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Reminder from last time

• History graphs; good (and bad) schedules 

• Isolation vs. strict isolation; enforcing isolation 

• Two-phase locking; rollback 

• Timestamp ordering (TSO) 

• Optimistic concurrency control (OCC) 

• Isolation and concurrency summary
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This time

• Transaction durability: crash recovery, logging 
–Write-ahead logging 

– Checkpoints 

– Recovery 

• Advanced topics 

– Lock-free programming 

– Transactional memory 

• A few notes on supervision exercises
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Crash Recovery & Logging

• Transactions require ACID properties 
– So far have focused on I (and implicitly C).  

• How can we ensure Atomicity & Durability?  
– Need to make sure that if a transaction always done 

entirely or not at all 

– Need to make sure that a transaction reported as 
committed remains so, even after a crash 

• Consider for now a fail-stop model: 
– If system crashes, all in-memory contents are lost 

– Data on disk, however, remains available after reboot
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The small print: we must keep in mind the limitations of fail-stop, even as we assume it. 
Failing hardware/software do weird stuff. Pay attention to hardware price differentiation.



Using persistent storage

• Simplest “solution”: write all updated objects to 
disk on commit, read back on reboot 
– Doesn’t work, since crash could occur during write 

– Can fail to provide Atomicity and/or Consistency 

• Instead split update into two stages 
1. Write proposed updates to a write-ahead log 
2. Write actual updates 

• Crash during #1 => no actual updates done 

• Crash during #2 => use log to redo, or undo
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Write-ahead logging
• Log: an ordered, append-only file on disk 

• Contains entries like <txid, obj, op, old, new> 
– ID of transaction, object modified, (optionally) the operation 

performed, the old value and the new value 

– This means we can both “roll forward” (redo operations) and 
“rollback” (undo operations) 

• When persisting a transaction to disk: 
– First log a special entry <txid, START> 

– Next log a number of entries to describe operations 

– Finally log another special entry <txid, COMMIT> 

• We build composite-operation atomicity from 
fundamental atomic unit: single-sector write. 
– Much like building high-level primitives over LL/SC or CAS! ?6



Using a write-ahead log
• When executing transactions, perform updates to 

objects in memory with lazy write back 
– I.e. the OS can delay disk writes to improve efficiency 

• Invariant: write log records before corresponding data 

• But when wish to commit a transaction, must first 
synchronously flush a commit record to the log  
– Assume there is a fsync() or fsyncdata() operation or 

similar which allows us to force data out to disk 

– Only report transaction committed when fsync() returns 

• Can improve performance by delaying flush until we 
have a number of transaction to commit - batching 
– Hence at any point in time we have some prefix of the write-

ahead log on disk, and the rest in memory ?7



The Big Picture
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RAM

Object Values

x = 3 
y = 27

Disk

Object Values

x = 1 
y = 17 
z = 42

Older Log Entries

Newer Log Entries

Log Entries

T2, z, 40, 42 
T2, START 
T1, START 
T0, COMMIT 
T0, x, 1, 2 
T0, START

T3, START 
T2, ABORT 
T2, y, 17, 27 
T1, x, 2, 3

Log Entries

RAM acts as a cache of disk 
(e.g. no in-memory copy of z)

On-disk values may be older versions of objects 
(e.g., x) – or new uncommitted values as long as 

the on-disk log describes rollback (e.g., z)

Log conceptually infinite, 
and spans RAM & Disk



Checkpoints
• As described, log will get very long 
– And need to process every entry in log to recover 

• Better to periodically write a checkpoint   
1. Flush all current in-memory log records to disk 
2. Write a special checkpoint record to log with a list of 

active transactions 
(pointers to earliest undo/redo log entries that must be 
searched during recovery) 

3. Flush all ‘dirty’ objects (i.e. ensure object values on disk 
are up to date) 

4. Flush location of new checkpoint record to disk (atomic 
single-sector write truncates unneeded log) 

• (Not fatal if crash during final write)
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Checkpoints and recovery

• Key benefit of a checkpoint is it lets us focus 
our attention on possibly affected transactions
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Time
Checkpoint Time Failure Time

T1

T2

T3

T4

T5

T1: no action required

T2: REDO

T3: UNDO

T4: REDO

T5: UNDO

Active at checkpoint. 
Has since committed; 

and record in log.

