on a security policy

* As with local systems, three key concepts:
— ldentification: who you are (e.g. user name)
— Authentication: proving who you are (e.g. password)
— Authorization: determining what you can do

* Can consider authority to cover actions an
authenticated subject may perform on objects

— Access Matrix = set of rows, one per subject, where
each column holds allowed operations on some object

4



The access-control matrix

User, +read

User, +read +write +read

Group, -read +read +write
* Afi,])

— Rows represent principals (sometimes groups)
— Columns represent objects
— Cell(i, j) contain access rights of row i on object j

e Access matrix is typically large & sparse:
— Just keep non-NULL entries by column or by row

* Tricky questions
— How do you name/authenticate users, and who can administer groups?

— How do you compose conflicting access-control rules (e.g., userl +read but
groupl —read)?
— What consistency properties do access control, groups, and users require?



Access Control Lists (ACLs)

* Keep columns: for each object, keep list of
subjects and allowable access

— ACLs stored with objects (e.g. local filesystem)
— Key primitives: get/set
— Like a guest list on the door of a night club

* ACL change should (arguably) immediately
grant/deny further access
— What does this mean for distributed systems?

— Or even local systems (e.g., UNIX)



Capabilities

e Capabilities are unforgeable tokens of authority

— Keep rows: for each subject S, keep list of objects /
allowable accesses

— Capabilities stored with subjects (e.g. processes)
— A bit like a key or access card that you carry around

— Think of as secure references — if you hold a reference
to an object, you can use the object

* Key primitive: delegation

— Client can delegate capabilities it holds to other clients
(or servers) in the system to act on its behalf

— Downside: revocation may now be more complex



Access control in distributed systems

e Single systems often have small number of users (subjects)
and large number of objects:

— E.g. users and their files in a Unix system

— Track subjects (e.g. users) and store ACLs with objects (e.g. files)
e Distributed systems are large & dynamic:

— Can have huge (and unknown?) number of users

— Interactions via network; no explicit ‘log in” or user processes
e Capability model is a more natural fit:

— Client presents capability with request for operation

— System only performs operation if capability checks out

— Avoid synchronous RPCs to check identities/policies

* Not mutually exclusive: ACLs can grant capabilities
e Can’t trust nodes/links: use cryptography with secret keys



Cryptographic capabilities

How can we make capabilities unforgeable?

Capability server could issue capabilities

— User presents credentials (e.g., username, password) and
requests capabilities representing specific rights

— E.g. capability server has secret key k and a one-way function f()
— Issues a capability <ObjID, access, f(k, ObjID, access) >
— Simple example is f(k,0,a) = SHA256(k| o] a)
Client transmits capability with request
— |If object server knows k, can check operation
Can use same capability to access many servers

— And one server can use it on your behalf (e.g., web tier can
request objects from storage tier on user’s behalf)

More mature scheme might use public key crypto (why?)



Distributed capability example: NASD

1. Client exchanges credentials for File Manager accounts:
cryptographic capability to object

UseriD1, PW1
UserlD2, PW2
o‘o\\o File Manager
\D,
M
e\

D, )
) \O\D,\)‘\N File Manager

Client *\\(’ and Block
Objip, R ¢ Server agree
R, (e O
W on secret k
(W

2. Client encloses capability
with request to authorize it

 Network-Attached Secure Disks (NASD) — Gibson, et al 1997 (CMU)
* Clients access remote disks directly rather than via through servers

* “File Manager” grants client systems capabilities delegating direct

access to objects on network-attached disks — as directed by ACLs
10



Capabilities: pros and cons

* Relatively simple and pretty scalable

* Allow anonymous access (i.e. server does not
need to know identity of client)
— And hence easily allows delegation

 However this also means:
— Capabilities can be stolen (unauthorized users)...

— ... and are difficult to revoke (like someone cutting a
copy of your house key)

* Can address these problems by:
— Having time-limited validity (e.g. 30 seconds)

— Incorporating version into capability, store version
with the object: increasing version => revoke all access

11



Combining ACLs and capabilities

* Recall one problem with ACLs was inability to
scale to large number of users (subjects)

 However in practice we may have a small-ish
number of authority levels

— E.g. moderator versus contributor on chat site

* Role-Based Access Control (RBAC):
— Have (small-ish) well-defined number of roles
— Store ACLs at objects based on roles
— Allow subjects to enter roles according to some rules
— Issue capabilities which attest to current role

12



Role-based access control (RBAC)

* General idea is very powerful
— Separates { principal - role }, { role - privilege }

— Developers of individual services only need to focus
on the rights associated with a role

— Easily handles evolution (e.g. an individual moves
from being an undergraduate to an alumna)

* Possible to have sophisticated rules for role entry:
— E.g. enter different role according to time of day
— Or entire role hierarchy (1B student <= CST student)

— Or parametric/complex roles (“the doctor who is
currently treating you”)



Single-system sigh on

e Distributed systems involve many machines
— Frustrating to have to authenticate to each one!

