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Syllabus for Topics in Concurrency

Lecturer: Professor G. Winskel (gw104@cl.cam.ac.uk)
No. of lectures: 16
Prerequisite courses: Semantics of Programming Languages

Aims

The aim of this course is to introduce fundamental concepts and techniques
in the theory of concurrent processes. It will provide languages, models, logics
and methods to formalise and reason about concurrent systems.

Lecture plan

• Simple parallelism and nondeterminism. Dijkstra’s guarded com-
mands. Communication by shared variables: A language of parallel com-
mands. [1 lecture]

• Communicating processes. Milner’s Calculus of Communicating Pro-
cesses (CCS). Pure CCS. Labelled-transition-system semantics. Bisimu-
lation and weak bisimulation equivalence. Equational consequences and
examples. [3 lectures]

• Specification and model-checking. The modal µ-calculus. Its math-
ematical foundations in Tarski’s fixed point theorem. Its relation with
Temporal Logic. Introduction to model checking. Bisimulation checking.
Examples. [3 lectures]

• Introduction to Petri nets. Petri nets, basic definitions and concepts.
Petri-net semantics of CCS. [1 lecture]

• Security protocols. Security protocols informally. SPL, a language for
security protocols. Its transition-system semantics. Its Petri-net seman-
tics. Properties of security protocols: secrecy, authentication. Examples
with proofs of correctness. [1 lecture]

• Event structures. Their relation with Petri nets and representation via
rigid families. The CCS operations on event stuctures. Maps of event
structures. [2 lectures]

• Games and strategies as event structures. An introduction to Con-
current Games. Composing strategies - interaction and hiding. A special
case: nondeterministic dataflow. [2 lectures]

• Strategies as concurrent processes. A higher-order language for
strategies. May and must equivalence. Probabilistic and quantum strate-
gies briefly. The future? [2 lectures]

Objectives

At the end of the course students should
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• know the basic theory of concurrent processes: nondeterministic and paral-
lel commands, the process language CCS, its transition-system semantics,
bisimulation, the modal µ-calculus, the temporal logic CTL, Petri nets,
basic model checking, a process language for security protocols and its
semantics, process languages for mobile computation.

• be able to formalise and to some extent analyse concurrent processes:
establish bisimulation or its absence in simple cases, express and establish
simple properties of transition systems in the modal µ-calculus, argue
with respect to a process language semantics for secrecy or authentication
properties of a small security protocol, apply the basics of concurrent
games.

Reading guide

It’s recommended that you skip Chapter 1, apart from the sections on well-
founded induction and Tarski’s fixed-point theorem. (You may find the rest of
Chapter 1 useful for occasional reference for notation, or perhaps as a revision
of the relevant parts from “Discrete Mathematics.”)

Chapter 2 is important historically, though largely motivational. (This is
not to exclude absolutely the possibility of Tripos questions on closely related
topics.)

The bulk of the material is from chapter 3 on.
The notes contain many proofs, and you’re not expected to memorise these.

However the exam questions will assume familiarity with the various techniques
outlined in “Objectives” above.

You are encouraged to do the exercises. Hard, or more peripheral exercises,
are marked with a “∗,” and can be ignored.

Relevant past Tripos questions:

Those available from the Computer Laboratory’s webpages under Topics in Con-
currency, from 2001 on, together with

Communicating Automata and Pi Calculus:
1996 Paper 7 Question 12 (amended version)
1997 Paper 7 Question 12
1998 Paper 8 Question 15
1999 Paper 7 Question 13

Concurrency:
1993 Paper 9 Question 12
1994 Paper 7 Question 14
1994 Paper 8 Question 14



4

Additional reading:

Clarke, E., Grumberg, O., and Peled, D., (1999) Model checking. MITPress.

Milner, R., (1989). Communication and Concurrency. Prentice Hall.

Milner, R., (1999). Communicating and mobile systems: the Pi-Calculus. CUP.

Reisig, W., (1985) Petri nets: an introduction. EATCS Monographs on Theo-
retical Computer Science, Springer-Verlag.

Winskel, G., Set Theory for Computer Science and Discrete Maths notes. Lec-
ture notes available from my homepage. Expands on chapter one of these notes
and good for “rule induction” in particular.

Winskel, G. (2011-) The ECSYM notes: Event structures, stable families and
games. Notes for the ERC Research project Events, Causality and Symmetry
(ECSYM). Available at: https://www.cl.cam.ac.uk/∼gw104/ecsym-notes.pdf
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Chapter 1

Mathematical Foundations

This chapter is meant largely as a review and for future reference. We will
however be making heavy use of well-founded induction and the fixed point
theorems for monotonic and continuous functions on powersets will be important
for model checking.

1.1 Logical notation

We shall use some informal logical notation in order to stop our mathematical
statements getting out of hand. For statements (or assertions) A and B, we
shall commonly use abbreviations like:

• A & B for (A and B), the conjunction of A and B,

• A⇒ B for (A implies B), which means (if A then B),

• A ⇐⇒ B to mean (A iff B), which abbreviates (A if and only if B), and
expresses the logical equivalence of A and B.

We shall also make statements by forming disjunctions (A or B), with the self-
evident meaning, and negations (not A), sometimes written ¬A, which is true
iff A is false. There is a tradition to write for instance 7 6< 5 instead of ¬(7 < 5),
which reflects what we generally say: “7 is not less than 5” rather than “not 7
is less than 5.”

The statements may contain variables (or unknowns, or place-holders), as in

(x ≤ 3) & (y ≤ 7)

which is true when the variables x and y over integers stand for integers less than
or equal to 3 and 7 respectively, and false otherwise. A statement like P (x, y),
which involves variables x, y, is called a predicate (or property, or relation,
or condition) and it only becomes true or false when the pair x, y stand for
particular things.

9



10 CHAPTER 1. MATHEMATICAL FOUNDATIONS

We use logical quantifiers ∃, read “there exists”, and ∀, read “ for all”. Then
you can read assertions like

∃x. P (x)

as abbreviating “for some x, P (x)” or “there exists x such that P (x)”, and

∀x. P (x)

as abbreviating “ for all x, P (x)” or “for any x, P (x)”. The statement

∃x, y, · · · , z. P (x, y, · · · , z)

abbreviates
∃x∃y · · · ∃z. P (x, y, · · · , z),

and
∀x, y, · · · , z. P (x, y, · · · , z)

abbreviates
∀x∀y · · · ∀z. P (x, y, · · · , z).

Later, we often wish to specify a set X over which a quantifier ranges. Then
one writes ∀x ∈ X. P (x) instead of ∀x. x ∈ X ⇒ P (x), and ∃x ∈ X. P (x)
instead of ∃x. x ∈ X & P (x).

There is another useful notation associated with quantifiers. Occasionally
one wants to say not just that there exists some x satisfying a property P (x)
but also that x is the unique object satisfying P (x). It is traditional to write

∃!x. P (x)

as an abbreviation for

(∃x. P (x)) & (∀y, z. P (y) & P (z)⇒ y = z)

which means that there is some x satisfying the property P and also that if any
y, z both satisfy the property P they are equal. This expresses that there exists
a unique x satisfying P (x).

1.2 Sets

Intuitively, a set is an (unordered) collection of objects, called its elements or
members. We write a ∈ X when a is an element of the set X. Sometimes we
write e.g. {a, b, c, · · ·} for the set of elements a, b, c, · · ·.
A set X is said to be a subset of a set Y , written X ⊆ Y , iff every element of X
is an element of Y , i.e.

X ⊆ Y ⇐⇒ ∀z ∈ X. z ∈ Y.

A set is determined solely by its elements in the sense that two sets are equal
iff they have the same elements. So, sets X and Y are equal, written X = Y , iff
every element of A is a element of B and vice versa. This furnishes a method
for showing two sets X and Y are equal and, of course, is equivalent to showing
X ⊆ Y and Y ⊆ X.



1.2. SETS 11

1.2.1 Sets and properties

Sometimes a set is determined by a property, in the sense that the set has as
elements precisely those which satisfy the property. Then we write

X = {x | P (x)},

meaning the set X has as elements precisely all those x for which P (x) is true.
When set theory was being invented it was thought, first of all, that any

property P (x) determined a set

{x | P (x)}.

It came as a shock when Bertrand Russell realised that assuming the existence
of certain sets described in this way gave rise to contradictions.

Russell’s paradox is really the demonstration that a contradiction arises from
the liberal way of constructing sets above. It proceeds as follows: consider the
property

x /∈ x
a way of writing “x is not an element of x”. If we assume that properties
determine sets, just as described, we can form the set

R = {x | x /∈ x}.

Either R ∈ R or not. If so, i.e. R ∈ R, then in order for R to qualify as an
element of R, from the definition of R, we deduce R /∈ R. So we end up asserting
both something and is negation—a contradiction. If, on the other hand, R /∈ R
then from the definition of R we see R ∈ R—a contradiction again. Either
R ∈ R or R /∈ R lands us in trouble.

We need to have some way which stops us from considering things like R
as a sets. In general terms, the solution is to discipline the way in which sets
are constructed, so that starting from certain given sets, new sets can only be
formed when they are constructed by using particular, safe ways from old sets.
We shall not be formal about it, but state those sets we assume to exist right
from the start and methods we allow for constructing new sets. Provided these
are followed we avoid trouble like Russell’s paradox and at the same time have
a rich enough world of sets to support most mathematics.

1.2.2 Some important sets

We take the existence of the empty set for granted, along with certain sets of
basic elements.
Write ∅ for the null, or empty set, and
ω for the set of natural numbers 0, 1, 2, · · ·.

We shall also take sets of symbols like

{“a”, “b”, “c”, “d”, “e”, · · · , “z”}

for granted, although we could, alternatively have represented them as particular
numbers, for example. The equality relation on a set of symbols is that given
by syntactic identity; two symbols are equal iff they are the same.
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1.2.3 Constructions on sets

We shall take for granted certain operations on sets which enable us to construct
sets from given sets.

Comprehension:

If X is a set and P (x) is a property, we can form the set

{x ∈ X | P (x)}

which is another way of writing

{x | x ∈ X & P (x)}.

This is the subset of X consisting of all elements x of X which satisfy P (x).
Sometimes we’ll use a further abbreviation. Suppose e(x1, . . . , xn) is some

expression which for particular elements x1 ∈ X1, · · ·xn ∈ Xn yields a particular
element and P (x1, . . . , xn) is a property of such x1, . . . , xn. We use

{e(x1, . . . , xn) | x1 ∈ X1 & · · ·& xn ∈ Xn & P (x1, . . . , xn)}

to abbreviate

{y | ∃x1 ∈ X1, · · · , xn ∈ Xn. y = e(x1, . . . , xn)& P (x1, . . . , xn)}.

For example,
{2m+ 1 | m ∈ ω & m > 1}

is the set of odd numbers greater than 3.

Powerset:

We can form a set consisting of the set of all subsets of a set, the so-called
powerset:

Pow(X) = {Y | Y ⊆ X}.

Indexed sets:

Suppose I is a set and that for any i ∈ I there is a unique object xi, maybe a
set itself. Then

{xi | i ∈ I}

is a set. The elements xi are said to be indexed by the elements i ∈ I.

Union:

The set consisting of the union of two sets has as elements those elements which
are either elements of one or the other set. It is written and described by:

X ∪ Y = {a | a ∈ X or a ∈ Y }.
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Big union:

Let X be a set of sets. Their union⋃
X = {a | ∃x ∈ X. a ∈ x}

is a set. When X = {xi | i ∈ I} for some indexing set I we often write
⋃
X as⋃

i∈I xi.

Intersection:

Elements are in the intersection X ∩ Y , of two sets X and Y , iff they are in
both sets, i.e.

X ∩ Y = {a | a ∈ X & a ∈ Y }.

Big intersection:

Let X be a nonempty set of sets. Then⋂
X = {a | ∀x ∈ X. a ∈ x}

is a set called its intersection. When X = {xi | i ∈ I} for a nonempty indexing
set I we often write

⋂
X as

⋂
i∈I xi.

Product:

Given two elements a, b we can form a set (a, b) which is their ordered pair.
To be definite we can take the ordered pair (a, b) to be the set {{a}, {a, b}}—
this is one particular way of coding the idea of ordered pair as a set. As one
would hope, two ordered pairs, represented in this way, are equal iff their first
components are equal and their second components are equal too, i.e.

(a, b) = (a′, b′) ⇐⇒ a = a′ & b = b′.

In proving properties of ordered pairs this property should be sufficient irre-
spective of the way in which we have represented ordered pairs as sets.

For sets X and Y , their product is the set

X × Y = {(a, b) | a ∈ X & b ∈ Y },

the set of ordered pairs of elements with the first from X and the second from
Y .

A triple (a, b, c) is the set (a, (b, c)), and the product X ×Y ×Z is the set of
triples {(x, y, z) | x ∈ X & y ∈ Y & z ∈ Z}. More generally X1×X2×· · ·×Xn

consists of the set of n-tuples (x1, x2, . . . , xn) = (x1, (x2, (x3, · · ·))).
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Disjoint union:

Frequently we want to join sets together but, in a way which, unlike union, does
not identify the same element when it comes from different sets. We do this by
making copies of the elements so that when they are copies from different sets
they are forced to be distinct.

