
Metaprogramming assignment 3

Optimising embedded languages

Due at noon on Thursday 29th November 2018

This exercise uses the BER MetaOCaml compiler, which you can install via
opam. The end of this document has more detailed installation instructions.

1

1 Optimizing tagless final embedded languages

This exercise focuses on various implementations of a simple embedded DSL,
EXP. Each question involves developing a fresh implementation of EXP to give a
new semantics to the DSL, such as evaluation, compilation, partial evaluation,
transformation or normalization.

The following diagram shows the implementations provided in the accompanying file
(indicated with dotted borders) and developed during this exercise. An arrow from A
to B indicates that the implementation B is based on A — that is, that B is obtained
by modifying (a copy of) A.

tracer
(CBV)

(a) effect-tracing interpreter (CBV)
(3 marks)

tracer
(CBN)

(b) effect-tracing interpreter (CBN)
(3 marks)

CPS
(e) CPS-based evaluator
(4 marks)

CPS+
(f) parameterized CPS-based evaluator
(3 marks)

evaluator direct evaluator

compiler simple quote-based compiler

partial
evaluator

PE with support for ints + bools

higher-order
partial evaluator

(c) PE with support for λ
(4 marks)

partial
evaluator +

equality

(d) PE using term equality
(3 marks)

normalizer
(g) term normalizer
(3 marks)

3

The language is a simple expression language with a single effect, for printing:

e, e1, e2, . . . ::= x, y, z variables
λx.e functions
e1 e2 applications
false, true booleans
if e1 e2 e3 conditionals
1, 2, . . . integers
e1 + e2 addition
printv printing

The addition of the printing effect makes it possible to distinguish between
call-by-name and call-by-value evaluation orders.

4

(a) Tracer (Call By Value)

The tagless style makes it easy to implement embedded languages directly, using
the facilities of the host (meta) language to implement the facilities of the
embedded (object) language. For example, the Eval implementation implements
the print operation in EXP using OCaml’s print_int function.

However, it is sometimes more flexible to implement DSLs less directly. The
Trace implementation of EXP is an alternative CBV evaluator that collects a list
of the (print) effects performed when evaluating a term rather than executing
them directly:

module Trace : EXP with type 'a t = 'a trace = . . .

Complete the implementation of Trace and check its behaviour on some examples:

Trace.(app (app (lam (fun b ->
lam (fun e -> if_ b e (print (int 1)))))

(bool false))
(print (int 2)));;

- : unit trace = Unit ((), [2; 1])

(b) Tracer (Call By Name)

Eager languages like OCaml evaluate function arguments before calling the
functions, following the so-called Call by Value (CBV) evaluation order.

However, other evaluation orders are possible, too: using Call by Name (CBN)
evaluation, arguments are only evaluated at the point where they are used in
the called function, not before the call.

Complete the implementation of TraceCBN, an alternative version of Trace using
call by name evaluation and check its behaviour on some examples:

TraceCBN .(app (app (lam (fun b ->
lam (fun e -> if_ b e (print (int 1)))))

(bool false))
(print (int 2)));;

- : unit trace = Unit ((), [1])

The notation M.(e) is short for let open M in e, which makes the
definitions from the module M available for use in e.

OCaml hint OCaml hint OCaml hint OCaml hint OCaml hint OCaml hint

O
C
a
m
l
h
in
t

O
C
a
m
l
h
in
tOCamlhintOCamlhintOCamlhintOCamlhintOCamlhintOCamlhint

5

(c) Partial evaluator (higher-order)

In the lectures we saw an example of a simple partial evaluator that reduced
arithmetic and boolean expressions, but not functions.

A more advanced partial evaluator can simplify functions too. For example, the
following application can be simplified because the function is statically known:

(λx.x+ z)4 ; 4 + z

Here are some more examples that a higher-order partial evaluator can simplify:

λx.4 + ((λy.y + 1) 2) ; λx.7
λx.((λf.(λz.f z))(λy.y + x)) 5 ; λx.5 + x

Complete the partial evaluator PE so that it simplifies these expressions and
check its behaviour on some examples:

resid PE.(lam (fun x ->
add (int 4)

(app (lam (fun y -> add y (int 1)))
(int 2))));;

- : ('_weak8 -> int) code = .<fun x_31 -> 7>.

