
Concurrent systems  
Lecture 6: Isolation vs. Strict Isolation, 

2-Phase Locking (2PL), Time Stamp Ordering (TSO), and  
Optimistic Concurrency Control (OCC)

Dr Anil Madhavapeddy

G1

Reminder from last time

• Concurrency without shared data
– Active objects

• Message passing; the actor model
– Occam, Erlang

• Composite operations

– Transactions, ACID properties

– Isolation and serialisability

• History graphs; good (and bad) schedules

G2

Last time: isolation – serialisability

• The idea of executing transactions serially (one
after the other) is a useful model
– We want to run transactions concurrently
– But the result should be as if they ran serially

• Consider two transactions, T1 and T2

G3

T2 transaction {
 debit(S, 100);
 credit(C, 100);
 return true;
}

• If assume individual operations are atomic, then there are six possible ways the operations
can interleave…

T1 transaction {
 s = getBalance(S);
 c = getBalance(C);
 return (s + c);
}

Isolation allow transaction programmers to reason about
the interactions between transactions trivially:

they appear to execute in serial.

Transaction systems execute transactions concurrently for
performance and rely on the definition of serialisability to

decide if an actual execution schedule is allowable.

Isolation – serialisability

• This execution is neither serial nor serialisable
– T1 sees inconsistent values: old S and new C

G4

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

• This execution is also neither serial nor serialisable
– T1 sees inconsistent values: new S, old C

• Both orderings swap conflicting operations such that
there is no matching serial execution

From last lecture

The transaction system must ensure that, regardless of
any actual concurrent execution used to improve

performance, only results consistent with serialisable
orderings are visible to the transaction programmer.

This time

• Effects of bad schedules

• Isolation vs. strict isolation; enforcing isolation

• Two-phase locking; rollback

• Timestamp ordering (TSO)

• Optimistic concurrency control (OCC)

• Isolation and concurrency summary

G5

This lecture considers how the transaction implementation
itself can provide transactional (ACID) guarantees

Effects of bad schedules

• Lost Updates
– T1 updates (writes) an object, but this is then overwritten by

concurrently executing T2
– (also called a write-write conflict)

• Dirty Reads
– T1 reads an object which has been updated an uncommitted

transaction T2
– (also called a read-after-write conflict)

• Unrepeatable Reads
– T1 reads an object which is then updated by T2
– Not possible for T1 to read the same value again
– (also called a write-after-read conflict)

G6

Atomicity: all or none of operations performed – abort must be “clean”
Isolation: transactions execute as if isolated from concurrent effects

Lack of isolation:
partial result seen

Lack of atomicity:
operation results

“lost”

Lack of
isolation:

read value
unstable

Isolation and strict isolation

• Ideally want to avoid all three problems
• Two ways: Strict Isolation and Non-Strict Isolation

– Strict Isolation: guarantee we never experience lost updates,
dirty reads, or unrepeatable reads

– Non-Strict Isolation: let transaction continue to execute despite
potential problems (i.e., more optimistic)

• Non-strict isolation usually allows more concurrency but
can lead to complications
– E.g. if T2 reads something written by T1 (a “dirty read”) then T2

cannot commit until T1 commits
– And T2 must abort if T1 aborts: cascading aborts

• Both approaches ensure that only serialisable schedules
are visible to the transaction programmer

G7

Enforcing isolation

• In practice there are a number of techniques we
can use to enforce isolation (of either kind)

• We will look at:
– Two-Phase Locking (2PL);

– Timestamp Ordering (TSO); and

– Optimistic Concurrency Control (OCC)

• More complete descriptions and examples of these
approaches can be found in:

Operating Systems, Concurrent and Distributed Software
Design, Jean Bacon and Tim Harris, Addison-Wesley 2003.

G8

Two-phase locking (2PL)

• Associate a lock with every object
– Could be mutual exclusion, or MRSW

• Transactions proceed in two phases:
– Expanding Phase: during which locks are acquired but

none are released

– Shrinking Phase: during which locks are released, and no
more are acquired

• Operations on objects occur in either phase,
providing appropriate locks are held
– Should ensure serializable execution

G9

2PL example

G10

// transfer amt from A -> B
transaction {
 readLock(A);
 if (getBalance(A) > amt) {
 writeLock(A);
 debit(A, amt);
 writeLock(B);
 credit(B, amt);
 writeUnlock(B);
 addInterest(A);
 writeUnlock(A);
 tryCommit(return=true);
 } else {
 readUnlock(A);
 tryCommit(return=false);
}

Expanding
Phase

Shrinking
Phase

Acquire a read lock
(shared) before ‘read’ A

Upgrade to a write lock
(exclusive) before write A

Acquire a write lock
(exclusive) before write B

Release locks when done
to allow concurrency

Problems with 2PL
• Requires knowledge of which locks required

– Can be automated in many systems
– Easy if a transaction statically declares its affected objects
– But some transactions look up objects dynamically

• Risk of deadlock
– Can attempt to impose a partial order
– Or can detect deadlock and abort, releasing locks
– (this is safe for transactions due to rollback, which is nice)