Active at checkpoint; in 
progress at crash. 

Not active at checkpoint. 
But has since committed, 
and commit record in log.

Not active at checkpoint, 
and still in progress.



Recovery algorithm

• Initialize undo list U = { set of active txactions } 
• Also have redo list R, initially empty 
• Walk log forward as indicated by checkpoint record: 

– If see a START record, add transaction to U 
– If see a COMMIT record, move transaction from U->R 

• When hit end of log, perform undo: 
– Walk backward and undo all records for all Tx in U 

• When reach checkpoint record again, Redo: 
– Walk forward, and re-do all records for all Tx in R 

• After recovery, we have effectively checkpointed 
– On-disk store is consistent, so can truncate the log
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The order in which we apply undo/redo records is important to properly 
handling cases where multiple transactions touch the same data



Write-ahead logging: assumptions

• What can go wrong writing commits to disk? 
• Even if sector writes are atomic: 

– All affected objects may not fit in a single sector 
– Large objects may span multiple sectors 
– Trend towards copy-on-write, rather than journaled, FSes 
– Many of the problems seen with in-memory commit (ordering 

and atomicity) apply to disks as well! 

• Contemporary disks may not be entirely honest about 
sector size and atomicity 
– E.g., unstable write caches to improve efficiency 
– E.g., larger or smaller sector sizes than advertised 
– E.g., non-atomicity when writing to mirrored disks 

• These assumes fail-stop – not true for some media
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Transactions: summary

• Standard mutual exclusion techniques not programmer 
friendly when dealing with >1 object 
– intricate locking (& lock order) required, or 

– single coarse-grained lock, limiting concurrency 

• Transactions allow us a better way: 
– potentially many operations (reads and updates) on many 

objects, but should execute as if atomically 

– underlying system deals with providing isolation, allowing safe 
concurrency, and even fault tolerance! 

• Appropriate only if operations are “transactional” 
– E.g., discrete events in time, as must commit to be visible 

• Transactions used in databases and filesystems
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Advanced Topics

• Will briefly look at two advanced topics 
– lock-free data structures, and 

– transactional memory 

• Then, next time, on to a case study
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Lock-free programming

• What’s wrong with locks? 
– Difficult to get right (if locks are fine-grained) 

– Don’t scale well (if locks too coarse-grained) 

– Don’t compose well (deadlock!) 

– Poor cache behavior (e.g. convoying) 

– Priority inversion 

– And can be expensive 

• Lock-free programming involves getting rid of locks ... 
but not at the cost of safety!  

• Recall TAS, CAS, LL/SC from our first lecture: what if we 
used them to implement something other than locks?
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Assumptions

• We have a shared-memory system 
• Low-level (assembly instructions) include:
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val  = read(addr);            // atomic read from memory 
(void) write(addr, val);      // atomic write to memory 
done = CAS(addr, old, new);   // atomic compare-and-swap

• Compare-and-Swap (CAS) is atomic 
• Reads value of addr (‘val’), compares with ‘old’, and updates 

memory to ‘new’ iff old==val  -- without interruption!   
• Something like this instruction common on most modern 

processors (e.g. cmpxchg on x86 – or LL/SC on RISC) 

• Typically used to build spinlocks (or mutexes, or 
semaphores, or whatever...) 



Lock-free approach
• Directly use CAS to update shared data 
• For example, consider a lock-free linked list of integers 

– list is singly linked, and sorted 
– Use CAS to update pointers 
– Handle CAS failure cases (i.e., races) 

• Represents the ‘set’ abstract data type, i.e. 
– find(int) -> bool 
– insert(int) -> bool 
– delete(int) -> bool 

• Return values required as operations may fail, requiring 
retry (typically in a loop) 

• Assumption: hardware supports atomic operations on 
pointer-size types
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Searching a sorted list

• find(20):

H 10 30 T

20?

find(20) -> false 
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Inserting an item with CAS

• insert(20):

H 10 30 T

20

30 → 20✓

insert(20) -> true 
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Inserting an item with CAS

• insert(20):

H 10 30 T

20

30 → 20

25

30 → 25

✓
✗

• insert(25): 
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Concurrent find+insert

• find(20)

H 10 30 T

-> false 

20

20?