Heed warnings about cross stage persistence. They often indicate
a staging mistake — e.g. writing x where .˜x was intended.

OCaml hint OCaml hint OCaml hint OCaml hint OCaml hint OCaml hint

O
C
a
m
l
h
in
t

O
C
a
m
l
h
in
tOCamlhintOCamlhintOCamlhintOCamlhintOCamlhintOCamlhint

(d) Partial evaluator, improved

There are several ways to further enhance the partial evaluator. One is to
eliminate both branches of a conditional when they are known to be the same:

if e1 e e ; e

However, it is not always possible to determine when two terms are the same;
code values cannot be inspected. The function equalp is a best-efforts equality
function, returning Yes, No or Unknown to indicate whether its arguments are equal:

type equal = Yes | No | Unknown
let rec equalp : type a. a static -> a static -> equal = . . .

Here are some examples of equalp’s behaviour:

equalp (Int 3) (Int 3) ; Yes
equalp (Bool false) (Bool true) ; No
equalp (Fun f) Unknown ; Unknown

Complete equalp and use it to implement an improved partial evaluator PE2 that
simplifies conditionals where both branches are the same.

6

(e) CPS evaluator

As discussed in lectures, writing an evaluator in Continuation-Passing Style
(CPS) has a number of advantages. One advantage we’ll explore a little here is
that CPS and partial evaluation interact to better optimize programs.

Complete the module CPS to implement a CPS evaluator for EXP:

type 'a cps = {k: 'b. ('a -> 'b) -> 'b}
module CPS : EXP with type 'a t = 'a cps = . . .

Check the behaviour of your evaluator on some examples:

CPS.(lam (fun f -> app f (app f (int 3)))).k (fun x -> x) succ;;
- : int = 5

OCaml records like cps can have polymorphic fields, which can
simulate universally quantified types like ∀b.(a→ b) → b:

OCaml hint OCaml hint OCaml hint OCaml hint OCaml hint OCaml hint

O
C
a
m
l
h
in
t

O
C
a
m
l
h
in
tOCamlhintOCamlhintOCamlhintOCamlhintOCamlhintOCamlhint

(f) CPS evaluator, modularized

It can be useful to write EXP implementations in a way that supports composition.

The CPS module can be made composable by parameterizing it by another
implementation of EXP:

module CPS2 (E: EXP) = . . .

While CPS uses host language operations (+, if, &c.) to implement the operations
of EXP, CPS2 should instead use the operations of E (E.add, E.if_, E.lam, &c.).

Complete the implementation of CPS2.

Test your implementation by applying CPS2 to other modules (Compile, PE, PE2).

module CPSPE = CPS2(PE2);;
. . .
CPSPE.(lam (fun b -> add (int 2) (if_ b (int 3) (int 4)))).k

(fun x -> x);;
- : (bool -> int) sd =
{sta = Fun <fun >; dyn = .<fun x_15 -> if x_15 then 5 else 6>. }

7

(g) Finally, we consider an alternative way of normalizing terms.

The Normal implementation of EXP transforms every term into a form with the
following properties:

• Every non-trivial non-value expression (uses of add and print, and function
calls) is let-bound. In the following example the expressions f 3 and x1 + 4

are let-bound:

add (app f (int 3)) (int 4) ;

let x1 = f 3 in
let x2 = x1 + 4 in

x2

• No value expressions (variables, constants, lambdas) are let-bound.

• The function part of an application is always a variable, not a lambda.

Complete the implementation Normal and test its behaviour on some examples:

residn Normal .(lam (fun x ->
app (lam (fun c -> c))

(add (add (int 3) x) x)));;
- : (int -> int) code =

.< fun x_31 -> let x_32 = 3 + x_31 in
let x_33 = x_32 + x_31 in

x_33 >.

residn Normal .(lam (fun b ->
lam (fun x ->

add (int 4)
(if_ b (int 0)

(app (lam (fun x -> x))
(add (int 3) x))))));;

- : (bool -> int -> int) code = .<
fun x_24 ->

fun x_25 ->
if x_24
then let x_28 = 4 + 0 in x_28
else (let x_26 = 3 + x_25 in let x_27 = 4 + x_26 in x_27)>.