X0 ]X1 ] · · · ]Xn = ({0} ×X0) ∪ ({1} ×X1) ∪ · · · ∪ ({n} ×Xn).

In particular, for X ]Y the copies ({0}×X) and ({1}×Y ) have to be disjoint,
in the sense that

({0} ×X) ∩ ({1} × Y ) = ∅,

because any common element would be a pair with first element both equal to
0 and 1, clearly impossible.

Set difference:

We can subtract one set Y from another X, an operation which removes all
elements from X which are also in Y .

X \ Y = {x | x ∈ X & x /∈ Y }.

1.2.4 The axiom of foundation

A set is built-up starting from basic sets by using the constructions above. We
remark that a property of sets, called the axiom of foundation, follows from our
informal understanding of sets and how we can construct them. Consider an
element b1 of a set b0. It is either a basic element, like an integer or a symbol,
or a set. If b1 is a set then it must have been constructed from sets which
have themselves been constructed earlier. Intuitively, we expect any chain of
memberships

· · · bn ∈ · · · ∈ b1 ∈ b0
to end in some bn which is some basic element or the empty set. The statement
that any such descending chain of memberships must be finite is called the
axiom of foundation, and is an assumption generally made in set theory. Notice
the axiom implies that no set X can be a member of itself as, if this were so,
we’d get the infinite descending chain

· · ·X ∈ · · · ∈ X ∈ X,

—a contradiction.

1.3 Relations and functions

A binary relation between X and Y is an element of Pow(X × Y ), and so a
subset of pairs in the relation. When R is a relation R ⊆ X × Y we shall often
write xRy for (x, y) ∈ R.
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A partial function from X to Y is a relation f ⊆ X × Y for which

∀x, y, y′. (x, y) ∈ f & (x, y′) ∈ f ⇒ y = y′.

We use the notation f(x) = y when there is a y such that (x, y) ∈ f and then
say f(x) is defined, and otherwise say f(x) is undefined. Sometimes we write
f : x 7→ y, or just x 7→ y when f is understood, for y = f(x). Occasionally we
write just fx, without the brackets, for f(x).

A (total) function from X to Y is a partial function from X to Y such that
for all x ∈ X there is some y ∈ Y such that f(x) = y. Although total functions
are a special kind of partial function it is traditional to understand something
described as simply a function to be a total function, so we always say explicitly
when a function is partial.

Note that relations and functions are also sets.
To stress the fact that we are thinking of a partial function f from X to Y

as taking an element of X and yielding an element of Y we generally write it
as f : X ⇀ Y . To indicate that a function f from X to Y is total we write
f : X → Y .

We write (X ⇀ Y ) for the set of all partial functions from X to Y , and
(X → Y ) for the set of all total functions.

Exercise 1.1 * Why are we justified in calling (X ⇀ Y ) and (X → Y ) sets
when X,Y are sets? 2

1.3.1 Composing relations and functions

We compose relations, and so partial and total functions, R between X and Y
and S between Y and Z by defining their composition, a relation between X
and Z, by

S ◦R =def {(x, z) ∈ X × Z | ∃y ∈ Y. (x, y) ∈ R & (y, z) ∈ S}.

Thus for functions f : X → Y and g : Y → Z their composition is the function
g ◦ f : X → Z. Each set X is associated with an identity function IdX where
IdX = {(x, x) | x ∈ X}.

Exercise 1.2 * Let R ⊆ X × Y , S ⊆ Y × Z and T ⊆ Z × W . Convince
yourself that T ◦ (S ◦R) = (T ◦S) ◦R (i.e. composition is associative) and that
R ◦ IdX = IdY ◦ R = R (i.e. identity functions act like identities with respect
to composition). 2

A function f : X → Y has an inverse g : Y → X iff g(f(x)) = x for all
x ∈ X, and f(g(y)) = y for all y ∈ Y . Then the sets X and Y are said to be in
1-1 correspondence. (Note a function with an inverse has to be total.)

Any set in 1-1 correspondence with a subset of natural numbers ω is said to
be countable.
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Exercise 1.3 * Let X and Y be sets. Show there is a 1-1 correspondence
between the set of functions (X → Pow(Y )) and the set of relations Pow(X ×
Y ). 2

Cantor’s diagonal argument
Late last century, Georg Cantor, one of the pioneers in set theory, invented

a method of argument, the gist of which reappears frequently in the theory of
computation. Cantor used a diagonal argument to show that X and Pow(X)
are never in 1-1 correspondence for any set X. This fact is intuitively clear for
finite sets but also holds for infinite sets. He argued by reductio ad absurdum,
i.e., by showing that supposing otherwise led to a contradiction:

Suppose a set X is in 1-1 correspondence with its powerset Pow(X). Let
θ : X → Pow(X) be the 1-1 correspondence. Form the set

Y = {x ∈ X | x /∈ θ(x)}

which is clearly a subset of X and therefore in correspondence with an element
y ∈ X. That is θ(y) = Y . Either y ∈ Y or y /∈ Y . But both possibilities are
absurd. For, if y ∈ Y then y ∈ θ(y) so y /∈ Y , while, if y /∈ Y then y /∈ θ(y) so
y ∈ Y . We conclude that our first supposition must be false, so there is no set
in 1-1 correspondence with its powerset.

Cantor’s argument is reminiscient of Russell’s paradox. But whereas the
contradiction in Russell’s paradox arises out of a fundamental, mistaken as-
sumption about how to construct sets, the contradiction in Cantor’s argument
comes from denying the fact one wishes to prove.

To see why it is called a diagonal argument, imagine that the set X, which
we suppose is in 1-1 correspondence with Pow(X), can be enumerated as
x0, x1, x2, · · · , xn, · · ·. Imagine we draw a table to represent the 1-1 correspon-
dence θ along the following lines. In the ith row and jth column is placed 1 if
xi ∈ θ(xj) and 0 otherwise. The table below, for instance, represents a situation
where x0 /∈ θ(x0), x1 ∈ θ(x0) and xi ∈ θ(xj).

θ(x0) θ(x1) θ(x2) · · · θ(xj) · · ·
x0 0 1 1 · · · 1 · · ·
x1 1 1 1 · · · 0 · · ·
x2 0 0 1 · · · 0 · · ·
...

...
...

...
...

xi 0 1 0 · · · 1 · · ·
...

...
...

...
...

The set Y which plays a key role in Cantor’s argument is defined by running
down the diagonal of the table interchanging 0’s and 1’s in the sense that xn is
put in the set iff the nth entry along the diagonal is a 0.

Exercise 1.4 * Show for any sets X and Y , with Y containing at least two
elements, that there cannot be a 1-1 correspondence between X and the set of
functions (X → Y ). 2
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1.3.2 Direct and inverse image of a relation

We extend relations, and thus partial and total functions, R : X×Y to functions
on subsets by taking

RA = {y ∈ Y | ∃x ∈ A. (x, y) ∈ R}

for A ⊆ X. The set RA is called the direct image of A under R. We define

R−1B = {x ∈ X | ∃y ∈ B. (x, y) ∈ R}

for B ⊆ Y . The set R−1B is called the inverse image of B under R. Of course,
the same notions of direct and inverse image also apply in the special case where
the relation is a function.

1.3.3 Equivalence relations

An equivalence relation is a relation R ⊆ X ×X on a set X which is

• reflexive: ∀x ∈ X. xRx,

• symmetric: ∀x, y ∈ X. xRy ⇒ yRx and

• transitive: ∀x, y, z ∈ X. xRy & yRz ⇒ xRz.

If R is an equivalence relation on X then the (R-)equivalence class of an
element x ∈ X is the subset {x}R =def {y ∈ X | yRx}.

Exercise 1.5 * Let R be an equivalence relation on a set X. Show if {x}R ∩
{y}R 6= ∅ then {x}R = {y}R, for any elements x, y ∈ X. 2

Exercise 1.6 * Let xRy be a relation on a set of sets X which holds iff the
sets x and y in X are in 1-1 correspondence. Show that R is an equivalence
relation. 2

Let R be a relation on a set X. Define R0 = IdX , the identity relation on
the set X, and R1 = R and, assuming Rn is defined, define

Rn+1 = R ◦Rn.

So, Rn is the relation R◦· · ·◦R, obtained by taking n compositions of R. Define
the transitive closure of R to be the relation

R+ =
⋃
n∈ω

Rn+1.

Define the transitive, reflexive closure of a relation R on X to be the relation

R∗ =
⋃
n∈ω

Rn,

so R∗ = IdX ∪R+.
Let R be a relation on a set X. Write Rop for the opposite, or converse,

relation Rop = {(y, x) | (x, y) ∈ R}.

Exercise 1.7 * Show (R ∪Rop)∗ is an equivalence relation. Show R∗ ∪ (Rop)∗

need not be an equivalence relation. 2



18 CHAPTER 1. MATHEMATICAL FOUNDATIONS

1.3.4 Relations as structure—partial orders

Definition: A partial order (p.o.) is a set P on which there is a binary relation
v, so described by (P,v), which is:

(i) reflexive: ∀p ∈ P. p v p
(ii) transitive: ∀p, q, r ∈ P. p v q & q v r ⇒ p v r
(iii) antisymmetric: ∀p, q ∈ P. p v q & q v p⇒ p = q.

If we relax the definition of partial order and do not insist on (iii) antisym-
metry, and only retain (i) reflexivity and (ii) transitivity, we have defined a
preorder on a set.

Example: Let S be a set. Its powerset with the subset relation, (Pow(S),⊆),
is a partial order.

Often the partial order supports extra structure. For example, in a partial
order (P,v), the least upper bound (lub, or supremum, or join) of a subset X ⊆ P
of a partial order is an element

⊔
X ∈ P such that for all p ∈ P ,

(∀x ∈ X.x v p)⇒
⊔
X v p .

An element p such that (∀x ∈ X.x v p) is called an upper bound. In a dual way,
the greatest lower bound (glb, infimum or meet) of a subset X ⊆ P is an element

X ∈ P such that for all p ∈ P ,

(∀x ∈ X.p v x)⇒ p v X ,

and an element p such that (∀x ∈ X.p v x) is called a lower bound. In the
example of a partial order (Pow(S),⊆), lubs are given by unions and glbs by
intersections. A general partial order need not have all lubs and glbs. When it
does it is called a complete lattice.

Exercise 1.8 Show that if a partial order has all lubs, then it necessarily also
has all glbs and vice versa. 2

1.4 Well-founded induction

Mathematical and structural induction are special cases of a general and power-
ful proof principle called well-founded induction. In essence structural induction
works because breaking down an expression into subexpressions cannot go on
forever, eventually it must lead to atomic expressions which cannot be broken
down any further. If a property fails to hold of any expression then it must
fail on some minimal expression which when it is broken down yields subexpres-
sions, all of which satisfy the property. This observation justifies the principle of
structural induction: to show a property holds of all expressions it is sufficient
to show that a property holds of an arbitrary expression if it holds of all its
subexpressions. Similarly with the natural numbers, if a property fails to hold
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of all natural numbers then there has to be a smallest natural number at which
it fails. The essential feature shared by both the subexpression relation and
the predecessor relation on natural numbers is that do not give rise to infinite
descending chains. This is the feature required of a relation if it is to support
well-founded induction.

Definition: A well-founded relation is a binary relation ≺ on a set A such that
there are no infinite descending chains · · · ≺ ai ≺ · · · ≺ a1 ≺ a0. When a ≺ b
we say a is a predecessor of b.

Note a well-founded relation is necessarily irreflexive i.e., for no a do we
have a ≺ a, as otherwise there would be the infinite decending chain · · · ≺ a ≺
· · · ≺ a ≺ a. We shall generally write � for the reflexive closure of the relation
≺, i.e.

a � b ⇐⇒ a = b or a ≺ b.

Sometimes one sees an alternative definition of well-founded relation, in
terms of minimal elements.

Proposition 1.9 Let ≺ be a binary relation on a set A. The relation ≺ is
well-founded iff any nonempty subset Q of A has a minimal element, i.e. an
element m such that

m ∈ Q & ∀b ≺ m. b /∈ Q.

Proof:
“if”: Suppose every nonempty subset of A has a minimal element. If · · · ≺ ai ≺
· · · ≺ a1 ≺ a0 were an infinite descending chain then the set Q = {ai | i ∈ ω}
would be nonempty without a minimal element, a contradiction. Hence ≺ is
well-founded.
“only if”: To see this, suppose Q is a nonempty subset of A. Construct a chain of
elements as follows. Take a0 to be any element of Q. Inductively, assume a chain
of elements an ≺ · · · ≺ a0 has been constructed inside Q. Either there is some
b ≺ an such that b ∈ Q or there is not. If not stop the construction. Otherwise
take an+1 = b. As ≺ is well-founded the chain · · · ≺ ai ≺ · · · ≺ a1 ≺ a0 cannot
be infinite. Hence it is finite, of the form an ≺ · · · ≺ a0 with ∀b ≺ an. b /∈ Q.
Take the required minimal element m to be an. 2

Exercise 1.10 Let ≺ be a well-founded relation on a set B. Prove

1. its transitive closure ≺+ is also well-founded,

2. its reflexive, transitive closure ≺∗ is a partial order.