* Single-system sign-on: security with lower user burden

— E.g. Kerberos, Microsoft Active Directory let you
authenticate to a single domain controller

— Bootstrap via password/private key + cert. on smart card
— Get a session key and a ticket (~= a capability)
— Ticket is for access to the ticket-granting server (TGS)

— When wish to e.g. log on to another machine, or access a
remote volume, s/w asks TGS for a ticket for that resource

— Notice: principals might could be users ... or services
e Other wide-area “federated” schemes
— Multi-realm Kerberos, OpenlD, Shibboleth

14



AFS and Coda

 Two 1990s CMU distributed file systems that
helped create our understanding of distributed-
system scalability, security, ...

— AFS: Andrew File System “campus-wide” scalability

— Coda: Add write replication, weakly connected or fully
disconnected operation for mobile clients

* Scale distributed file systems to global scale using
a concurrent and distributed-system ideas

— Developed due to NFS scalability failures

— RPC, close-to-open semantics, pure and impure
names, explicit cache management, security, version
vectors, optimistic concurrency, quorums, multicast, ...



The Andrew File System (AFS)

e Carnegie Mellon University (1980s) address
performance, scalability, security weaknesses of NFS
* Global-scale distributed filesystem

— [afs/cs.cmu.edu/user/rnw/public_html/index.html,
[afs/ibm.com/public

— Cells incorporate dozens or hundreds of servers

— Clients transparently merge namespaces and hide file
replication/migration effects

— Authentication/access control w/Kerberos, group servers

— Cryptographic protection of all communications

— Mature non-POSIX semantics (close-to-open, ACLs)
 Still in use today; open sourced as OpenAFS

* Inspired Distributed Computing Environment (DCE),
Microsoft’s Distributed File System (DFS), and NFSv4



AFS3 per-cell architecture

 Client-server and server-server RPC

* Ubik quorum database for authentication,
volume location, and group membership

* Namespace partitioned into volumes; e.g.,
/afs/cmu.edu/user/rnw/public_html
traverses four volumes

* Unique VicelDs: {CellID, VolumelD, FID}

* Volume servers allow limited redundancy
or higher-performance bulk file 1/0: —— '

— read-write on a single server (~rnw)

— read-only replicas on multiple servers (/bin)
File server poo

* Inter-server snapshotting allows volumes
to migrate transparently (with client help)

q

17



Persistent client-side caching in AFS

Synthesized /afs namespace

andrew.cmu.edu
afs

athena.mit.edu

'én

Local cache files
AFS implements persistent caches on client-side disks

Vnode operations on remote files are redirected to
local container files for local I/0O performance

Non-POSIX close-to-open semantics allow writes to be
sent to the server only on close()

18



AFS callback promises

* Servers issue callback promises on files held in client caches

 When a file server receives a write-close() from one client, it
issues callbacks to invalidate copies in other client caches

* Unlike NFS, no synchronous RPC is required when opening a
cached file: if callback has not been broken, cache is fresh

 However, client write-close() is synchronous: can’t return
until callbacks acknowledged by other clients — why?

19



The Coda File System

* Developed at Carnegie Mellon University in the 1990s
— Starting point: open-sourced AFS2 from IBM
* Improve availability: optimistic replication, offline mode:

— Improve availability through read-write replication
— Improve performance for weakly connected clients
— Support mobile (sometimes) fully disconnected clients

* Exploit network features to improve performance:
— Multicast RPC to efficiently send RPCs to groups of servers
* Exchange weaker consistency for stronger availability
— Version vectors for directories, files identify write conflicts
— Users resolve some conflicts ... with (very) mixed results?
* Surprising result: unplug network to make builds go faster

— It is faster to journal changes to local disk (offline) and reconcile

later than synchronously write to distributed filesystem (online)
20



Summary (1)

e Distributed systems are everywhere

* Core problems include:
— Inherently concurrent systems
— Any machine can fail...
— ... as can the network (or parts of it)
— And we have no notion of global time

* Despite this, we can build systems that work
— Basic interactions are request-response

— Can build synchronous RPC/RMI on top of this ...

— Or asynchronous message queues or pub/sub

21



Summary (2)

* Coordinating actions of larger sets of computers
requires higher-level abstractions

— Process groups and ordered multicast
— Consensus protocols, and
— Replication and Consistency
e Various middleware packages (e.g. CORBA, EJB)
provide implementations of many of these:
— But worth knowing what’s going on “under the hood”

* Recent trends towards even higher-level:
— MapReduce and friends



