Concurrent systems

Lecture 6: Isolation vs. Strict Isolation,
2-Phase Locking (2PL), Time Stamp Ordering (TSO), and
Optimistic Concurrency Control (OCC)

Dr Anil Madhavapeddy

Reminder from last time

« Concurrency without shared data
— Active objects

« Message passing; the actor model
— Occam, Erlang

« Composite operations

— Transactions, ACID properties

— Isolation and serialisability
o History graphs; good (and bad) schedules

Last time: isolation — serialisability

« The idea of executing transactions serially (one
after the other) is a useful model

— We want to run transactions concurrently
— But the result should be as if they ran serially

« Consider two transactions, T1 and T2
Isolation allow transaction programmers to reason about

the interactions between transactions trivially:
they appear to execute in serial.

Transaction systems execute transactions concurrently for
performance and rely on the definition of serialisability to
decide if an actual execution schedule is allowable.

Isolation — serialisability

T1: S.getBalance C.getBalance
T2: S.debit C.credit)

e This execution is neither serial nor serialisable
— T1 sees inconsistent values: old S and new C

The transaction system must ensure that, regardless of

any actual concurrent execution used to improve
performance, only results consistent with serialisable
orderings are visible to the transaction programmer.

This time

« Effects of bad schedules

 |solation vs. strict isolation; enforcing isolation
« Two-phase locking; rollback

e Timestamp ordering (TSO)

e Optimistic concurrency control (OCC)

 [solation and concurrency summary

This lecture considers how the transaction implementation

itself can provide transactional (ACID) guarantees

Effects of bad schedules

e Lost Updates

— T1 updates (writes) an object, but this is then overwritten by
concurrently executing T2 Lack of atomicity:

_ (a|SO Ca||6d d erte-WrIte COI’]ﬂICt) Operation results

o Dirty Reads

— T1 reads an object which has been updated an

transaction T2 Lack of isolation:
— (also called a read-after-write conflict) partial result seen
e Unrepeatable Reads Lack of
— T1 reads an object which is then updated by T2 isolation:
— Not possible for T1 to read the same value again read value
— (also called a write-after-read conflict) unstable

Atomicity: all or none of operations performed — abort must be “clean”
Isolation: transactions execute as if isolated from concurrent effects 6

Isolation and strict isolation

« l|deally want to avoid all three problems

« Two ways: Strict Isolation and Non-Strict Isolation

— Strict Isolation: guarantee we never experience lost updates,
dirty reads, or unrepeatable reads

— Non-Strict Isolation: let transaction continue to execute despite
potential problems (i.e., more optimistic)

e Non-strict isolation usually allows more concurrency but
can lead to complications

— E.g. if T2 reads something written by T1 (a “dirty read”) then T2
cannot commit until T1 commits

— And T2 must abort if T1 aborts: cascading aborts

e Both approaches ensure that only serialisable schedules
are visible to the transaction programmer

Enforcing isolation

e In practice there are a number of techniques we
can use to enforce isolation (of either kind)

« We will look at:
— Two-Phase Locking (2PL);
— Timestamp Ordering (TSO); and
— Optimistic Concurrency Control (OCC)

« More complete descriptions and examples of these
approaches can be found in:

Operating Systems, Concurrent and Distributed Software
Design, Jean Bacon and Tim Harris, Addison-Wesley 2003.

Two-phase locking (2PL)

« Associate a lock with every object
— Could be mutual exclusion, or MRSW

e Transactions proceed in two phases:

— Expanding Phase: during which locks are acquired but
none are released

— Shrinking Phase: during which locks are released, and no
more are acquired

« Operations on objects occur in either phase,
providing appropriate locks are held

— Should ensure serializable execution

2PL example

Acquire a read lock

// transfer amt from A -> (shared) before ‘read’ A
transaction {
- | readLock(A); Upgrade to a write lock
if (getBalance(A) > amt) : .
- N e '_ceLock(A) : (exclusive) before write A
xpa:h e _ det?:'ctEA’ k%g';:) ; Acquire a write lock
ase writeLoc ; : :
Crgd‘i t(B, amt): (exclusive) before write B
5 writeunlock(B);
addInterest(A);
g writeunlock(A); Release locks when done
. tryCommit(return=true);
Shrinking 1 el)S’e A () to allow concurrency
Phase = readunlock(A) ;
tryCommit(return=false);
¥

10

Problems with 2PL

e Requires knowledge of which locks required
— Can be automated in many systems
— Easy if a transaction statically declares its affected objects
— But some transactions look up objects dynamically

e Risk of deadlock

— Can attempt to impose a partial order

— Or can detect deadlock and abort, releasing locks

— (this is safe for transactions due to rollback, which is nice)
 Non-Strict Isolation: releasing locks during execution

means others can access those objects

— e.g. T1 updates A, then releases write lock; now T2 can read
or overwrite the uncommitted value