2

The principle of well-founded induction.
Let ≺ be a well founded relation on a set A. Let P be a property. Then

∀a ∈ A. P (a) iff
∀a ∈ A. ([∀b ≺ a. P (b)]⇒ P (a)).
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The principle says that to prove a property holds of all elements of a well-
founded set it suffices to show that if the property holds of all predecessors of
an arbitrary element a then the property holds of a.

We now prove the principle. The proof rests on the observation that any
nonempty subset Q of a set A with a well-founded relation ≺ has a minimal ele-
ment. Clearly if P (a) holds for all elements of A then ∀a ∈ A. ([∀b ≺ a. P (b)]⇒
P (a)). To show the converse, we assume ∀a ∈ A. ([∀b ≺ a. P (b)] ⇒ P (a)) and
produce a contradiction by supposing ¬P (a) for some a ∈ A. Then, as we have
observed, there must be a minimal element m of the set {a ∈ A | ¬P (a)}. But
then ¬P (m) and yet ∀b ≺ m. P (b), which contradicts the assumption.

Example: If we take the relation ≺ to be the predecessor relation

n ≺ m iff m = n+ 1

on the non-negative integers the principle of well-founded induction specialises
to mathematical induction. 2

Example: If we take ≺ to be the “strictly less than” relation < on the non-
negative integers, the principle specialises to course-of-values induction. 2

Example: If we take ≺ to be the relation between expressions such that a ≺
b holds iff a is an immediate subexpression of b we obtain the principle of
structural induction as a special case of well-founded induction. 2

Proposition 1.9 provides an alternative to proofs by well-founded induction.
Suppose A is a well-founded set. Instead of using well-founded induction to
show every element of A satisfies a property P , we can consider the subset of A
for which the property P fails, i.e. the subset F of counterexamples. By Propo-
sition 1.9, to show F is ∅ it is sufficient to show that F cannot have a minimal
element. This is done by obtaining a contradiction from the assumption that
there is a minimal element in F . Whether to use this approach or the prin-
ciple of well-founded induction is largely a matter of taste, though sometimes,
depending on the problem, one approach can be more direct than the other.

Exercise 1.11 For suitable well-founded relation on strings, use the “no coun-
terexample” approach described above to show there is no string u which satisfies
au = ub for two distinct symbols a and b. 2

Well-founded induction is the most important principle in proving the ter-
mination of programs. Uncertainties about termination arise because of loops
or recursions in a program. If it can be shown that execution of a loop or re-
cursion in a program decreases the value in a well-founded set then execution
must eventually terminate.

1.5 Fixed points

Let S be a set. Then its powerset Pow(S) forms a partial order in which the
order is that of inclusion ⊆. We examine conditions under which functions
ϕ : Pow(S)→ Pow(S) have canonical fixed points.
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1.5.1 Tarski’s fixed point theorem

We provide a proof of Tarski’s fixed point theorem, specialised to powersets.
This concerns fixed points of functions ϕ : Pow(S)→ Pow(S) which are mono-
tonic, i.e. such that

S ⊆ S′ ⇒ ϕ(S) ⊆ ϕ(S′) ,

for S, S′ ∈ Pow(S). Such monotonic functions have least (=minimum) and
greatest (=maximum) fixed points.

Theorem 1.12 (Tarski’s theorem for minimum fixed points)
Let Pow(S) be a powerset. Let ϕ : Pow(S)→ Pow(S) be a monotonic function.
Define

m =
⋂
{S ⊆ S | ϕ(S) ⊆ S}.

Then m is a fixed point of ϕ and the least prefixed point of ϕ, i.e. if ϕ(S) ⊆ S
then m ⊆ S. (When ϕ(S) ⊆ S the set S is called a prefixed point of ϕ.)

Proof: Write X = {S ⊆ S | ϕ(S) ⊆ S}. As above, define m =
⋂
X. Let

S ∈ X. Certainly m ⊆ S. Hence ϕ(m) ⊆ ϕ(S) by the monotonicity of ϕ.
But ϕ(S) ⊆ S because S ∈ X. So ϕ(m) ⊆ S for any S ∈ X. It follows that
ϕ(m) ⊆

⋂
X = m. This makes m a prefixed point and, from its definition, it

is clearly the least one. As ϕ(m) ⊆ m we obtain ϕ(ϕ(m)) ⊆ ϕ(m) from the
monotonicity of ϕ. This ensures ϕ(m) ∈ X which entails m ⊆ ϕ(m). Thus
ϕ(m) = m. We conclude that m is indeed a fixed point and is the least prefixed
point of ϕ. 2

The proof of Tarski’s theorem for minimum fixed points only makes use of
the partial-order properties of the ⊆ relation on Pow(S) and in particular that
there is an intersection operation

⋂
. (In fact, Tarski’s theorem applies equally

well to complete lattice with an abstract partial order and greatest lower bound.)
Replacing the roles of the order ⊆ and intersection

⋂
by the converse relation

⊇ and union
⋃

we obtain a proof of the dual result for maximum fixed points.

Theorem 1.13 (Tarski’s theorem for maximum fixed points)
Let Pow(S) be a powerset. Let ϕ : Pow(S)→ Pow(S) be a monotonic function.
Define

M =
⋃
{S ⊆ S | S ⊆ ϕ(S)}.

Then M is a fixed point of ϕ and the greatest postfixed point of ϕ, i.e. if
S ⊆ ϕ(S) then S ⊆ M . (When S ⊆ ϕ(S) the set S is called a postfixed point
of ϕ.)

Notation: The minimum fixed point is traditionally written

µX.ϕ(X) ,

and the maximum fixed point as

νX.ϕ(X) .
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Tarski’s theorem for minimum fixed points provides another way to under-
stand sets inductively defined by rules.

A set of rule instances R consists of elements which are pairs (X/y) where
X is a set and y is an element. A pair (X/y) is called a rule instance with
premises X and conclusion y.

We are more used to seeing rule instances (X/y) as

y
if X = ∅, and as

x1, · · · , xn
y

if X = {x1, · · · , xn},

though here we aren’t insisting on the set of premises X being finite.
Assuming that all the elements in the premises and conclusion lie within a

set S, we can turn R into a monotonic function ϕR : Pow(S) → Pow(S): For
S ∈ Pow(S), define

ϕR(S) = {y | ∃X ⊆ S. (X/y) ∈ R} .

The least fixed point of ϕR coincides with the set inductively defined by the
rules R.

Sets defined as maximum fixed points are often called coinductively defined
sets.

Exercise 1.14 Let N be the set of positive natural numbers. Let ϕ : Pow(N)→
Pow(N) be the function on its powerset given by:

ϕ(U) = {3n/2 | n ∈ U & n is even} ∪ {n | n ∈ U & n is odd} .

(i) Show ϕ is monotonic with respect to ⊆.

(ii) Suppose that U ⊆ ϕ(U), i.e. U is a postfixed point of ϕ. Show that

n ∈ U & n is even⇒ 2n/3 ∈ U .

Deduce that all members of U are odd. [Hint: Assume there is an even
member of U , so a least even member of U , to derive a contradiction.]

(iii) Deduce that the maximum fixed point of ϕ is the set of all odd numbers.

(iv) Characterise the prefixed points of ϕ. What is the minimum fixed point
of ϕ?

2

1.5.2 Continuous functions

Suppose ϕ : Pow(S) → Pow(S) is monotonic. Then, starting from the empty
set we can find a chain of approximations to the least fixed point. As the zeroth
approximation take ∅ and as the first approximation ϕ(∅). Clearly,

∅ ⊆ ϕ(∅) ,
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and so, by monotonicity of ϕ,

ϕ(∅) ⊆ ϕ2(∅) ,

and so on, inductively, to yield an infinite chain

∅ ⊆ ϕ(∅) ⊆ ϕ2(∅) ⊆ · · · ⊆ ϕn(∅) ⊆ ϕn+1(∅) ⊆ · · · .

An easy induction establishes that

ϕn(∅) ⊆ µX.ϕ(X) ,

for all n ∈ ω, and it might be thought that the least fixed point was equal to
the union ⋃

n∈ω
ϕn(∅) .

But this is not true in general, and the union may be strictly below the least
fixed point. However, when ϕ is

⋃
-continuous the least fixed point can be

obtained in this simple way.

Definition: Let ϕ : Pow(S)→ Pow(S) be a monotonic function.
Say ϕ is

⋃
-continuous iff for all increasing chains

X0 ⊆ X1 ⊆ · · · ⊆ Xn ⊆ · · ·

in Pow(S) we have ⋃
n∈ω

ϕ(Xn) = ϕ(
⋃
n∈ω

Xn).

Say ϕ is
⋂

-continuous iff for all decreasing chains

X0 ⊇ X1 ⊇ · · · ⊇ Xn ⊇ · · ·

in Pow(S) we have ⋂
n∈ω

ϕ(Xn) = ϕ(
⋂
n∈ω

Xn).

Theorem 1.15 Let ϕ : Pow(S)→ Pow(S) be a monotonic function.
If ϕ be

⋃
-continuous, then

µX.ϕ(X) =
⋃
n∈ω

ϕn(∅).

If ϕ be
⋂

-continuous, then

νX.ϕ(X) =
⋂
n∈ω

ϕn(S).
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Proof: Assume ϕ is
⋃

-continuous. Write

fix ϕ =
⋃
n∈ω

ϕn(∅) .

Then,

ϕ(fix ϕ) =ϕ(
⋃
n∈ω

ϕn(∅))

=
⋃
n∈ω

ϕn+1(∅) by continuity,

=(
⋃
n∈ω

ϕn+1(∅)) ∪ {∅}

=
⋃
n∈ω

ϕn(∅)

=fix ϕ .

Thus fix ϕ is a fixed point. Suppose X is a prefixed point, i.e. ϕ(X) ⊆ X.
Certainly ∅ ⊆ X. By monotonicity ϕ(∅) ⊆ ϕ(X). But X is prefixed point, so
ϕ(∅) ⊆ X , and by induction ϕn(∅) ⊆ X. Thus, fix ϕ =

⋃
n∈ω ϕ

n(∅) ⊆ X.
As fixed points are certainly prefixed points, fix ϕ is the least fixed point

µX.ϕ(X).
Analogously, we prove that the characterisation of maximum fixed points of⋂

-continuous functions. 2

Exercise 1.16 Show that if a set of rules R is finitary, in each rule X/y the set
of premises X is finite, then, the function ϕR is

⋃
-continuous.

Exhibit a set of rules (necessarily not finitary) such that ϕR is not
⋃

-
continuous.

1.5.3 Fixed points in finite powersets

In the case where S is a finite set, any increasing chain

X0 ⊆ X1 ⊆ · · · ⊆ Xn ⊆ · · ·

or any decreasing chain

X0 ⊇ X1 ⊇ · · · ⊇ Xn ⊇ · · ·

in Pow(S) must be stationary, i.e. eventually constant; the number of strict
increases/decreases along a chain can be at most the size of S.

Consequently, when S is finite, any monotonic function ϕ : Pow(S) →
Pow(S) must be both

⋃
- and

⋂
-continuous.

Not only do we inherit from continuity the characterisations of least and
greatest fixed points as limits of chains of approximations, but moreover we
know, when the set S has size k, that we reach the fixed points by the k-th
approximation.
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Proposition 1.17 Let S be a finite set of size k and ϕ : Pow(S)→ Pow(S) a
monotonic function. Then,

µX.ϕ(X) =
⋃
n∈w ϕn(∅) = ϕk(∅)

νX.ϕ(X) =
⋂
n∈w ϕn(S) = ϕk(S) .
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Chapter 2

Nondeterministic and
parallel commands

This chapter is an introduction to nondeterministic and parallel (or concurrent)
programs and systems and their semantics. It introduces communication via
shared variables and Dijkstra’s language of guarded commands and paves the
way for languages of communicating processes in the next chapter.

2.1 Introduction

A simple way to introduce some basic issues in parallel programming languages
is to extend the simple imperative language of while-programs by an operation
of parallel composition.

c ::= skip | X := a | c0; c1 | if b then c0 else c1 | while b do c | c0 ‖ c1

where a ranges over arithmetic expressions, and b over boolean expressions.
For commands c0, c1 their parallel composition c0 ‖ c1 executes like c0 and

c1 together, with no particular preference being given to either one. What
happens, if, for instance, both c0 and c1 are in a position to assign to the
same variable? One (and by that it is meant either one) will carry out its
assignment, possibly followed by the other. It’s plain that the assignment carried
out by one can affect the state acted on later by the other. This means we
cannot hope to accurately model the execution of commands in parallel using
a relation between command configurations and final states. We must instead
use a relation representing single uninterruptible steps in the execution relation
and so allow for one command affecting the state of another with which it is set
in parallel.

There is a choice as to what is regarded as a single uninterruptible step.
This is determined by the rules written down for the execution of commands

27
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and, in turn, on the evaluation of expressions. But assuming that the evaluation
rules have been done we can explain the execution of parallel commands by the
following rules. (The set of states Σ consists of functions σ from locations to
numbers.)