• Non-Strict Isolation: releasing locks during execution
means others can access those objects
– e.g. T1 updates A, then releases write lock; now T2 can read

or overwrite the uncommitted value
– Hence T2’s fate is tied to T1 (whether commit or abort)
– Can fix with strict 2PL: hold all locks until transaction end G11

Strict 2PL example

G12

// transfer amt from A -> B
transaction {
 readLock(A);
 if (getBalance(A) > amt) {
 writeLock(A);
 debit(A, amt);
 writeLock(B);
 credit(B, amt);
 addInterest(A);
 tryCommit(return=true);
 } else {
 readUnlock(A);
 tryCommit(return=false);
} on commit, abort {
 unlock(A);
 unlock(B);
}

Expanding
Phase

Unlock All
Phase

Retain lock on B here to
ensure strict isolation

By holding locks longer, Strict
2PL risks greater contention

2PL: rollback

• Recall that transactions can abort
– Could be due to run-time conflicts (non-strict 2PL), or

could be programmed (e.g. on an exception)

• Using locking for isolation works, but means that
updates are made ‘in place’
– i.e. once acquire write lock, can directly update

– If transaction aborts, need to ensure no visible effects

• Rollback is the process of returning the world to the
state it in was before the transaction started
– I.e., to implement atomicity: all happened, or none.

G13

Why might a transaction abort?

• Some failures are internal to transaction systems:
– Transaction T2 depends on T1, and T1 aborts

– Deadlock is detected between two transactions

– Memory is exhausted or a system error occurs

• Some are programmer-triggered:
– Transaction self-aborted – e.g., debit() failed due to

inadequate balance

• Some failures must be programmer visible

• Others may simply trigger retry of the transaction

G14

Implementing rollback: undo

• One strategy is to undo operations, e.g.
– Keep a log of all operations, in order: O1, O2, .. On

– On abort, undo changes of On, O(n-1), .. O1

• Must know how to undo an operation:
– Assume we log both operations and parameters

– Programmer can provide an explicit counter action
• UNDO(credit(A, x)) ⬄ debit(A, x);

• May not be sufficient (e.g. setBalance(A, x))
– Would need to record previous balance, which we may

not have explicitly read within transaction…

G15

Implementing rollback: copy

• A more brute-force approach is to take a copy of an
object before [first] modification
– On abort, just revert to original copy

• Has some advantages:
– Doesn’t require programmer effort

– Undo is simple, and can be efficient (e.g. if there are
many operations, and/or they are complex)

• However can lead to high overhead if objects are
large … and may not be needed if don’t abort!
– Can reduce overhead with partial copying

G16

Timestamp ordering (TSO)
• 2PL and Strict 2PL are widely used in practice

– But can limit concurrency (certainly the latter)
– And must be able to deal with deadlock

• Time Stamp Ordering (TSO) is an alternative approach:
– As a transaction begins, it is assigned a timestamp – the

proposed eventual (total) commit order / serialisation
– Timestamps are comparable, and unique (can think of as e.g.

current time – or a logical incrementing number)
– Every object O records the timestamp of the last transaction

to successfully access (read? write?) it: V(O)
– T can access object O iff V(T) >= V(O), where V(T) is the

timestamp of T (otherwise rejected as “too late”)
– If T is non-serialisable with timestamp, abort and roll back

G17

Timestamps allow us to explicitly track new “happens-before”
edges, detecting (and preventing) violations

TSO example 1

Imagine that objects S and C start off with version 10
1. T1 and T2 both start concurrently:
• T1 gets timestamp 27, T2 gets timestamp 29

2. T1 reads S => ok! (27 >= 10); S gets timestamp 27
3. T2 does debit S, 100 => ok! (29 >= 27); S gets timestamp 29
4. T1 reads C => ok! (27 => 10); C gets timestamp 27
5. T2 does credit C, 100 => ok! (29 >= 27); C gets timestamp 29
6. Both transactions commit.

G18

T2 transaction {
 debit(S, 100);
 credit(C, 100);
 return true;
}

T1 transaction {
 s = getBalance(S);
 c = getBalance(C);
 return = s + c;
}

Succeeded as all conflicting operations executed in timestamp order

TSO example 2

As before, S and C start off with version 10
1. T1 and T2 both start concurrently:
• T1 gets timestamp 27, T2 gets timestamp 29

2. T1 reads S => ok! (27 >= 10); S gets timestamp 27
3. T2 does debit S, 100 => ok! (29 >= 27); S gets timestamp 29
4. T2 does credit C, 100 => ok! (29 >= 10); C gets timestamp 29
5. T1 reads C => FAIL! (27 < 29); T1 aborts
6. T2 commits; T1 restarts, gets timestamp 30…

G19

T2 transaction {
 debit(S, 100);
 credit(C, 100);
 return true;
}

T1 transaction {
 s = getBalance(S);
 c = getBalance(C);
 return = s + c;
}

Advantages of TSO

• Deadlock free
• Can allow more concurrency than 2PL
• Can be implemented in a decentralized fashion
• Can be augmented to distinguish reads & writes

– objects have read timestamp R & write timestamp W

G20

WRITE(O, T) {
 if(V(T) < R(O)) abort;
 if(V(T) < W(O)) return;
 // do actual write
 W(O) := V(T);
}

READ(O, T) {
 if(V(T) < W(O)) abort;
 // do actual read
 R(O): = MAX(V(T), R(O));
}

R(O) holds timestamp of
latest transaction to read

Only safe to read if no-
one wrote “after” us

Unsafe to write if later
txaction has read value

But if later txaction wrote it,
just skip write (he won!). Or?