— Hence T2’s fate is tied to T1 (whether commit or abort)
— Can fix with strict 2PL: hold all locks until transaction end

11

Strict 2PL example

// transfer amt from A -> B
transaction {
_ | readLock(A);
if (getBalance(A) > amt) {
, writeLock(A);
Expanding | debit(A, amt);
Phase writeLock(B);
credit(B, amt);
addInterest(A);
tryCommit(return=true);
} else {
readunlock(A); it isolati
tryComm'i t(r.etu r.n=.':a'| se) : ensure strict Isolation
{ } on commit, abort {
unlock (A);

Retain lock on B here to

Unlock All
nioe unlock(B) ;

Phase { }
By holding locks longer, Strict

2PL risks greater contention

2PL: rollback

e Recall that transactions can abort

— Could be due to run-time conflicts (non-strict 2PL), or
could be programmed (e.g. on an exception)

e Using locking for isolation works, but means that
updates are made ‘in place’
— i.e. once acquire write lock, can directly update
— If transaction aborts, need to ensure no visible effects

« Rollback is the process of returning the world to the
state it in was before the transaction started

— l.e., to implement atomicity: all happened, or none.

13

Why might a transaction abort?

« Some failures are internal to transaction systems:

— Transaction T2 depends on T1, and T1 aborts
— Deadlock is detected between two transactions

— Memory is exhausted or a system error occurs
« Some are programmer-triggered:

— Transaction self-aborted — e.g., debi1t () failed due to
inadequate balance

e Some failures must be programmer visible

o Others may simply trigger retry of the transaction

14

Implementing rollback: undo

e One strategy is to undo operations, e.g.
— Keep a log of all operations, in order: 0, O,, .. O,

— On abort, undo changes of O, O, ,), .- O,

e Must know how to undo an operation:

— Assume we log both operations and parameters
— Programmer can provide an explicit counter action
o UNDO(credit(A, x)) < debit(A, x);
« May not be sufficient (e.g. setBalance(A, x))

— Would need to record previous balance, which we may
not have explicitly read within transaction...

15

Implementing rollback: copy

« A more brute-force approach is to take a copy of an
object before [first] modification

— On abort, just revert to original copy
 Has some advantages:

— Doesn’t require programmer effort

— Undo is simple, and can be efficient (e.g. if there are
many operations, and/or they are complex)

However can lead to high overhead if objects are
large ... and may not be needed if don’t abort!

— Can reduce overhead with partial copying

16

Timestamp ordering (TSO)

e 2PL and Strict 2PL are widely used in practice

— But can limit concurrency (certainly the latter)
— And must be able to deal with deadlock

e Time Stamp Ordering (TSO) is an alternative approach:

— As a transaction begins, it is assigned a timestamp — the
proposed eventual (total) commit order / serialisation

— Timestamps are comparable, and unique (can think of as e.g.
current time — or a logical incrementing number)

— Every object O records the timestamp of the last transaction
to successfully access (read? write?) it: V(O)

— T can access object O iff V(T) >= V(O), where V(T) is the
timestamp of T (otherwise rejected as “too late”)

— If Tis non-serialisable with timestamp, abort and roll back
Timestamps allow us to explicitly track new “happens-before”
edges, detecting (and preventing) violations 1

TSO example 1

Tl transaction {
s = getBalance(S);
c = getBalance(C);
return = s + C;

}

T2 transaction {
debit(s, 100);
credit(c, 100);
return true;

}

Imagine that objects S and C start off with version 10
1. T1and T2 both start concurrently:
e T1 getstimestamp 27, T2 gets timestamp 29

o Uk WwWwN

T1 reads S => ok! (27 >= 10); S gets timestamp 27

T2 does debit S, 100 => ok! (29 >= 27); S gets timestamp 29
T1 reads C => ok! (27 => 10); C gets timestamp 27

T2 does credit C, 100 => ok! (29 >= 27); C gets timestamp 29
Both transactions commit.

Succeeded as all conflicting operations executed in timestamp order

TSO example 2

T1l transaction { T2 transaction {
s = getBalance(S); debit(s, 100);
c = getBalance(Q); credit(c, 100);
. return = s + C; . return true;

As before, S and C start off with version 10

1. T1 and T2 both start concurrently:

e T1 getstimestamp 27, T2 gets timestamp 29

T1 reads S => ok! (27 >= 10); S gets timestamp 27

T2 does debit S, 100 => ok! (29 >= 27); S gets timestamp 29
T2 does credit C, 100 => ok! (29 >= 10); C gets timestamp 29
T1 reads C => FAIL! (27 < 29); T1 aborts

T2 commits; T1 restarts, gets timestamp 30...

o Uk WwWwN

19

Advantages of TSO

Deadlock free
Can allow more concurrency than 2PL
Can be implemented in a decentralized fashion

Can be augmented to distinguish reads & writes
— objects have read timestamp R & write timestamp W

Only safe to read if no-

READ(O, T) { aftor”
i 'F(V (T) < W(O)) abort : one wrote "arter” us
// do actual read

R(O): = MAX(V(T), R(O)); WRITE(O, T) {
if(v(T) < R(0)) abort;
if(v(T) < w(0)) return;
// do actual write
wW(o) := V(T);

}

R(O) holds timestamp of

latest transaction to read

Unsafe to write if later

txaction has read value

But if later txaction wrote it,
just skip write (he won!). Or? B%

However...