〈c0, σ〉 →1 σ
′

〈c0 ‖ c1, σ〉 →1 〈c1, σ′〉
〈c0, σ〉 →1 〈c′0, σ′〉

〈c0 ‖ c1, σ〉 →1 〈c′0 ‖ c1, σ′〉

〈c1, σ〉 →1 σ
′

〈c0 ‖ c1, σ〉 →1 〈c0, σ′〉
〈c1, σ〉 →1 〈c′1, σ′〉

〈c0 ‖ c1, σ〉 →1 〈c0 ‖ c′1, σ′〉

Look at the first two rules. They show how a single step in the execution
of a command c0 gives rise to a single step in the execution of c0 ‖ c1—these
are two rules corresponding to the single step in the execution of c0 completing
the execution of c0 or not. There are symmetric rules for the right-hand-side
component of a parallel composition. If the two component commands c0 and c1
of a parallel composition have locations in common they are likely to influence
each others’ execution. They can be thought of as communicating by shared
locations. Our parallel composition gives an example of what is often called
communication by shared variables.

The symmetry in the rules for parallel composition introduces an unpre-
dictability into the behaviour of commands. Consider for example the execution
of the program (X := 0 ‖ X := 1) from the initial state. This will terminate
but with what value at X? More generally a program of the form

(X := 0 ‖ X := 1); if X = 0 then c0 else c1

will execute either as c0 or c1, and we don’t know which.
This unpredictability is called nondeterminism. The programs we have used

to illustrate nondeterminism are artificial, perhaps giving the impression that
it can be avoided. However it is a fact of life. People and computer systems do
work in parallel leading to examples of nondeterministic behaviour, not so far
removed from the silly programs we’ve just seen.

We note that an understanding of parallelism requires an understanding of
nondeterminism, and that the interruptability of parallel commands means that
we can’t model a parallel command simply as a function from configurations
to sets of possible end states. The interruptability of parallel commands also
complicates considerably the Hoare logic for parallel commands.

Exercise 2.1 Complete the rules for the execution of parallel commands.

2.2 Guarded commands

Paradoxically a disciplined use of nondeterminism can lead to a more straight-
forward presentation of algorithms. This is because the achievement of a goal
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may not depend on which of several tasks is performed. In everyday life we
might instruct someone to either do this or that and not care which. Dijkstra’s
language of guarded commands uses a nondeterministic construction to help free
the programmer from overspecifying a method of solution. Dijkstra’s language
has arithmetic and boolean expressions a ∈ Aexp and b ∈ Bexp as well as two
new syntactic sets that of commands (ranged over by c) and guarded commands
(ranged over by gc). Their abstract syntax is given by these rules:

c ::= skip | abort | X := a | c0; c1 | if gc fi | do gc od

gc ::= b→ c | gc0[]gc1

The constructor used to form guarded commands gc0[]gc1 is called alternative
(or “fatbar”). The guarded command typically has the form

(b1 → c1)[] . . . [](bn → cn).

In this context the boolean expressions are called guards – the execution of the
command body ci depends on the corresponding guard bi evaluating to true.
If no guard evaluates to true at a state the guarded command is said to fail,
in which case the guarded command does not yield a final state. Otherwise
the guarded command executes nondeterministically as one of the commands
ci whose associated guard bi evaluates to true. The command syntax includes
skip, a command which leaves the state unchanged, assignment and sequential
composition. The new command abort does not yield a final state from any
initial state. The command if gc fi executes as the guarded command gc, if gc
does not fail, and otherwise acts like abort. The command do gc od executes
repeatedly as the guarded command gc, while gc continues not to fail, and
terminates when gc fails; it acts like skip if the guarded command fails initially.

We now capture these informal explanations in rules for the execution of
commands and guarded commands. We assume evaluation relations for Aexp
and Bexp. With an eye to the future section on an extension of the language
to handle parallelism we describe one step in the execution of commands and
guarded commands. A command configuration has the form 〈c, σ〉 or σ for
commands c and states σ.

Initial configurations for guarded commands are pairs 〈gc, σ〉, for guarded
commands gc and states σ, as is to be expected, but one step in their execution
can lead to a command configuration or to a new kind of configuration called
fail. Here are the rules for execution:
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Rules for commands:

〈skip, σ〉 → σ

〈a, σ〉 → n

〈X := a, σ〉 → σ[n/X]

〈c0, σ〉 → σ′

〈c0; c1, σ〉 → 〈c1, σ′〉
〈c0, σ〉 → 〈c′0, σ′〉

〈c0; c1, σ〉 → 〈c′0; c1, σ
′〉

〈gc, σ〉 → 〈c, σ′〉
〈if gc fi, σ〉 → 〈c, σ′〉

〈gc, σ〉 → fail

〈 do gc od, σ〉 → σ

〈gc, σ〉 → 〈c, σ′〉
〈 do gc od, σ〉 → 〈c; do gc od, σ′〉

Rules for guarded commands:

〈b, σ〉 → true

〈b→ c, σ〉 → 〈c, σ〉

〈gc0, σ〉 → 〈c, σ′〉
〈gc0[]gc1, σ〉 → 〈c, σ′〉

〈gc1, σ〉 → 〈c, σ′〉
〈gc0[]gc1, σ〉 → 〈c, σ′〉

〈b, σ〉 → false

〈b→ c, σ〉 → fail

〈gc0, σ〉 → fail 〈gc1, σ〉 → fail

〈gc0[]gc1, σ〉 → fail

The rule for alternatives gc0[]gc1 introduces nondeterminism—such a guarded
command can execute like gc0 or like gc1. Notice the absence of rules for abort
and for commands if gc fi in the case where the guarded command gc fails.
In such situations the commands do not execute to produce a final state. An-
other possibility, not straying too far from Dijkstra’s intentions in [9], would
be to introduce a new command configuration abortion to make this improper
termination explicit.1

As an example, here is a command which assigns the maximum value of two

1The reader may find one thing curious. As the syntax stands there is an unnecessary
generality in the rules. From the rules for guarded commands it can be seen that in transitions
〈gc, σ〉 → 〈c, σ′〉 which can be derived the state is unchanged, i.e. σ = σ′. And thus in all
rules whose premises are a transition 〈gc, σ〉 → 〈c, σ′〉 we could replace σ′ by σ. Of course
we lose nothing by this generality, but more importantly, the extra generality will be needed
when later we extend the set of guards to allow them to have side effects.
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locations X and Y to a location MAX:

if

X ≥ Y →MAX := X

[]

Y ≥ X →MAX := Y

fi

The symmetry between X and Y would be lost in a more traditional imperative
program.

Euclid’s algorithm for the greatest common divisor of two numbers is par-
ticularly striking in the language of guarded commands:

do

X > Y → X := X − Y
[]

Y > X → Y := Y −X
od

Compare this with the more clumsy program that would result through use of a
conditional in language without [], a clumsiness which is due to the asymmetry
between the two branches of a conditional. See Dijkstra’s book [9] for more
examples of programs in his language of guarded commands.

Exercise 2.2 Explain informally why Euclid’s algorithm terminates. 2

Exercise 2.3 Give an operational semantics for the language of guarded com-
mands but where the rules determine transitions of the form 〈c, σ〉 → σ′ and
〈gc, σ〉 → σ′ between configurations and final states. 2

Exercise 2.4 Explain why this program terminates:

do (2|X → X := (3×X)/2)[](3|X → X := (5×X)/3) od

where e.g. 3|X means 3 divides X, and (5×X)/3 means 5×X divided by 3.
2

Exercise 2.5 A partial correctness assertion {A}c{B}, where c is a command
or guarded command and A and B are assertions about states, is said to be
valid if for any state at which A is true the execution of c, if it terminates, does
so in a final state at which B is true. Write down sound proof rules for the
partial correctness assertions of Dijktra’s language. 2

Exercise 2.6 * Let the syntax of regular commands c be given as follows:

c := skip | X := e | b? | c; c | c+ c | c∗
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where X ranges over a set of locations, e is an integer expression and b is a
boolean expression. States σ are taken to be functions from the set of locations
to integers. It is assumed that the meaning of integer and boolean expressions
are specified by semantic functions so I[[e]]σ is the integer which integer expres-
sion e evaluates to in state σ and B[[b]]σ is the boolean value given by b in state
σ. The meaning of a regular command c is given by a relation of the form

〈c, σ〉 → σ′

which expresses that the execution of c in state σ can lead to final state σ′. The
relation is determined by the following rules:

〈skip, σ〉 → σ
I[[e]]σ = n

〈X := e, σ〉 → σ[n/X]

B[[b]]σ = true

〈b?, σ〉 → σ

〈c0, σ〉 → σ′′ 〈c1, σ′′〉 → σ′

〈c0; c1, σ〉 → σ′

〈c0, σ〉 → σ′

〈c0 + c1, σ〉 → σ′
〈c1, σ〉 → σ′

〈c0 + c1, σ〉 → σ′

〈c∗, σ〉 → σ
〈c, σ〉 → σ′′ 〈c∗, σ′′〉 → σ′

〈c∗, σ〉 → σ′

(i) Write down a regular command which has the same effect as the while loop

while b do c,

where b is a boolean expression and c is a regular command. Your command C
should have the same effect as the while loop in the sense that

〈C, σ〉 → σ′ iff 〈while b do c, σ〉 → σ′.

(This assumes the obvious rules for while loops.)
(ii) For two regular commands c0 and c1 write c0 = c1 when 〈c0, σ〉 → σ′ iff
〈c1, σ〉 → σ′ for all states σ and σ′. Prove from the rules that

c∗ = skip+ c; c∗

for any regular command c.
(iii) Write down a denotational semantics of regular commands; the denotation
of a regular command c should equal the relation

{(σ, σ′)|〈c, σ〉 → σ′}.

Describe briefly the strategy you would use to prove that this is indeed true of
your semantics.
(iv) Suggest proof rules for partial correctness assertions of regular commands
of the form b?, c0 + c1 and c∗. 2



Chapter 3

Communicating processes

This chapter introduces programming languages where communication is solely
through the synchronised exchange of values. The first language, building on
Dijkstra’s guarded commands, is closely related to Occam and Hoare’s CSP
(Communicating Sequential Processes). The remainder of the chapter concen-
trates on Milner’s CCS (Calculus of Communicating Systems), and shows how
CCS with value passing can be understood in terms of a more basic, simple
language, Pure CCS.

3.1 Synchronous communication

In the latter half of the seventies Hoare and Milner independently suggested the
same novel communication primitive. It was clear that systems of processors,
each with its own store, would become increasingly important. A communica-
tion primitive was sought which was independent of the medium used to com-
municate, the idea being that the medium, whether it be shared locations or
something else, could itself be modelled as a process. Hoare and Milner settled
on atomic actions of synchronisation, with the possible exchange of values, as
the central primitive of communication.

Their formulations are slightly different. Here we will assume that a process
communicates with other processes via channels. We will allow channels to be
hidden so that communication along a particular channel can be made local
to two or more processes. A process may be prepared to input or output at a
channel. However it can only succeed in doing so if there is a companion process
in its environment which performs the complementary action of output or input.
There is no automatic buffering; an input or output communication is delayed
until the other process is ready with the corresponding output or input. When
successful the value output is then copied from the outputting to the inputting
process.

We now present the syntax of a language of communicating processes. In
addition to a set of locations X ∈ Loc, boolean expressions b ∈ Bexp and

33
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arithmetic expressions a ∈ Aexp, we assume:

Channel names α, β, γ, . . . ∈ Chan
Input expressions α?X where X ∈ Loc
Output expressions α!a where a ∈ Aexp

Commands:

c ::= skip | abort | X := a | α?X | α!a | c0; c1 | if gc fi | do gc od | c0 ‖ c1 | c \ α

Guarded commands:

gc ::= b→ c | b ∧ α?X → c | b ∧ α!a→ c | gc0[]gc1

Not all commands and guarded commands are well-formed. A parallel com-
position c0 ‖ c1 is only well-formed in case the commands c0 and c1 do not
contain a common location. In general a command is well-formed if all its sub-
commands of the form c0 ‖ c1 are well-formed. A restriction c \ α hides the
channel α, so that only communications internal to c can occur on it. 1

How are we to formalise the intended behaviour of this language of com-
municating processes? As earlier, states will be functions from locations to the
values they contain, and a command configuration will have the form 〈c, σ〉 or
σ for a command c and state σ. We will try to formalise the idea of one step in
the execution. Consider a particular command configuration of the form

〈α?X; c, σ〉.

This represents a command which is first prepared to receive a synchronised
communication of a value for X along the channel α. Whether it does or not is,
of course, contingent on whether or not the command is in parallel with another
prepared to do a complementary action of outputting a value to the channel α.
Its semantics should express this contingency on the environment. This we do
in a way familiar from automata theory. We label the transitions. For the set
of labels we take

{α?n | α ∈ Chan & n ∈ Num} ∪ {α!n | α ∈ Chan & n ∈ Num}

Now, in particular, we expect our semantics to yield the labelled transition

〈α?X; c0, σ〉
α?n−→ 〈c0, σ[n/X]〉.