However…

• TSO needs a rollback mechanism (like 2PL)

• TSO does not provide strict isolation:
– Hence subject to cascading aborts

– (Can provide strict TSO by locking objects when access is
granted – still remains deadlock free if can abort)

• TSO decides a priori on one serialisation
– Even if others might have been possible

• And TSO does not perform well under contention
– Will repeatedly have transactions aborting & retrying & …

• In general TSO is a good choice for distributed systems
[decentralized management] where conflicts are rare

G21

Optimistic concurrency control

• OCC is an alternative to 2PL or TSO
• Optimistic since assume conflicts are rare

– Execute transaction on a shadow [copy] of the data
– On commit, check if all “OK”; if so, apply updates; otherwise

discard shadows & retry

• “OK” means:
– All shadows read were mutually consistent, and
– No one else has committed “later” changes to any object that

we are hoping to update

• Advantages: no deadlock, no cascading aborts
– And “rollback” comes pretty much for free!

• Key idea: when ready to commit, search for a
serialisable order that accepts the transaction

G22

Implementing OCC (1)

• NB: This is a simplified presentation of the algorithm –
please refer to the book for the full description!

• Various efficient schemes for shadowing
– e.g. write buffering, page-based copy-on-write.

• Complexity arises in performing validation when a
transaction T finishes & tries to commit

• Read validation:
– Must ensure that all versions of data read by T (all shadows)

were valid at some particular time t
– This becomes the tentative start time for T

• Serialisability validation:
– Must ensure that there are no conflicts with any committed

transactions which have an later start time
G23

Implementing OCC (2)

• All objects are tagged with a version
– Validation timestamp of the transaction which most

recently wrote its updates to that object

• Many threads execute transactions
– When wish to read an object, take a shadow copy, and

take note of the version number

– If wish to write: first take copy, then update that

• When a thread finishes a transaction, it submits the
versions to a single-threaded validator

G24

OCC example (1)

• Validator keeps track of last k validated transactions,
their timestamps, and the objects they updated

G25

Transaction Validation Timestamp Objects Updated Writeback Done?

T5 10 A, B, C Yes
T6 11 D Yes
T7 12 A, E No

• The versions of the objects are as follows:

• T7 has started, but not finished, writeback

• (A has been updated, but not E)

Object Version

A 12
B 10
C 10
D 11
E 9

What will happen if we now start a new
transaction T8 on {B, E} before T7 writes back E?

OCC example (2)

• Consider T8: { write(B), write(E) };
• T8 executes and makes shadows of B & E
– Records timestamps: B@10, E@9
– When done, T8 submits for validation

• Phase 1: read validation
– Check shadows are part of a consistent snapshot
– Latest committed start time is 11 = OK (10, 9 < 11)

• Phase 2: serializability validation
– Check T8 against all later transactions (here, T7)
– Conflict detected! (T7 updates E, but T8 read old E)

G26

Looking at log: have
other transactions

interfered with T8’s
inputs?

Looking at log: would committing T8 invalidate
other now-committed transactions?

Issues with OCC

• Preceding example uses a simple validator
– Possible will abort even when don’t need to
– (e.g. can search for a ‘better’ start time)

• In general OCC can find more serializable schedules
than TSO
– Timestamps assigned after the fact, and taking the actual

data read and written into account

• However OCC is not suitable when high conflict
– Can perform lots of work with ‘stale’ data => wasteful!
– Starvation possible if conflicting set continually retries
– Will the transaction system always make progress?

G27Something think about: what happens when k-transaction log is exhausted?

Isolation & concurrency: summary
• 2PL explicitly locks items as required, then releases

– Guarantees a serializable schedule
– Strict 2PL avoids cascading aborts
– Can limit concurrency; & prone to deadlock

• TSO assigns timestamps when transactions start
– Cannot deadlock, but may miss serializable schedules
– Suitable for distributed/decentralized systems

• OCC executes with shadow copies, then validates
– Validation assigns timestamps when transactions end
– Lots of concurrency, & admits many serializable schedules
– No deadlock but potential livelock when contention is high

• Differing tradeoffs between optimism, concurrency, but
also potential starvation, livelock, and deadlock

• Ideas like TSO/OCC will recur in Distributed Systems G28

Summary + next time

• History graphs; good (and bad) schedules
• Isolation vs. strict isolation; enforcing isolation
• Two-phase locking; rollback
• Timestamp ordering (TSO)
• Optimistic concurrency control (OCC)
• Isolation and concurrency summary

• Next time:
– Transactional durability: crash recovery and logging
– Lock-free programming; transactional memory

G29