• insert(20) -> true 
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Concurrent find+insert

• find(20)

H 10 30 T

-> false 

20

20?

• insert(20) -> true 

This thread saw 20 
was not in the set...

...but this thread 
succeeded in putting 

it in!

• Is this a correct implementation of a set? 

• Should the programmer be surprised if this happens? 

• What about more complicated mixes of operations?
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Linearisability
• As with transactions, we return to a conceptual model to 

define correctness 
– a lock-free data structure is ‘correct’ if all changes (and return 

values) are consistent with some serial view: we call this a 
linearisable schedule 

• Hence in the previous example, we were ok:  
– can just deem the find() to have occurred first 

• Gets a lot more complicated for more complicated data 
structures & operations! 

• NB: On current hardware, synchronisation does more than 
just provide atomicity 
– Also provides ordering for memory visibility; on some hardware, 

“happens-before”; on others, .. not so much 
– Lock-free structures must take this into account as well
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Transactional Memory (TM)

• Steal idea from databases! 

• Instead of: lock(&mylock); 
shared[i] *= shared[j] + 17; 
unlock(&mylock);

!Use: atomic {  
 shared[i] *= shared[j] + 17; 
}

!Has “obvious” semantics, i.e. all operations within 
block occur as if atomically 

!Transactional since under the hood it looks like:

do { txid = tx_begin(&thd);   
 shared[i] *= shared[j] + 17; 
} while !(tx_commit(txid)); 
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TM advantages

• Simplicity:  
– Programmer just puts atomic { } around anything 

he/she wants to occur in isolation 

• Composability:  
– Unlike locks, atomic { } blocks nest, e.g.:

credit(a, x) = atomic {  
 setbal(a, readbal(a) + x); 
} 
debit(a, x) = atomic {  
 setbal(a, readbal(a) - x); 
} 
transfer(a, b, x) = atomic {  
 debit(a, x); 
 credit(b, x); 
}
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TM advantages
• Cannot deadlock:  
– No locks, so don’t have to worry about locking order 
– (Though may get live lock if not careful) 

• No races (mostly):  
– Cannot forget to take a lock (although you can forget to 

put atomic { } around your critical section ;-))  

• Scalability:  
– High performance possible via OCC 
– No need to worry about complex fine-grained locking 

• There is still a simplicity vs. performance tradeoff 
– Too much atomic {} and implementation can’t find 

concurrency. Too little, and race conditions.
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TM is very promising…
• Essentially does ‘ACI’ but no D 

– no need to worry about crash recovery 
– can work entirely in memory 
– some hardware support emerging (take 1) 
– some hardware support emerging (take 2) 

• But not a panacea 
– Contention management can get ugly 
– Difficulties with irrevocable actions / side effects (e.g. I/O) 
– Still working out exact semantics (type of atomicity, handling 

exceptions, signaling, ...) 

• Recent x86 hardware has started to provide direct support 
for transactions; not widely used 
– … And promptly withdrawn in errata 
– Now back on the street again – but very new
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Supervision questions + exercises

• Supervision questions 
– S1: Threads and synchronisation 

• Semaphores, priorities, and work distribution 

– S2: Transactions 
• ACID properties, 2PL, TSO, and OCC 

– Other C&DS topics also important, of course! 

• Optional Java practical exercises 
– Java concurrency primitives and fundamentals 

– Threads, synchronisation, guarded blocks, producer-
consumer, and data races
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Concurrent systems: summary

• Concurrency is essential in modern systems 
– overlapping I/O with computation 
– exploiting multi-core 
– building distributed systems 

• But throws up a lot of challenges 
– need to ensure safety, allow synchronization, and avoid 

issues of liveness (deadlock, livelock, ...) 

• Major risk of over-engineering 
– generally worth building sequential system first 
– and worth using existing libraries, tools and design 

patterns rather than rolling your own!
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Summary + next time

• Transactional durability: crash recovery and logging 
– Write-ahead logging; checkpoints; recovery 

• Advanced topics 
– Lock-free programming 
– Transactional memory 

• Notes on supervision exercises 

• Next time: 
– Concurrent system case study the FreeBSD kernel 
– Brief history of kernel concurrency 
– Primitives and debugging tools 
– Applications to the network stack 

• And then on to Distributed Systems!
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