1In recent treatments of process algebra one often sees new α.c, or να.c, instead of the
restriction c\α. In new α.c the “new” operation is understood as a binder, binding α, treated
as a variable, to a new, private channel name. Because the channel is private it cannot
participate in any communication with the outside world, so new α.c has the same effect as
restricting the channel α away. (In a more liberal regime where channel names can also be
passed as values, as in the Pi-Calculus, the private name might be communicated, so allowing
future communication along that channel; then a process new α.c may well behave differently
than simple restriction.)
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This expresses the fact that the command α?X; c0 can receive a value n at the
channel α and store it in location X, and so modify the state. The labels of the
form α!n represent the ability to output a value n at channel α. We expect the
transition

〈α!e; c1, σ〉
α!n−→ 〈c1, σ〉

provided 〈e, σ〉 → n. Once we have these we would expect a possibility of
communication when the two commands are set in parallel:

〈(α?X; c0) ‖ (α!e; c1), σ〉 → 〈c0 ‖ c1, σ[n/X]〉

This time we don’t label the transition because the communication capability of
the two commands has been used up through an internal communication, with
no contingency on the environment. We expect other transitions too. After all,
there may be other processes in the environment prepared to send and receive
values via the channel α. So as to not exclude those possibilities we had better
also include transitions

〈(α?X; c0) ‖ (α!e; c1), σ〉 α?n−→ 〈c0 ‖ (α!e; c1), σ[n/X]〉

and

〈(α?X; c0) ‖ (α!e; c1), σ〉 α!n−→ 〈(α?X; c0) ‖ c1, σ〉.

The former captures the possibility that the first component receives a value
from the environment and not from the second component. In the latter the
second component sends a value received by the environment, not by the first
component.

Now we present the full semantics systematically using rules. We assume
given the form of arithmetic and boolean expressions and their evaluation rules.

Guarded commands will be treated in a similar way to before, but allowing
for communication in the guards. As earlier guarded commands can sometimes
fail at a state.

To control the number of rules we shall adopt some conventions. To treat
both labelled and unlabelled transitions in a uniform manner we shall use λ
to range over labels like α?n and α!n as well as the empty label. The other
convention aims to treat both kinds of command configurations 〈c, σ〉 and σ in
the same way. We regard the configuration σ as configuration 〈∗, σ〉 where ∗ is
thought of as the empty command. As such ∗ satisfies the laws

∗; c ≡ c; ∗ ≡ ∗ ‖ c ≡ c ‖ ∗ ≡ c and ∗; ∗ ≡ ∗ ‖ ∗ ≡ (∗ \ α) ≡ ∗

which express, for instance, that ∗ ‖ c stands for the piece of syntax c. (Here
and elsewhere we use ≡ to mean equality of syntax.)
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Rules for commands

〈skip, σ〉 → σ
〈a, σ〉 → n

〈X := a, σ〉 → σ[n/X]

〈α?X,σ〉 α?n→ σ[n/X]
〈a, σ〉 → n

〈α!a, σ〉 α!n→ σ

〈c0, σ〉
λ→ 〈c′0, σ′〉

〈c0; c1, σ〉
λ→ 〈c′0; c1, σ

′〉

〈gc, σ〉 λ→ 〈c, σ′〉

〈if gc fi, σ〉 λ→ 〈c, σ′〉

〈gc, σ〉 λ→ 〈c, σ′〉

〈 do gc od, σ〉 λ→ 〈c; do gc od, σ′〉

〈gc, σ〉 → fail

〈 do gc od, σ〉 → σ

〈c0, σ〉
λ→ 〈c′0, σ′〉

〈c0 ‖ c1, σ〉
λ→ 〈c′0 ‖ c1, σ′〉

〈c1, σ〉
λ→ 〈c′1, σ′〉

〈c0 ‖ c1, σ〉
λ→ 〈c0 ‖ c′1, σ′〉

〈c0, σ〉
α?n→ 〈c′0, σ′〉 〈c1, σ〉

α!n→ 〈c′1, σ〉
〈c0 ‖ c1, σ〉 → 〈c′0 ‖ c′1, σ′〉

〈c0, σ〉
α!n→ 〈c′0, σ〉 〈c1, σ〉

α?n→ 〈c′1, σ′〉
〈c0 ‖ c1, σ〉 → 〈c′0 ‖ c′1, σ′〉

〈c, σ〉 λ→ 〈c′, σ′〉

〈c \ α, σ〉 λ→ 〈c′ \ α, σ′〉
provided neither λ ≡ α?n nor λ ≡ α!n
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Rules for guarded commands

〈b, σ〉 → true

〈b→ c, σ〉 → 〈c, σ〉
〈b, σ〉 → false

〈b→ c, σ〉 → fail

〈b, σ〉 → false

〈b ∧ α?X → c, σ〉 → fail

〈b, σ〉 → false

〈b ∧ α!a→ c, σ〉 → fail

〈gc0, σ〉 → fail 〈gc1, σ〉 → fail

〈gc0[]gc1, σ〉 → fail

〈b, σ〉 → true

〈b ∧ α?X → c, σ〉 α?n→ 〈c, σ[n/X]〉

〈b, σ〉 → true 〈a, σ〉 → n

〈b ∧ α!a→ c, σ〉 α!n→ 〈c, σ〉

〈gc0, σ〉
λ→ 〈c, σ′〉

〈gc0[]gc1, σ〉
λ→ 〈c, σ′〉

〈gc1, σ〉
λ→ 〈c, σ′〉

〈gc0[]gc1, σ〉
λ→ 〈c, σ′〉

Example: The following illustrate various features of the language and the
processes it can describe (several more can be found in Hoare’s paper [14]):
A process which repeatedly receives a value from the α channel and transmits
it on channel β:

do (true ∧ α?X → β!X) od

A buffer with capacity 2 receiving on α and transmitting on γ:

( do (true ∧ α?X → β!X) od ‖ do (true ∧ β?Y → γ!Y ) od) \ β

Notice the use of restriction to make the β channel hidden so that all commu-
nications along it have to be internal.

One use of the alternative construction is to allow a process to “listen” to two
channels simultaneously and read from one should a process in the environment
wish to output there; in the case where it can receive values at either channel a
nondeterministic choice is made between them:

if (true ∧ α?X → c0)[](true ∧ β?Y → c1) fi

Imagine this process in an environment offering values at the channels. Then it
will not deadlock (i.e., reach a state of improper termination) if neither c0 nor
c1 can. On the other hand, the following process can deadlock:

if (true→ (α?X; c0))[](true→ (β?Y ; c1)) fi

It autonomously chooses between being prepared to receive at the α or β chan-
nel. If, for example, it elects the right-hand branch and its environment is only
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able to output on the α channel there is deadlock. Deadlock can however arise
in more subtle ways. The point of Dijkstra’s example of the so-called “dining
philosophers” is that deadlock can be caused by a complicated chain of circum-
stances often difficult to forsee (see e.g. [14]). 2

The programming language we have just considered is closely related to
Occam, the programming language of the transputer. It does not include all the
features of Occam however, and for instance does not include the prialt operator
which behaves like the alternative construction [] except for giving priority to
the execution of the guarded command on the left. On the other hand, it
also allows outputs α!e in guards not allowed in Occam for efficiency reasons.
Our language is also but a step away from Hoare’s language of Communicating
Sequential Processes (CSP) [14]. Essentially the only difference is that in CSP
process names are used in place of names for channels; in CSP, P?X is an
instruction to receive a value from process P and put it in location X, while
P !5 means output value 5 to process P .

3.2 Milner’s CCS

Robin Milner’s work on a Calculus of Communicating Systems (CCS) has had
an impact on the foundations of the study of parallelism. It is almost true
that the language for his calculus, generally called CCS, can be derived by
removing the imperative features from the language of the last section, the use
of parameterised processes obviating the use of states. In fact, locations can be
represented themselves as CCS processes.

A CCS process communicates with its environment via channels connected
to its ports, in the same manner as we have seen. A process p which is prepared
to input at the α and β channels and output at the channels α and γ can be
visualised as

&%
'$q qqq

α?

α!

β? γ!

with its ports labelled appropriately. The parallel composition of p with a
process q, a process able to input at α and output at β and δ can itself be
thought of as a process p ‖ q with ports α?, α!, β?, β!, γ!, δ!.

The operation of restriction hides a specified set of ports. For example
restricting away the ports specified by the set of labels {α, γ} from the process p
results in a process p\{α, γ} only capable of performing inputs from the channel
β; it looks like:

&%
'$qβ?

Often it is useful to generate several copies of the same process but for a
renaming of channels. A relabelling function is a function on channel names.
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After relabelling by the function f with f(α) = γ, f(β) = δ and f(γ) = γ the
process p becomes p[f ] with this interface with its environment:

&%
'$q qq

γ?

δ? γ!

In addition to communications α?n, α!n at channels α we have an extra
action τ which can do the duty of the earlier skip, as well as standing for
actions of internal communication. Because we remove general assignments we
will not need the states σ of earlier and can use variables x, y, . . . in place of
locations. To name processes we have process identifiers P,Q, . . . in our syntax,
in particular so we can define their behaviour recursively. Assume a syntax for
arithmetic expressions a and boolean expressions b, with variables instead of
locations. The syntax of processes p, p0, p1, . . . is:

p ::= nil |
(τ → p) | (α!a→ p) | (α?x→ p) | (b→ p)

p0 + p1 | p0 ‖ p1 |
p\L | p[f ] |
P (a1, · · · , ak)

where a and b range over arithmetic and boolean expressions respectively, x is a
variable over values, L is a subset of channel names, f is a relabelling function,
and P stands for a process with parameters a1, · · · , ak—we write simply P when
the list of parameters is empty.

Formally at least, α?x → p is like a lambda abstraction on x, and any
occurrences of the variable x in p will be bound by the α?x provided they are
not present in subterms of the form β?x→ q. Variables which are not so bound
will be said to be free. Process identifiers P are associated with definitions,
written as

P (x1, · · · , xk)
def
= p

where all the free variables of p appear in the list x1, · · · , xk of distinct variables.
The behaviour of a process will be defined with respect to such definitions for
all the process identifiers it contains. Notice that definitions can be recursive in
that p may mention P . Indeed there can be simultaneous recursive definitions,
for example if

P (x1, · · · , xk)
def
= p

Q(y1, · · · , yl)
def
= q

where p and q mention both P and Q.
In giving the operational semantics we shall only specify the transitions asso-

ciated with processes which have no free variables. By making this assumption,
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we can dispense with the use of environments for variables in the operational
semantics, and describe the evaluation of expressions without variables by re-
lations a → n and b → t. Beyond this, the operational semantics contains few
surprises. We use λ to range over actions α?n, α!n, and τ .

nil process: has no rules.
Guarded processes:

(τ → p)
τ→ p

a→ n

(α!a→ p)
α!n−→ p (α?x→ p)

α?n−→ p[n/x]

b→ true p
λ−→ p′

(b→ p)
λ−→ p′

(By p[n/x] we mean p with n substituted for the variable x. A more general
substitution p[a1/x1, · · · , ak/xk], stands for a process term p in which arithmetic
expressions ai have replaced variables xi.)
Sum:

p0
λ−→ p′0

p0 + p1
λ−→ p′0

p1
λ−→ p′1

p0 + p1
λ−→ p′1

Composition:

p0
λ→ p′0

p0 ‖ p1
λ−→ p′0 ‖ p1

p0
α?n−→ p′0 p1

α!n−→ p′1

p0 ‖ p1
τ−→ p′0 ‖ p′1

p1
λ→ p′1

p0 ‖ p1
λ−→ p0 ‖ p′1

p0
α!n−→ p′0 p1

α?n−→ p′1

p0 ‖ p1
τ−→ p′0 ‖ p′1

Restriction:

p
λ−→ p′

p\L λ−→ p′\L
,

where if λ ≡ α?n or λ ≡ α!n then α 6∈ L
Relabelling:

p
λ−→ p′

p[f ]
f(λ)−→ p′[f ]

Identifiers:

p[a1/x1, · · · , ak/xk]
λ−→ p′

P (a1, · · · , ak)
λ−→ p′
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where P (x1, · · · , xk)
def
= p.

We expand on our claim that it is sufficient to consider processes without
free variables and so dispense with environments in the operational semantics.
Consider the process

(α?x→ (α!x→ nil)).

It receives a value n and outputs it at the channel α, as can be derived from
the rules. From the rules we obtain directly that

(α?x→ (α!x→ nil))
α?n−→ (α!x→ nil)[n/x]

which is
(α?x→ (α!x→ nil))

α?n−→ (α!n→ nil).

Then
(α!n→ nil)

α!n−→ nil.

As can be seen here, when it comes to deriving the transitions of the subprocesses
(α!x → nil) the free variable x has previously been bound to a particular
number n.

3.3 Pure CCS

Underlying Milner’s work is a more basic calculus, which we will call pure CCS.
Roughly it comes about by eliminating variables from CCS.

We have assumed that the values communicated during synchronisations are
numbers. We could, of course, instead have chosen expressions which denote
values of some other type. But for the need to modify expressions, the develop-
ment would have been the same. Suppose, for the moment, that the values lie
in a finite set

V = {n1, . . . , nk}.

Extend CCS to allow input actions α?n where α is a channel and n ∈ V . A
process

(α?n→ p)

first inputs the specific value n from channel α and then proceeds as process p;
its behaviour can be described by the rule:

(α?n→ p)
α?n−→ p

It is not hard to see that under these assumptions the transitions of α?x → p
are the same as those of

(α?n1 → p[n1/x]) + . . .+ (α?nk → p[nk/x]).

The two processes behave in the same way. In this fashion we can eliminate
variables from process terms. Numbers however form an infinite set and when
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the set of values is infinite, we cannot replace a term α?x → p by a finite
summation. However, this problem is quickly remedied by introducing arbitrary
sums into the syntax of processes. For a set of process terms {pi | i ∈ I} indexed
by a set I, assume we can form a term∑

i∈I
pi.