8

OCaml hint OCaml hint OCaml hint OCaml hint OCaml hint OCaml hint OCaml hint

MetaOCaml: what you need to know

MetaOCaml is an extension of OCaml with support for quotation-based code
generation. This page describes the installation and use of MetaOCaml, along with
a brief summary of the language constructs needed for the exercise.

How to install MetaOCaml

Installing MetaOCaml is a two-step process:

1. Install opam, the OCaml package manager, following the instructions here:
https://opam.ocaml.org/doc/Install.html

2. Use opam to install the MetaOCaml compiler:

opam switch 4.07.1+BER
eval $(opam env)

(If you have difficulty installing 4.07.1+BER you might try the previous version
4.04.0+BER instead.)

How to run MetaOCaml

Type metaocaml to start the MetaOCaml top level:

$ metaocaml
BER MetaOCaml toplevel, version N 107

OCaml version 4.07.1

#

Within the top level, type #use "tagless.ml";; to load the code.

You can evaluate individual expressions and definitions, too, and MetaOCaml will
print their type and values. Follow each phrase with a double semicolon.

let f x = x + 1;;
val f : int -> int = <fun>
f 3;;
- : int = 4
let x = .< 1 + 2 >. in .< .˜x + .˜x >.;;
- : int code = .<(1 + 2) + (1 + 2)>.

OCaml hint OCaml hint OCaml hint OCaml hint OCaml hint OCaml hint OCaml hint

9

https://opam.ocaml.org/doc/Install.html

OCaml hint OCaml hint OCaml hint OCaml hint OCaml hint OCaml hint OCaml hint

MetaOCaml syntax

Function definitions

Here is a recursive function, with name f and
type ∀a.bool → a → a:

let rec f: type a.bool -> a -> a =
fun b x -> if b then f (not b) x

else x

You can often omit the type:

let rec f =
fun b x -> if b then f (not b) x

else x

or, even more concisely:

let rec f b x =
if b then f (not b) x else x

If f is not recursive, you can omit rec, too:

let f b x = if b then x else ()

Data types and pattern matching

A data type is defined by giving a signature
for each constructor:

type 'a option =
None : 'a option

| Some : 'a -> 'a option

There are two constructors for option:
None (no arguments, returns 'a option)
Some (argument of type 'a, returns 'a option)

Examine values by pattern matching:

match x, y with
| Some a, Some b -> a + b
| Some a, None -> a
| None , b -> b
| None , None -> 0

Modules

MetaOCaml programs are built of modules:

module Ints = struct
type 'a t = Int : int -> int t
let int x = Int x

end

Modules have types called signatures

module type INTS = sig
type 'a t
val int : int -> int t

end
module I = (Ints : INTS)

Modules can be parameterized by other
modules

module IntList(I:INTS) = struct
type t = Nil : t

| Cons : int I.t * t -> t
let rec length = . . .

end
module L = IntList(I)

Records

Declare a records by listing fields & types:

type ('a,'b) pair = {one: 'a; two: 'b}

The pair type has two type parameters, 'a

and 'b, and two fields: one of type 'a and two

of type 'b.

Construct records by values for fields:

let p = { one = 3; two = "four" }

and access fields using projection:

print_endline p.two

OCaml hint OCaml hint OCaml hint OCaml hint OCaml hint OCaml hint OCaml hint

10

OCaml hint OCaml hint OCaml hint OCaml hint OCaml hint OCaml hint OCaml hint

Quotations

MetaOCaml provides two constructs for
building code values.

Brackets (.< . . . >.) delay the evaluation of
an expression to build a piece of code:

.< 1 + 2 >.

If an expression e has type t then .<e>. has
type t code.

Escape (.˜) is for inserting one piece of code
into another:

let x = .< 1 + 2 >. in

.< .˜x + .˜ x>.

The inserted expression must have code type.

You can run a piece of code using the
Runcode.run function:

Runcode.run .< 1 + 2 >. ; 3

MetaOCaml supports open code: quota-
tions with free variables. In this example,
.<x>. contains a free variable.

.< fun x -> .˜(f .<x>.) >.

(But note that x is bound in an outer scope!)

OCaml hint OCaml hint OCaml hint OCaml hint OCaml hint OCaml hint OCaml hint

11

