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Growth of ML CAMBRIDGE

ML algorithms optimized:
@ Not only for task performance, e.g. accuracy.
@ But also other criteria, e.g. safety, fairness, providing the right to
explanation.
@ There are often trade-offs among these goals.

However,
@ Accuracy can be quantified.
@ Not precisely the case for the other criteria.
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What is interpretability?

@ Interpret means to explain or to present in understandable terms.

@ In the ML context: The ability to explain or to present in
understandable terms to humans.

@ What constitutes an explanation? What makes some explanations
better than others? How are explanations generated? When are
explanations sought?

@ Automatic ways to generate and, to some extent, evaluate
interpretability.
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Taxonomy CAMBRIDGE

Task-related:

o Global interpretability: A general understanding of how the system is
working as a whole, and of the patterns present in the data.

@ Local interpretability: Providing an explanation of a particular
prediction or decision.

Method-related (what are the basic units of the explanation?):
o Raw features.
@ Derived features that have some semantic meaning to the expert.

@ Prototypes.

The nature of the data/tasks should match the type of the explanation.
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Visualizing Deep Neural Network Decisions:

Prediction Difference Analysis

Zintgraf, Cohen, Adel, Welling, ICLR 2017
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@ Visualize the response of a deep neural network to a specific input.

@ For an individual classifier prediction, assign each feature a relevance
value reflecting its contribution towards or against the predicted class.
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Visualizing deep networks CAMBRIDGE

@ Looking under the hood: explaining why a decision was made.

@ Can help to understand strengths and limitations of a model, help to
improve it [wolves/huskies based on presence/absence of snow].

@ Important for liability: why does the algorithm decide this patient has
Alzheimer?

@ Can lead to new insights and theories in poorly understood domains.



Approach CAMBRIDGE

@ Relevance of a feature x; can be estimated by measuring how the
prediction changes if the feature is unknown.

o The difference between p(c|x) and p(c|x,;), where x,; denotes the set
of all input features except x;.

@ But how would a classifier recognize a feature as unknown?

o Label the feature as unknown.
o Retrain the classifier with the feature left out.
e Marginalize the feature.
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Marginalization of a feature "" CAMBRIDGE

plclx\i) = ZP(Xi’X\i)P(C‘X\i’Xi) (1)

Xi

Assume Xx; is independent of x,;

pclx\;) ~ Zp x;)p(clx\;, X;) (2)
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Weight of evidence AMBRIDGE

Compare p(c|x;) to p(c|x):

odds(c|x) = %

WE;(c|x) = log, (odds(c|x)) — log, (odds(c|x,;)) , (3)

@ A large prediction difference — the feature contributed substantially
to the classification.

@ A small prediction difference — the feature was not important for the
decision.

@ A positive value WE; — the feature has contributed evidence for the
class of interest.

@ A negative value WE; — the feature displays evidence against the
class.
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Conditional sampling CAMBRIDGE

@ A pixel depends most strongly on a small neighbourhood around it.

@ The conditional of a pixel given its neighbourhood does not depend
on the position of the pixel in the image.

p(xilx\i) = p(xil%\) (4)
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Multivariate Analysis CAMBRIDGE

A neural network is relatively robust to the marginalization of just one
feature.

@ Remove several features at once
@ Connected pixels.

@ patches of size k x k.
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Experiments " CAMBRIDGE

Conditional sampling

input marginal conditional input marginal conditional
=) .

@ Red: For.
o Blue: Against.
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Experiments CAMBRIDGE

Multivariate analysis
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CAMBRIDGE
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CAMBRIDGE
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Conclusions CAMBRIDGE

@ A method for visualizing deep neural networks by using a more
powerful conditional, multivariate model.

@ The visualization method shows which pixels of a specific input image
are evidence for or against a node in the network.
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Discovering Interpretable Representations for

Both Deep Generative and Discriminative Models

Adel, Ghahramani, Weller, ICML 2018
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Generative models and interpretability " CAMBRIDGE

@ Generative models seek to infer the data-generating latent space.

@ This implies capturing to some extent the salient characteristics of
the data.

@ Generative models can potentially provide disentangled (and perhaps
interpretable?) data representations (Kingma et al., 2014; Chen et al.,
2016; Desjardins et al., 2012; Higgins et al., 2017; Kulkarni et al., 2015) .

“What | cannot create, | do not understand.”, Richard Feynman
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Contributions

We propose:

@ An interpretability framework as a lens on an existing model using
fully invertible transformations.

@ An active learning methodology basing the acquisition function on
mutual information with interpretable data attributes.

@ A quantitative metric. We define interpretability as a simple
relationship to something we can understand.

@ A second interpretability framework jointly optimized for
reconstruction and interpretability. This provides a novel analogy

between data compression and regularization.

o Qualitative and quantitative state-of-the-art results on three datasets.
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Interpretable Lens Variable Model (ILVM) CAMBRIDGE

Newly learnt
rep.

Interpretable side
information, provided
by humans in just a
few cases

Original
latent rep.

21/ 33



& UNIVERSITY OF

Interactive Interpretability via Active Learning % CAMBRIDGE

@ Interactive ‘human-in-the-loop’ interpretability
@ Choose the point with index j that maximizes :
§ = argmax;1(s;, ) = H(s;) — Eqy - [H(s;2])]

— [ pls ogp(s) ds

T Eqy(zls) [/ Py (sj|z*) log py(sjlz*) ds| . (5)

@ Choose the point possessing side information about which:

o the model is most uncertain -maximized H(s;)-, but
e in which the individual settings of the founding latent space z* are
confident -minimized Eq, (~|s)[H(sj|Z}")]-
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Interpretability Metric CAMBRIDGE

o Interpretability refers to a simple relationship to something we can
understand.

@ A latent space is (more) interpretable if it manages to explain the
relationship to salient attributes (more) simply.
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Jointly Learnt Variable Model (JLVM) "¥" CAMBRIDGE

@ JLVM jointly optimizes for interpretability and reconstruction fidelity.
@ It is based on the information bottleneck concept:

o Make z* maximally expressive about the side information s while
being maximally compressive about the data x. :

IB(z*,x,s) = I(z*,s) — pl(z", x).

@ We prove that being maximally compressive about the input for the
sake of interpretability is analogous to further regularization.
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Interpretable Lens Variable Model (ILVM) CAMBRIDGE

Interpretable Lens on a Hidden Layer of a Neural Network
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Quantitative Evaluation

Interpretability Metric

MNIST SVHN Chairs
ILVM 952 +13% | 85.7+09% | 874+£1.0%
JLVM 808+09% |90.1+1.1%|89.8+15%
InfoGAN | 833+ 18% | 839+13% | 852+ 1.4 %
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Quantitative Evaluation CAMBRIDGE

Active Learning
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Conclusion

@ In ILVY, interpretability does not conflict with the original objective,
be it reconstruction fidelity or classification accuracy.

@ A strategy to bring human subjectivity into interpretability to yield
interactive ‘human-in-the-loop’ interpretability.

@ JLVM sheds light on a newly derived relationship between compression
and regularization.

@ The introduced frameworks achieve state-of-the-art results on three
datasets.
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The End