Then even when the values lie in the infinite set of numbers we can write∑
m∈Num

(α?m→ p[m/x])

instead of (α?x→ p).

With the presence of variables x, there has existed a distinction between
input and output of values. Once we eliminate variables the distinction is purely
formal; input actions are written α?n as compared with α!n for output actions.
Indeed in pure CCS the role of values can be subsumed under that of port
names. It will be, for example, as if input of value n at port α described by α?n
is regarded as a pure synchronisation, without the exchange of any value, at a
“port” α?n.

In pure CCS actions can carry three kinds of name. There are actions `
(corresponding to actions α?n or α!n), complementary actions ¯̀ (corresponding
to α?n being complementary to α!n, and vice versa) and internal actions τ .

With our understanding of complementary actions it is natural to take ` to be
the same as `, which highlights the symmetry we will now have between input
and output.

In the syntax of pure CCS we let λ range over actions of the form `, ¯̀

and τ where ` belongs to a given set of action labels. Terms for processes
p, p0, p1, pi, . . . of pure CCS take this form:

p ::= nil | λ.p |
∑
i∈I

pi | (p0 ‖ p1) | p\L | p[f ] | P

The term λ.p is simply a more convenient way of writing the guarded process
(λ → p). The new general sum

∑
i∈I pi of indexed processes {pi | i ∈ I} has

been introduced. We will write p0 + p1 in the case where I = {0, 1}. Above,
L is to range over subsets of labels. We extend the complementation operation
to such a set, taking L̄ =def {¯̀ | ` ∈ L}. The symbol f stands for a relabelling
function on actions. A relabelling function should obey the conditions that
f(¯̀) = f(`) and f(τ) = τ . Again, P ranges over identifiers for processes. These
are accompanied by definitions, typically of the form

P
def
= p.

As before, they can support recursive and simultaneous recursive definitions.
The rules for the operational semantics of CCS are strikingly simple:
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nil has no rules.

Guarded processes:

λ.p
λ−→ p

Sums:

pj
λ−→ q∑

i∈I pi
λ−→ q

j ∈ I

Composition:

p0
λ−→ p′0

p0 ‖ p1
λ−→ p′0 ‖ p1

p1
λ−→ p′1

p0 ‖ p1
λ−→ p0 ‖ p′1

p0
l−→ p′0 p1

l̄−→ p′1

p0 ‖ p1
τ−→ p′0 ‖ p′1

Restriction:

p
λ−→ q

p\L λ−→ q\L
λ /∈ L ∪ L̄

Relabelling:

p
λ−→ q

p[f ]
f(λ)−→ q[f ]

Identifiers:

p
λ−→ q

P
λ−→ q

where P
def
= p.

We have motivated pure CCS as a basic language for processes into which
the other languages we have seen can be translated. We now show, in the form
of a table, how closed terms t of CCS can be translated to terms t̂ of pure CCS
in a way which preserves their behaviour.
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(τ → p) τ.p̂

(α!a→ p) αm.p̂ where a denotes the value m

(α?x→ p)
∑
m∈Num(αm.p̂[m/x])

(b→ p) p̂ if b denotes true
nil if b denotes false

p0 + p1 p̂0 + p̂1

p0 ‖ p1 p̂0 ‖ p̂1

p\L p̂\{αm | α ∈ L & m ∈ Num}

P (a1, · · · , ak) Pm1,···,mk
where a1, · · · , ak evaluate to m1, · · · ,mk.

To accompany a definition P (x1, · · · , xk)
def
= p in CCS, where p has free variables

x1, . . . , xk, we have a collection of definitions in the pure calculus

Pm1,...,mk

def
= ̂p[m1/x1, . . . ,mk/xk]

indexed by m1, . . . ,mk ∈ Num.

Exercise 3.1 Justify the table above by showing that

p
λ→ q iff p̂

λ̂→ q̂

for closed process terms p, q, where

α̂?n = αn, α̂!n = αn.

2

Recursive definition:

In applications it is useful to use process identifiers and defining equations.
However sometimes in the study of CCS it is more convenient to replace the use
of defining equations by the explicit recursive definition of processes. Instead of

defining equations such as P
def
= p, we then use recursive definitions like

rec(P = p).
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The transitions of these additional terms are given by the rule:

p[rec(P = p)/P ]
λ−→ q

rec(P = p)
λ−→ q

More generally we can have simultaneous recursive definitions of the form

recj(Pi = pi)i∈I , also written recj(~P = ~p) ,

where j ∈ I, some indexing set, which informally stands for the j-th component
of the family of processes defined recursively by equations Pi = pi, for i ∈ I.

pj [rec(~P = ~p)/~P ]
λ−→ q

recj(~P = ~p)
λ−→ q

where rec(~P = ~p) stands for the family (reck(~P = ~p))k∈I .

Exercise 3.2 Use the operational semantics to derive the transition system
reachable from the process term rec(P = a.b.P ). 2

Exercise 3.3 * Let another language for processes have the following syntax:

p := 0 | a | p; p | p+ p | p× p | P | rec(P = p)

where a is an action symbol drawn from a set Σ and P ranges over process
variables used in recursively defined processes rec(P = p). Processes perform
sequences of actions, precisely which being specified by an execution relation
p → s between closed process terms and finite sequences s ∈ Σ∗; when p → s
the process p can perform the sequence of actions s in a complete execution.
Note the sequence s may be the empty sequence ε and we use st to represent the
concatenation of strings s and t. The execution relation is given by the rules:

0→ ε a→ a
p→ s q → t

p; q → st

p→ s

p+ q → s

q → s

p+ q → s

p→ s q → s

p× q → s

p[rec(P = p)/P ]→ s

rec(P = p)→ s

The notation p[q/P ] is used to mean the term resulting from substituting q for
all free occurrences of P in p.

Alternatively, we can give a denotational semantics to processes. Taking
environments ρ to be functions from variables V ar to subsets of sequences P (Σ∗)
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ordered by inclusion, we define:

[[0]]ρ = {ε} [[a]]ρ = {a}
[[p; q]]ρ = {st | s ∈ [[p]]ρ and t ∈ [[q]]ρ}
[[p+ q]]ρ = [[p]]ρ ∪ [[q]]ρ [[p× q]]ρ = [[p]]ρ ∩ [[q]]ρ

[[X]]ρ = ρ(X)

[[rec(P = p)]]ρ = the least solution S of S = [[p]]ρ[S/P ]

The notation ρ[S/P ] represents the environment ρ updated to take value S on
P .
(i) Assuming a and b are action symbols, write down a closed process term with
denotation the language {a, b}∗ in any environment.
(ii) Prove by structural induction that

[[p[q/P ]]]ρ = [[p]]ρ[[[q]]ρ/P ]

for all process terms p and q, with q closed, and environments ρ.
(iii) Hence prove if p→ s then s ∈ [[p]]ρ, where p is a closed process term, s ∈ Σ∗

and ρ is any environment. Indicate clearly any induction principles you use. 2



Chapter 4

Logics for processes

A specification language, the modal µ-calculus, consisting of a simple modal
logic with recursion is motivated. Its relation with the temporal logic CTL
is studied. An algorithm is derived for checking whether or not a finite-state
process satisfies a specification. This begins a study of model-checking, an
increasingly important area in verification.

4.1 A specification language

We turn to methods of reasoning about parallel processes. Historically, the
earliest methods followed the line of Hoare logics. Instead Milner’s development
of CCS has been based on a notion of equivalence between processes with respect
to which there are equational laws. These laws are sound in the sense that
if any two processes are proved equal using the laws then, indeed, they are
equivalent. They are also complete for finite-state processes. This means that if
any two finite-state processes are equivalent then they can be proved so using the
laws. The equational laws can be seen as constituting an algebra of processes.
Different languages for processes and different equivalences lead to different
process algebras.

Milner’s equivalence is based on a notion of bisimulation between processes.
Early on, in exploring the properties of bisimulation, Milner and Hennessy dis-
covered a logical characterisation of this central equivalence. Two processes are
bisimilar iff they satisfy precisely the same assertions in a little modal logic,
that has come to be called Hennessy-Milner logic. The finitary version of this
logic has a simple, if perhaps odd-looking syntax:

A ::= T | F | A0 ∧A1 | A0 ∨A1 | ¬A | 〈λ〉A

The final assertion 〈λ〉A is a modal assertion (pronounced “diamond λ A”)
which involves an action name λ. It will be satisfied by any process which can
do a λ action to become a process satisfying A. To be specific, we will allow λ
to be any action of pure CCS. The other ways of forming assertions are more
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usual. We use T for true, F for false and build more complicated assertions using
conjunctions (∧), disjunctions (∨) and negations (¬). Thus (¬〈a〉T ) ∧ (¬〈b〉T )
is satisfied by any process which can do neither an a nor a b action. We can
define a dual modality in the logic. Take

[λ]A,

(pronounced “box λ A”), to abbreviate ¬〈λ〉¬A. Such an assertion is satisfied
by any process which cannot do a λ action to become one failing to satisfy A.
In other words, [λ]A is satisfied by a process which whenever it does a λ action
becomes one satisfying A. In particular, this assertion is satisfied by any process
which cannot do any λ action at all. Notice [c]F is satisfied by those processes
which refuse to do a c action. In writing assertions we will assume that the
modal operators 〈a〉 and [a] bind more strongly than the boolean operations, so
e.g. ([c]F ∧ [d]F ) is the same assertion as (([c]F )∧ ([d]F )). As another example,

〈a〉〈b〉([c]F ∧ [d]F )

is satisfied by any process which can do an a action followed by a b to become
one which refuses to do either a c or a d action.

While Hennessy-Milner logic does serve to give a characterisation of bisimu-
lation equivalence (see the exercise ending this section), central to Milner’s ap-
proach, the finitary language above has obvious shortcomings as a language for
writing down specifications of processes; a single assertion can only specify the
behaviour of a process to a finite depth, and cannot express, for example, that
a process can always perform an action throughout its possibly infinite course
of behaviour. To draw out the improvements we can make we consider how one
might express particular properties, of undeniable importance in analysing the
behaviour of parallel processes.

Let us try to write down an assertion which is true precisely of those processes
which can deadlock. A process might be said to be capable of deadlock if it can
reach a state of improper termination. There are several possible interpretations
of what this means, for example, depending on whether “improper termination”
refers to the whole or part of the process. For simplicity let’s assume the former
and make the notion of “improper termination” precise. Assume we can describe
those processes which are properly terminated with an assertion terminal. A
reasonable definition of the characteristic function of this property would be the
following, by structural induction on the presentation of pure CCS with explicit
recursion:
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terminal(nil) = true

terminal(λ.p) = false

terminal(
∑
i∈I

pi) =
{

true if terminal(pi) = true for all i ∈ I,
false otherwise

terminal(p0 ‖ p1) = terminal(p0) ∧T terminal(p1)

terminal(p\L) = terminal(p)

terminal(p[f ]) = terminal(p)

terminal(P ) = false

terminal(rec(P = p)) = terminal(p)

This already highlights one way in which it is sensible to extend our logic, viz.
by adding constant assertions to pick out special processes like the properly
terminated ones. Now, reasonably, we can say a process represents an improper
termination iff it is not properly terminated and moreover cannot do any actions.
How are we to express this as an assertion? Certainly, for the particular action
a, the assertion [a]F is true precisely of those processes which cannot do a.
Similarly, the assertion

[a1]F ∧ · · · ∧ [ak]F

is satisfied by those which cannot do any action from the set {a1, · · · , ak}. But
without restricting ourselves to processes whose actions lie within a known finite
set, we cannot write down an assertion true just of those processes which can
(or cannot) do an arbitrary action. This prompts another extension to the
assertions. A new assertion of the form

〈.〉A

is true of precisely those processes which can do any action to become a process
satisfying A. Dually we define the assertion

[.]A ≡def ¬〈.〉¬A

which is true precisely of those processes which become processes satisfying A
whenever they perform an action. The assertion [.]F is satisfied by the processes
which cannot do any action. Now the property of immediate deadlock can be
written as

Dead ≡def ([.]F ∧ ¬terminal) .

The assertion Dead captures the notion of improper termination. A process
can deadlock if by performing a sequence of actions it can reach a process
satisfying Dead. It’s tempting to express the possibility of deadlock as an
infinite disjunction:

Dead ∨ 〈.〉Dead ∨ 〈.〉〈.〉Dead ∨ 〈.〉〈.〉〈.〉Dead ∨ · · · ∨ (〈.〉 · · · 〈.〉Dead) ∨ · · ·
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But, of course, this is not really an assertion because in forming assertions only
finite disjunctions are permitted. Because there are processes which deadlock
after arbitrarily many steps we cannot hope to reduce this to a finite disjunction,
and so a real assertion. We want assertions which we can write down!