TSO needs a rollback mechanism (like 2PL)
TSO does not provide strict isolation:

— Hence subject to cascading aborts

— (Can provide strict TSO by locking objects when access is
granted — still remains deadlock free if can abort)

TSO decides a priori on one serialisation
— Even if others might have been possible

And TSO does not perform well under contention
— Will repeatedly have transactions aborting & retrying & ...

In general TSO is a good choice for distributed systems
[decentralized management] where conflicts are rare

21

Optimistic concurrency control

e OCCis an alternative to 2PL or TSO

« Optimistic since assume conflicts are rare
— Execute transaction on a shadow [copy] of the data

— On commit, check if all “OK”; if so, apply updates; otherwise
discard shadows & retry

o “OK” means:
— All shadows read were mutually consistent, and

— No one else has committed “later” changes to any object that
we are hoping to update

« Advantages: no deadlock, no cascading aborts
— And “rollback” comes pretty much for free!

e Key idea: when ready to commit, search for a
serialisable order that accepts the transaction

22

Implementing OCC (1)

 NB: This is a simplified presentation of the algorithm —
please refer to the book for the full description!

e Various efficient schemes for shadowing
— e.g. write buffering, page-based copy-on-write.

« Complexity arises in performing validation when a
transaction T finishes & tries to commit

 Read validation:

— Must ensure that all versions of data read by T (all shadows)
were valid at some particular time t

— This becomes the tentative start time for T

« Serialisability validation:

— Must ensure that there are no conflicts with any committed

transactions which have an later start time
23

Implementing OCC (2)

« All objects are tagged with a version

— Validation timestamp of the transaction which most
recently wrote its updates to that object

« Many threads execute transactions

— When wish to read an object, take a shadow copy, and
take note of the version number

— If wish to write: first take copy, then update that

« When a thread finishes a transaction, it submits the
versions to a single-threaded validator

24

OCC example (1)

« Validator keeps track of last k validated transactions,
their timestamps, and the objects they updated

 The versions of the objects are as follows:

« T7 has started, but not finished, writeback

e (A has been updated, but not E)

What will happen if we now start a new

transaction T8 on {B, E} before T7 writes back E?

25

OCC example (2)

o Consider T8: { write(B), write(E) };
e T8 executes and makes shadows of B & E

— Records timestamps: B@10, E@9 Looking at log: have
other transactions

— When done, T8 submits for validation : :
interfered with T8's

e Phase 1: read validation inputs?
— Check shadows are part of a consistent snapshot
— Latest committed start timeis 11 = OK (10, 9 < 11)
e Phase 2: serializability validation

— Check T8 against all later transactions (here, T7)
— Conflict detected! (T7 updates E, but T8 read old E)

Looking at log: would committing T8 invalidate

other now-committed transactions? 26

Issues with OCC

e Preceding example uses a simple validator
— Possible will abort even when don’t need to
— (e.g. can search for a ‘better’ start time)

e In general OCC can find more serializable schedules
than TSO

— Timestamps assigned after the fact, and taking the actual
data read and written into account

« However OCC is not suitable when high conflict
— Can perform lots of work with ‘stale’ data => wasteful!
— Starvation possible if conflicting set continually retries
— Will the transaction system always make progress?

Something think about: what happens when k-transaction log is exhausted?

Isolation & concurrency: summary

« 2PL explicitly locks items as required, then releases
— Guarantees a serializable schedule
— Strict 2PL avoids cascading aborts
— Can limit concurrency; & prone to deadlock
e TSO assigns timestamps when transactions start
— Cannot deadlock, but may miss serializable schedules
— Suitable for distributed/decentralized systems
o OCC executes with shadow copies, then validates
— Validation assigns timestamps when transactions end
— Lots of concurrency, & admits many serializable schedules
— No deadlock but potential livelock when contention is high
« Differing tradeoffs between optimism, concurrency, but
also potential starvation, livelock, and deadlock

« Ideas like TSO/OCC will recur in Distributed Systems e

Summary + next time

« History graphs; good (and bad) schedules
 [solation vs. strict isolation; enforcing isolation
« Two-phase locking; rollback

e Timestamp ordering (TSO)

o Optimistic concurrency control (OCC)
 |solation and concurrency summary

 Next time:
— Transactional durability: crash recovery and logging
— Lock-free programming; transactional memory

29

