
Distributed systems
Lecture 16: Security and NASD/AFS/Coda case studies

Michaelmas 2018
Dr Richard Mortier and
Dr Anil Madhavapeddy

(With thanks to Dr Robert N. M. Watson
and Dr Steven Hand)

1

Last time
• Looked at replication in distributed systems
• Strong consistency:
– Approximately as if only one copy of object
– Requires considerable coordination on updates
– Transactional consistency & quorum systems

• Weak consistency:
– Allow clients to potentially read stale values
– Some guarantees can be provided (FIFO, eventual,

session), but at additional cost to availability
• Amazon/Google case studies
– Dynamo, MapReduce, BigTable, Spanner

2

Distributed-system security

• Distributed systems span administrative domains
• Natural to extend authentication, access control, audit, to

distributed system, but can we:
– Distribute local notions of a user over many machines?
– Enforce system-wide properties – e.g., personal data privacy?
– Allow systems operated by multiple parties to interact safely?
– Not require that networks be safe from monitoring/tampering?
– Tolerate compromise a subset of nodes in the system?
– Provide reliable service to most users even under attack?
– Accept and tolerate nation-state actors as adversaries?

• For a system to offer secure services, it must be secure
– Trusted Computing Base (TCB) – minimum software (or

hardware) required for a system to be secure
– Deploy compartmentalization-style sandboxing structures

3

Access control
• Distributed systems may want to allow access to

resources based on a security policy
• As with local systems, three key concepts:
– Identification: who you are (e.g. user name)
– Authentication: proving who you are (e.g. password)
– Authorization: determining what you can do

• Can consider authority to cover actions an
authenticated subject may perform on objects
– Access Matrix = set of rows, one per subject, where

each column holds allowed operations on some object

4

The access-control matrix

• A(i, j)
– Rows represent principals (sometimes groups)
– Columns represent objects
– Cell(i, j) contain access rights of row i on object j

• Access matrix is typically large & sparse:
– Just keep non-NULL entries by column or by row

• Tricky questions
– How do you name/authenticate users, and who can administer groups?
– How do you compose conflicting access-control rules (e.g., user1 +read but

group1 –read)?
– What consistency properties do access control, groups, and users require?

5

Object1 Object2 Object3 …

User1 +read
User2 +read +write +read
Group1 -read +read +write
…

Access Control Lists (ACLs)

• Keep columns: for each object, keep list of
subjects and allowable access
– ACLs stored with objects (e.g. local filesystem)
– Key primitives: get/set
– Like a guest list on the door of a night club

• ACL change should (arguably) immediately
grant/deny further access
– What does this mean for distributed systems?
– Or even local systems (e.g., UNIX)

6

Capabilities
• Capabilities are unforgeable tokens of authority
– Keep rows: for each subject S, keep list of objects /

allowable accesses
– Capabilities stored with subjects (e.g. processes)
– A bit like a key or access card that you carry around
– Think of as secure references – if you hold a reference

to an object, you can use the object
• Key primitive: delegation
– Client can delegate capabilities it holds to other clients

(or servers) in the system to act on its behalf
– Downside: revocation may now be more complex

7

Access control in distributed systems

• Single systems often have small number of users (subjects)
and large number of objects:
– E.g. users and their files in a Unix system
– Track subjects (e.g. users) and store ACLs with objects (e.g. files)

• Distributed systems are large & dynamic:
– Can have huge (and unknown?) number of users
– Interactions via network; no explicit ‘log in’ or user processes

• Capability model is a more natural fit:
– Client presents capability with request for operation
– System only performs operation if capability checks out
– Avoid synchronous RPCs to check identities/policies

• Not mutually exclusive: ACLs can grant capabilities
• Can’t trust nodes/links: use cryptography with secret keys

8

Cryptographic capabilities

• How can we make capabilities unforgeable?
• Capability server could issue capabilities

– User presents credentials (e.g., username, password) and
requests capabilities representing specific rights

– E.g. capability server has secret key k and a one-way function f()
– Issues a capability <ObjID, access, f(k, ObjID, access) >
– Simple example is f(k,o,a) = SHA256(k|o|a)

• Client transmits capability with request
– If object server knows k, can check operation

• Can use same capability to access many servers
– And one server can use it on your behalf (e.g., web tier can

request objects from storage tier on user’s behalf)

• More mature scheme might use public key crypto (why?)

9

Distributed capability example: NASD

• Network-Attached Secure Disks (NASD) – Gibson, et al 1997 (CMU)
• Clients access remote disks directly rather than via through servers
• “File Manager” grants client systems capabilities delegating direct

access to objects on network-attached disks – as directed by ACLs
10

UserID, PW, ObjID

ObjID, ServerID,

f(k, ObjID, RW)

ObjID, R, f(k, ObjID, RW)

Block
Server

Client

File Manager

File Manager accounts:
UserID1, PW1
UserID2, PW2
…

Block
ServerObjID, <… data…>2. Client encloses capability

with request to authorize it

1. Client exchanges credentials for
cryptographic capability to object

File Manager
and Block

Server agree
on secret k

Capabilities: pros and cons

• Relatively simple and pretty scalable
• Allow anonymous access (i.e. server does not

need to know identity of client)
– And hence easily allows delegation

• However this also means:
– Capabilities can be stolen (unauthorized users)…
– … and are difficult to revoke (like someone cutting a

copy of your house key)