We need another primitive in our language of assertions. Rather than intro-
ducing extra primitives on an ad hoc basis as we encounter further properties
we’d like to express, we choose one strong new method of defining assertions
powerful enough to define the possibility of deadlock and many other properties.
The infinite disjunction is reminiscient of the least upper bounds of chains one
sees in characterising least fixed points of continuous functions, and indeed our
extension to the language of assertions will be to allow the recursive definition
of properties. The possibility of deadlock will be expressed by the least fixed
point

µX.(Dead ∨ 〈.〉X)

which intuitively unwinds to the infinite “assertion”

Dead ∨ 〈.〉(Dead ∨ 〈.〉(Dead ∨ 〈.〉(· · ·

A little more generally, we can write

possibly(B) ≡def µX.(B ∨ 〈.〉X)

true of those processes which can reach a process satisfying B through perform-
ing a sequence of actions. Other constructions on properties can be expressed
too. We might well be interested in whether or not a process eventually becomes
one satisfying assertion B no matter what sequence of actions it performs. This
can be expressed by

eventually(B) ≡def µX.(B ∨ (〈.〉T ∧ [.]X)).

As this example indicates, it is not always clear how to capture properties as
assertions. Even when we provide the mathematical justification for recursively
defined properties in the next section, it will often be a nontrivial task to show
that a particular assertion with recursion expresses a desired property. However
this can be done once and for all for a batch of useful properties. Because they
are all defined using the same recursive mechanism, it is here that the effort in
establishing proof methods and tools can be focussed.

In fact, maximum (rather than minimum) fixed points will play the more
dominant role in our subsequent work. With negation, one is definable in terms
of the other. An assertion defined using maximum fixed points can be thought
of as an infinite conjunction. The maximum fixed point νX.(B ∧ [.]X) unwinds
to

B ∧ [.](B ∧ [.](B ∧ [.](B ∧ · · ·
and is satisfied by those processes which, no matter what actions they perform,
always satisfy B. In a similar way we can express that an assertion B is satisfied
all the way along an infinite sequence of computation from a process:

νX.(B ∧ [.]X) .
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Exercise 4.1 What is expressed by the following assertions?

(i) µX.(〈a〉T ∨ [.]X)

(ii) νY.(〈a〉T ∨ (〈.〉T ∧ [.]Y ))

(Argue informally, by unwinding definitions. Later, will show how to prove that
an assertion expresses a property, at least for finite-state processes.) 2

4.2 The modal µ–calculus

We now provide the formal treatment of the specification language motivated
in the previous Section 4.1. The language is called the modal µ-calculus [20].

Let P denote the set of processes in pure CCS. Assertions determine prop-
erties of processes. A property is either true or false of a process and so can
be identified with the subset of processes P which satisfy it. In fact, we will
understand assertions simply as a notation for describing subsets of processes.
Assertions are built up using:

• constants: Any subset of processes S ⊆ P is regarded as a constant asser-
tion taken to be true of a process it contains and false otherwise. (We can
also use finite descriptions of them like terminal and Dead earlier. In our
treatment we will identify such descriptions with the subset of processes
satisfying them.)

• logical connectives: The special constants T, F stand for true and false
respectively. If A and B are assertions then so are ¬A (“not A”), A ∧ B
(“A and B”), A ∨B (“A or B”)

• modalities: If a is an action symbol and A is an assertion then 〈a〉A is an
assertion. If A is an assertion then so is 〈.〉A. (The box modalities [a]A
and [.]A are abbreviations for ¬〈a〉¬A and ¬〈.〉¬A, respectively.)

• maximum fixed points: If A is an assertion in which the variable X oc-
curs positively (i.e. under an even number of negation symbols for every
ocurrence) then νX.A (the maximum fixed point of A) is an assertion.
(The minimum fixed point µX.A can be understood as an abbreviation
for ¬νX.¬A[¬X/X].)

In reasoning about assertions we shall often make use of their size. Precisely,
the size of an assertion is defined by structural induction:

size(S) = size(T ) = size(F ) = 0 where S is a constant

size(¬A) = size(〈a〉A) = size(νX.A) = 1 + size(A)

size(A ∧B) = size(A ∨B) = 1 + size(A) + size(B).

Assertions are a notation for describing subsets of processes. So for example,
A∧B should be satisfied by precisely those processes which satisfy A and satisfy
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B, and thus can be taken to be the intersection A ∩B. Let’s say what subsets
of processes all the assertions stand for. In the following, an assertion on the
left stands for the set on the right:

S = S where S ⊆ P
T = P
F = ∅
A ∧B = A ∩B
A ∨B = A ∪B
¬A = P \A
〈a〉A = {p ∈ P | ∃q.p a→ q and q ∈ A}
〈.〉A = {p ∈ P | ∃a, q.p a→ q and q ∈ A}
νX.A =

⋃
{S ⊆ P | S ⊆ A[S/X]}

Note, this is a good definition because the set associated with an assertion
is defined in terms of sets associated with assertions of strictly smaller size.
Most clauses of the definition are obvious; for example, ¬A should be satisfied
by all processes which do not satisfy A, explaining why it is taken to be the
complement of A; the modality 〈a〉A is satisfied by any process p capable of
performing an a–transition leading to a process satisfying A. If X occurs only
positively in A, it follows that the function

S 7−→ A[S/X].

is monotonic on subsets of P ordered by ⊆. Tarski’s fixed-point Theorem (see
Chapter 1) characterises the maximum fixed point of this function as⋃

{S ⊆ P | S ⊆ A[S/X]}

is the union of all postfixed points of the function S 7→ A[S/X]. Above we see
the use of an assertion A[S/X] which has a form similar to A but with each
occurrence of X replaced by the subset S of processes.

Proposition 4.2 The minimum fixed point µX.A, where

µX.A =
⋂
{S ⊆ P | A[S/X] ⊆ S} ,

is equal to ¬νX.¬A[¬X/X].

Proof: The operation of negation provides a 1-1 correspondence between pre-
fixed points of the function S 7→ A[S/X] and postfixed points of the function
S 7→ ¬A[¬S/X]:

Write A(S) as an abbreviation for A[S/X]. Negation stands for complemen-
tation on subsets of processes. Consequently, U ⊆ V ⇐⇒ ¬V ⊆ ¬U and
¬(¬U) = U , for subsets U , V . Hence,

A(S) ⊆ S iff ¬S ⊆ ¬A(¬(¬S)) .
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Thus the operation of negation gives a 1-1 correspondence between

Pre(A) = {S | A(S) ⊆ S} ,

the set of prefixed points of S 7→ A(S), and

Post(A) = {U | U ⊆ ¬A(¬U)} ,

the set of postfixed points of U 7→ ¬A(¬U). Notice that the 1-1 correspondence
reverses the subset relation:

S′ ⊆ S , where S, S′ ∈ Pre(A), iff ¬S′ ⊇ ¬S , where ¬S,¬S′ ∈ Post(A) .

It follows that the least fixed prefixed point of S 7→ A(S) corresponds to the
greatest postfixed point of U 7→ ¬A(¬U); in other words, that ¬µX.A =
νX.¬A[¬X/X]. 2

Exercise 4.3 Regarding assertions as sets, show that

〈a〉F = F , 〈a〉(A ∨B) = 〈a〉A ∨ 〈a〉B , and

[a]T = T , [a](A ∧B) = [a] ∧ [a]B .

Show that, although 〈a〉(A∧B) ⊆ 〈a〉A∧ 〈a〉B, the converse inclusion need not
hold. 2

Exercise 4.4 Show [a]A = {p ∈ P | ∀q ∈ P. p a−→ q ⇒ q ∈ A}. By consider-
ing e.g.a process Σn∈ωa.pn where the pn, n ∈ ω, are distinct, show that the
function S 7→ [a]S is not continuous with respect to inclusion (it is monotonic).

2

We can now specify what it means for a process p to satisfy an assertion
A. We define the satisfaction assertion p |= A to be true if p ∈ A, and false
otherwise.

We have based the semantics of the modal µ-calculus on a particular tran-
sition system, that for pure CCS; the states of the transition system consist of
pure CCS terms and form the set P and its transitions are given by the rules
for the operational semantics. It should be clear by inspecting the clauses in-
terpreting assertions of the modal µ-calculus as subsets of P, that the same
semantic definitions would make sense with respect to any transition system for
which the transition actions match those of the modalities. Any such transition
system can be used to interpret the modal µ-calculus. We shall especially con-
cerned with finite-state transition systems, those for the set of states is finite. In
the transition system for pure CCS, process terms do double duty: they stand
for states of the transition system, but they also stand for transition systems
themselves, viz. the transition system obtained as that forwards reachable from
the process term—it is this localised transition system which represents the be-
haviour of the process. When the states forwards reachable from a process form
a finite set we say the process is finite state. Although we shall often present
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results for finite-state processes, so working with particular transition systems
built on pure CCS, it should be born in mind that the general results apply to
any finite-state transition system interpreting the modal µ-calculus.

It is possible to check automatically whether or not a finite-state process p
satisfies an assertion A. (One of the Concurrency-Workbench/TAV commands
checks whether or not a process p satisfies an assertion A; it will not necessarily
terminate for infinite-state processes though in principle, given enough time and
space, it will for finite-state processes.) To see why this is feasible let p be a
finite-state process. This means that the set of processes reachable from it

Pp =def {q ∈ P | p
.→∗ q}

is finite, where we use p
.→ q to mean p

a→ q for some action a. In deciding
whether or not p satisfies an assertion we need only consider properties of the
reachable processes Pp. We imitate what we did before but in the transition
system based on Pp instead of P. Again, the definition is by induction on the
size of assertions. Define:

S |p = S ∩ Pp where S ⊆ P
T |p = Pp
F |p = ∅
A ∧B |p = A |p ∩ B |p
A ∨B |p = A |p ∪ A |p
¬A |p = Pp \ (A |p)
〈a〉A |p = {r ∈ Pp | ∃q ∈ Pp.r

a→ q and q ∈ A |p}
〈.〉A |p = {r ∈ Pp | ∃a, q ∈ Pp.r

a→ q and q ∈ A |p}
νX.A |p =

⋃
{S ⊆ Pp | S ⊆ A[S/X] |p}

As we would expect there is a simple relationship between the “global” and
“local” meanings of assertions, expressed in the following lemma.

Lemma 4.5 For all assertions A and processes p,

A |p= A ∩ Pp.

Proof: We first observe that:

A[S/X]|p = A[S ∩ Pp/X]|p.

This observation is easily shown by induction on the size of assertions A.
A further induction on the size of assertions yields the result. We consider

the one slightly awkward case, that of maximum fixed points. We would like to
show

νX.A|p = (νX.A) ∩ Pp
assuming the property expressed by the lemma holds inductively for assertion
A. Recall

νX.A =
⋃
{S ⊆ P | S ⊆ A[S/X]} and

νX.A|p =
⋃
{S′ ⊆ Pp | S′ ⊆ A[S′/X]|p}.
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Suppose S ⊆ P and S ⊆ A[S/X]. Then

S ∩ Pp ⊆ A[S/X] ∩ Pp
= A[S/X]|p by induction

= A[S ∩ Pp/X]|p by the observation.

Thus S∩Pp is a postfixed point of S′ 7→ A[S′/X]|p, so S∩Pp ⊆ νX.A|p. Hence
νX.A ∩ Pp ⊆ νX.A|p.

To show the converse, suppose S′ ⊆ Pp and S′ ⊆ A[S′/X]|p. Then, by
induction, S′ ⊆ A[S′/X] ∩ Pp. Thus certainly S′ ⊆ A[S′/X], making S′ a
postfixed point of S 7→ A[S/X] which ensures S′ ⊆ νX.A. It follows that
νX.A|p ⊆ νX.A.

Whence we conclude νX.A|p = (νX.A) ∩ Pp, as was required. 2

One advantage in restricting to Pp is that, being a finite set of size n say,
we know

νX.A |p=
⋂

0≤i≤n

Ai[T/X] |p

= An[T/X] ∩ Pp
where A◦ = T , Ai+1 = A[Ai/X]. This follows from the earlier results in Sec-
tion 1.5 characterising the maximum fixed point of a

⋂
-continuous function on

a powerset: The function S 7→ A[S/X]|p is monotonic and so continuous on the
the finite finite powerset (Pow(Pp),⊇).

In this way maximum fixed points can be eliminated from an assertion A
for which we wish to check p |= A. Supposing the result had the form 〈a〉B
we would then check if there was a process q with p

a→ q and q |= B. If,
on the other hand, it had the form of a conjunction B ∧ C we would check
p |= B and p |= C. And no matter what the shape of the assertion, once
maximum fixed points have been eliminated, we can reduce checking a process
satisfies an assertion to checking processes satisfy strictly smaller assertions until
ultimately we must settle whether or not processes satisfy constant assertions.
Provided the constant assertions represent decidable properties, in this way we
will eventually obtain an answer to our original question, whether or not p |= A.
It is a costly method however; the elimination of maximum fixed points is only
afforded through a possible blow-up in the size of the assertion. Nevertheless a
similar idea, with clever optimisations, can form the basis of an efficient model-
checking method, investigated by Emerson and Lei in [10].

We will soon provide another method, called “local model checking” by
Stirling and Walker, which is more sensitive to the structure of the assertion
being considered, and does not always involve finding the full, maximum-fixed-
point set νX.A |p.

4.3 CTL and other logics

Many important specification logics can be encoded within the modal µ-calculus.
As an illustration we show how to encode CTL (“Computation Tree Logic”).
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This logic is widely used in model checking and is often introduced as a fragment
of the more liberal logic CTL∗, a logic obtained by combining certain state
assertions and path assertions. A state assertion is similar to those we have
seen in that it is either true or false of a state (or process). A path assertion is
true or false of a path, where a path is understood to be a maximal sequence of
states possible in the run of a process.1

CTL-assertions take the form:

A := At | A0 ∧A1 | A0 ∨A1 | ¬A | EX A | EG A | E[A0 U A1]

where At ranges over constant assertions.
Action names play no direct role in CTL, so we interpret CTL-assertions in

a transition system with a single action called simply “·”. (In particular, we

can interpret CTL in the transition system P using the transition relation
·→.)