• Can address these problems by:
– Having time-limited validity (e.g. 30 seconds)
– Incorporating version into capability, store version

with the object: increasing version => revoke all access
11

Combining ACLs and capabilities
• Recall one problem with ACLs was inability to

scale to large number of users (subjects)
• However in practice we may have a small-ish

number of authority levels
– E.g. moderator versus contributor on chat site

• Role-Based Access Control (RBAC):
– Have (small-ish) well-defined number of roles
– Store ACLs at objects based on roles
– Allow subjects to enter roles according to some rules
– Issue capabilities which attest to current role

12

Role-based access control (RBAC)

• General idea is very powerful

– Separates { principal → role }, { role → privilege }

– Developers of individual services only need to focus
on the rights associated with a role

– Easily handles evolution (e.g. an individual moves
from being an undergraduate to an alumna)

• Possible to have sophisticated rules for role entry:

– E.g. enter different role according to time of day

– Or entire role hierarchy (1B student <= CST student)

– Or parametric/complex roles (“the doctor who is
currently treating you”)

13

Single-system sign on

• Distributed systems involve many machines

– Frustrating to have to authenticate to each one!

• Single-system sign-on: security with lower user burden

– E.g. Kerberos, Microsoft Active Directory let you
authenticate to a single domain controller

– Bootstrap via password/private key + cert. on smart card

– Get a session key and a ticket (~= a capability)

– Ticket is for access to the ticket-granting server (TGS)

– When wish to e.g. log on to another machine, or access a
remote volume, s/w asks TGS for a ticket for that resource

– Notice: principals might could be users … or services
• Other wide-area “federated” schemes

– Multi-realm Kerberos, OpenID, Shibboleth

14

AFS and Coda

• Two 1990s CMU distributed file systems that
helped create our understanding of distributed-
system scalability, security, …
– AFS: Andrew File System “campus-wide” scalability
– Coda: Add write replication, weakly connected or fully

disconnected operation for mobile clients
• Scale distributed file systems to global scale using

a concurrent and distributed-system ideas
– Developed due to NFS scalability failures
– RPC, close-to-open semantics, pure and impure

names, explicit cache management, security, version
vectors, optimistic concurrency, quorums, multicast, …

15

The Andrew File System (AFS)

• Carnegie Mellon University (1980s) address
performance, scalability, security weaknesses of NFS

• Global-scale distributed filesystem
– /afs/cs.cmu.edu/user/rnw/public_html/index.html,

/afs/ibm.com/public
– Cells incorporate dozens or hundreds of servers

– Clients transparently merge namespaces and hide file
replication/migration effects

– Authentication/access control w/Kerberos, group servers

– Cryptographic protection of all communications

– Mature non-POSIX semantics (close-to-open, ACLs)

• Still in use today; open sourced as OpenAFS

• Inspired Distributed Computing Environment (DCE),
Microsoft’s Distributed File System (DFS), and NFSv4

16

File server pool

Ubik quorum
databases

AFS3 per-cell architecture
• Client-server and server-server RPC
• Ubik quorum database for authentication,

volume location, and group membership
• Namespace partitioned into volumes; e.g.,

/afs/cmu.edu/user/rnw/public_html
traverses four volumes

• Unique ViceIDs: {CellID, VolumeID, FID}
• Volume servers allow limited redundancy

or higher-performance bulk file I/O:
– read-write on a single server (~rnw)
– read-only replicas on multiple servers (/bin)

• Inter-server snapshotting allows volumes
to migrate transparently (with client help)

17

DB server

DB server DB server

File serverFile server

File server

File server

Persistent client-side caching in AFS

• AFS implements persistent caches on client-side disks
• Vnode operations on remote files are redirected to

local container files for local I/O performance
• Non-POSIX close-to-open semantics allow writes to be

sent to the server only on close()
18

Synthesized /afs namespace

a

/

afs
andrew.cmu.edu

athena.mit.edu

b

c

Local cache files

usr cache
a

b
c

Invalidate(a1)

AFS callback promises

• Servers issue callback promises on files held in client caches
• When a file server receives a write-close() from one client, it

issues callbacks to invalidate copies in other client caches
• Unlike NFS, no synchronous RPC is required when opening a

cached file: if callback has not been broken, cache is fresh
• However, client write-close() is synchronous: can’t return

until callbacks acknowledged by other clients – why?
19

Client 1

Client 2

Client 3

File server

a2

a1

a1

Close(a2)

Invalidate(a1)

a2

The Coda File System

• Developed at Carnegie Mellon University in the 1990s

– Starting point: open-sourced AFS2 from IBM

• Improve availability: optimistic replication, offline mode:

– Improve availability through read-write replication
– Improve performance for weakly connected clients
– Support mobile (sometimes) fully disconnected clients

• Exploit network features to improve performance:

– Multicast RPC to efficiently send RPCs to groups of servers

• Exchange weaker consistency for stronger availability
– Version vectors for directories, files identify write conflicts

– Users resolve some conflicts … with (very) mixed results?

• Surprising result: unplug network to make builds go faster

– It is faster to journal changes to local disk (offline) and reconcile
later than synchronously write to distributed filesystem (online)

20

Summary (1)
• Distributed systems are everywhere
• Core problems include:
– Inherently concurrent systems
– Any machine can fail…
– … as can the network (or parts of it)
– And we have no notion of global time

• Despite this, we can build systems that work
– Basic interactions are request-response
– Can build synchronous RPC/RMI on top of this …
– Or asynchronous message queues or pub/sub

21

Summary (2)

• Coordinating actions of larger sets of computers
requires higher-level abstractions
– Process groups and ordered multicast
– Consensus protocols, and
– Replication and Consistency

• Various middleware packages (e.g. CORBA, EJB)
provide implementations of many of these:
– But worth knowing what’s going on “under the hood”

• Recent trends towards even higher-level:
– MapReduce and friends

22