To each constant assertion is preassigned a set of states at which it is true. A
path π in the transition system from a state π0 is a maximal sequence of states
(π0, π1, π2, · · ·) such that πi

·→ πi+1 for all i; maximality means the path cannot
be extended, so is either infinite or finite and with a final state sn incapable of
performing any action. Notice that the interpretation below involves quantifiers
over paths and states in paths. In the broader logic CTL∗ the modalities EX ,
EG and E[− U −] are explained as compound modalities involving a modality
on paths (E) and modalities on states within a path (X, G and U)—thus the
two-letter names for the CTL modalities.

Interpretation of CTL:

• A constant assertion At is associated with a set of states at which it is
true, so we take s |= At iff s is amongst those states.

• The boolean operations A0∧A1, A0∨A1 and ¬A are interpreted literally:

s |= A0 ∧A1 iff s |= A0 and s |= A1;

s |= A0 ∨A1 iff s |= A0 or s |= A1;

s |= ¬A iff it is not the case that s |= A.

• s |= EX A iff for some path π from s we have, π1 |= A. In other words,
there Exists a path, starting at state s, whose neXt state satisfies A.

• s |= EG A iff for some path π from s, we have πi |= A, for all i. There
Exists a path along which A holds Globally.

• s |= E[A0 U A1] iff for some path π from s, there is j such that πj |= A1

and πi |= A0 for all i < j. There Exists a path on which A0 Until
A1—note that A1 must hold at some point on the path.

1Most often CTL∗ and CTL are interpreted with respect to infinite paths in transition-
system models where states are never terminal, i.e. can always perform an transition. Maximal
paths include such infinite paths but also paths ending in a terminal state. This added
generality, more in keeping with the models used here, only requires a slight modification in
the usual translation of the CTL-assertion EG A into the modal µ-calculus.
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We can translate CTL into the modal µ-calculus. Define the translation
function Tr by the following structural induction on CTL-assertions:

Tr(At) = At, standing for the set of states at which At holds,

Tr(A0 ∧A1) = Tr(A0) ∧ Tr(A1) , T r(A0 ∨A1) = Tr(A0) ∨ Tr(A1) ,

T r(¬A) = ¬Tr(A) ,

T r(EX A) ≡ 〈.〉Tr(A) ,

T r(EG A) ≡ νY.Tr(A) ∧ ([·]F ∨ 〈.〉Y ) ,

T r(E[A U B]) ≡ µZ.Tr(B) ∨ (Tr(A) ∧ 〈.〉Z) .

That the translation is correct hinges on Propositions 4.6, 4.8 below.

Proposition 4.6 In a finite-state transition system, s |= νY.A ∧ ([·]F ∨ 〈.〉Y )
iff there is some path π from s, such that πi |= A, for all i.

Proof: Let ϕ(Y ) = A ∧ ([·]F ∨ 〈.〉Y ) for Y a subset of states. Then, there is a
decreasing chain

T ⊇ ϕ(T ) ⊇ · · · ⊇ ϕn(T ) ⊇ · · ·

such that

νY.A ∧ ([·]F ∨ 〈.〉Y ) =
⋂
n∈ω

ϕn(T ) .

Write s
·→ to indicate that s can perform an action, and s 6 ·→ that it cannot.

We show by induction on n ≥ 1 that:

For all states s, we have s |= ϕn(T ) iff

(1) either ∃m ≤ n, s1, · · · , sm.

s = s1
·→ · · · ·→ sm 6

·→ and

s1 |= A and · · · and sm |= A

(i.e., there is a finite (maximal) path from s of length ≤ n along
which A always holds),

(2) or ∃s1, · · · , sn.

s = s1
·→ · · · ·→ sn

·→ and

s1 |= A and · · · and sm |= A

(i.e., there is a partial path from s of length n along which A
always holds).

At the basis of the induction, when n = 1, ϕ(T ) = A ∧ ([·]F ∨ 〈·〉T ) = A
which is satisfied by a state s precisely when (1) or (2) above hold with n = 1.



58 CHAPTER 4. LOGICS FOR PROCESSES

For the induction step:

s |= ϕn+1(T ) iff s |= A ∧ ([·]F ∧ 〈.〉ϕn(T ))

iff s |= A and (s |= [·]F or s |= 〈.〉ϕn(T ))

iff s |= A and (s |= [·]F or ∃s1. s
·
s1 and s1 |= ϕn(T ))

iff (s |= A and s |= [·]F ) or (s |= A and ∃s1. s
·
s1 and s1 |= ϕn(T ))

iff there is a maximal path, length ≤ n+ 1, or

a partial path, length n+ 1, from s, along which A holds.

Finally, as the transition system is finite-state, with say k states, the max-
imum fixed point of ϕ is ϕk(T ), so ϕ(ϕk(T )) = ϕk(T ), i.e., ϕk+1(T ) = ϕk(T ).
Thus

s |= νY.A ∧ ([·]F ∨ 〈.〉Y ) iff s |= ϕk+1(T ) .

Hence, if there are no finite maximal paths from s along which A always holds,
then from the meaning of ϕk+1(T ), there must be states s1, · · · , sk+1 for which

s = s1
·→ · · · ·→ sk+1 and

s1 |= A and · · · and sk+1 |= A .

But such a partial path must loop, and hence there is an infinite (so maximal)
path along which A always holds. 2

Exercise 4.7 Prove that the restriction to finite-state transition systems is
unnecessary in Proposition 4.6.

(i) Suppose there is some path π from s, such that πi |= A, for all i. Show
that the set {π0, π1, π2, · · ·} is a postfixed point of the function Y 7→
A ∧ ([·]F ∨ 〈.〉Y ). Deduce s = π0 satisfies νY.A ∧ ([·]F ∨ 〈.〉Y ).

(ii) Now show the converse. Suppose that s |= νY.A ∧ ([·]F ∨ 〈.〉Y ). Suppose
that there is no finite maximal path from s along which A always holds.
By unwinding the recursive assertion, show how to construct by induction
an infinite path from s along which A always holds.

2

Proposition 4.8 In a transition system, s |= µZ.B ∨ (A ∧ 〈.〉Z) iff there is
some path π from s, such that πj |= B and πi |= A for all i < j.

Proof: Let ϕ(Z) = B ∨ (A ∧ 〈.〉Z), for Z a subset of states. The function ϕ is⋃
-continuous (Exercise!). (In a finite-state transition system, the continuity of

ϕ would be automatic.) So, there is a increasing chain

∅ ⊆ ϕ(∅) ⊆ · · · ⊆ ϕn(∅) ⊆ · · ·

such that
µZ.B ∨ (A ∧ 〈.〉Z) =

⋃
n∈ω

ϕn(∅) .

It is sufficient to show by induction on n ≥ 1 that:
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For all states s, we have s |= ϕn(∅) iff there are m ≤ n and states
s1, · · · , sm such that

s = s1
·→ · · · ·→ sm and

s1 |= A and · · · and sm−1 |= A and sm |= B ;

in other words, there is a (partial) path from s such that B holds
within n steps and along which A holds until B.

At the basis of the induction, ϕ1(∅) = B, so satisfying the induction hypoth-
esis at n = 1.

For the induction step:

s |= ϕn+1(∅) iff s |= B ∨ (A ∧ 〈.〉ϕn(∅)

iff s |= B or (s |= A and ∃s1. s
·→ s1 and s1 |= ϕn(∅)

iff s |= B or

(s |= A and ∃m ≤ n, s1, · · · , sm.

s
·→ s1

·→ · · · s ·→ sm−1
·→ sm and

s1 |= A and · · · and sm−1 |= A and sm |= B) ,

forming a path of length ≤ n+ 1for which A holds until B .

2

Exercise 4.9 Show the function ϕ taking Z, a subset of states of a transition
system, to the subset B ∨ (A ∧ 〈.〉Z) is

⋃
-continuous. 2

The translation of CTL-assertions into the modal µ-calculus is correct:

Proposition 4.10 For a state s in a finite-state transition system, and CTL-
assertion A, s |= A iff s |= Tr(A).

Proof: By a simple structural induction on CTL-assertions, using Proposi-
tions 4.6, 4.8 for the EG A and E[A U B] cases. 2

In the remaining exercises of this section we assume the processes are finite-
state and consider other properties expressible in the modal µ-calculus.

Exercise 4.11 (i) Let p be a finite-state process. Prove p satisfies νX.(〈a〉X)
iff p can perform an infinite chain of a-transitions.

What does µX.(〈a〉X) mean? Prove it.
In the remainder of this exercise assume the processes under consideration

are finite-state (so that (i) is applicable). Recall a process p is finite-state iff the
set Pp is finite, i.e. only finitely many processes are reachable from p.

(ii) Prove the assertion νX.(A ∧ [.]X) is satisfied by those processes p which
always satisfy an assertion A, i.e. q satisfies A, for all q ∈ Pp.
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(iii) How would you express in the modal µ-calculus the property true of pre-
cisely those processes which eventually arrive at a state satisfying an as-
sertion A? Prove your claim.
(See the earlier text or Exercise 4.13 for a hint.)

2

Exercise 4.12

(i) A complex modal operator, often found in temporal logic, is the so-called
until operator. Formulated in terms of transition systems for processes the
until operator will have the following interpretation:

A process p satisfies A until B (where A and B are assertions)
iff for all sequences of transitions

p = p0
·→ p1

·→ . . .
·→ pn

it holds that

∀i(0 ≤ i ≤ n). pi |= A

or ∃i(0 ≤ i ≤ n). (pi |= B & ∀j(0 ≤ j ≤ i). pj |= A).

Formulate the until operator as a maximum fixed point assertion.
(See Exercise 4.13 for a hint.)

(ii) What does the following assertion (expressing so-called “strong-until”)
mean?

µX.(B ∨ (A ∧ 〈.〉T ∧ [.]X))

2

Exercise 4.13 What do the following assertions mean? They involve assertions
A and B.

(i) inv(A) ≡ νX.(A ∧ [.]X)

(ii) ev(A) ≡ µX.(A ∨ (〈.〉T ∧ [.]X))

(iii) un(A,B) ≡ νX.(B ∨ (A ∧ [.]X))

2

Exercise 4.14 * For this exercise it will be useful to extend the modal µ-
calculus with a modal operator 〈−a〉A, where a is an action, with

p |= 〈−a〉A iff p
b→ q and q |= A, for some q and action b 6= a.

A process p is said to be unfair with respect to an action a iff there is an
infinite chain of transitions

p = p0
a0→ p1

a1→ · · · an−1→ pn
an→ · · ·

such that
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(a) ∃q. pi
a→ q, for all i ≥ 0, and

(b) ai 6= a, for all i ≥ 0.

Informally, there is an infinite chain of transitions in which a can always occur
but never does.

(i) Express the property of a process being unfair as an assertion in the modal
µ-calculus, and prove that any finite-state process p satisfies this assertion
iff p is unfair with respect to a.

(ii) A process p is said to be weakly unfair with respect to an action a iff there
is an infinite chain of transitions in which a can occur infinitely often but
never does. Write down an assertion in the modal µ-calculus to express
this property.

2

4.4 Local model checking

We are interested in whether or not a finite-state process p satisfies a recursive
modal assertion A, i.e in deciding the truth or falsity of p |= A. We shall give
an algorithm for reducing such a satisfaction assertion to true or false. A key
lemma, the Reduction Lemma, follows from Tarski’s fixed point theorem.

Lemma 4.15 (Reduction Lemma)
Let ϕ be a monotonic function on a powerset Pow(S). For S ⊆ S

S ⊆ νX.ϕ(X) ⇔ S ⊆ ϕ(νX.(S ∪ ϕ(X))).

Proof:
“⇒” Assume S ⊆ νX.ϕ(X). Then

S ∪ ϕ(νX.ϕ(X)) = S ∪ νX.ϕ(X) = νX.ϕ(X).

Therefore νX.ϕ(X) is a postfixed point of X 7→ S ∪ ϕ(X). As νX.(S ∪ ϕ(X))
is the greatest such postfixed point,

νX.ϕ(X) ⊆ νX.(S ∪ ϕ(X)).

By monotonicity,

νX.ϕ(X) = ϕ(νX.ϕ(X) ⊆ ϕ(νX.(S ∪ ϕ(X))).

But S ⊆ νX.ϕ(X) so S ⊆ ϕ(νX(S ∪ ϕ(X))), as required.
“⇐” Assume S ⊆ ϕ(νX.(S ∪ ϕ(X)). As νX.(S ∪ ϕ(X)) is a fixed point of
X 7→ S ∪ ϕ(X),

νX.(S ∪ ϕ(X)) = S ∪ ϕ(νX.(S ∪ ϕ(X))).
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Hence, by the assumption

νX.(S ∪ ϕ(X)) = ϕ(νX.(S ∪ ϕ(X)),

i.e. νX.(S ∪ ϕ(X)) is a fixed point, and so a postfixed point of ϕ. Therefore

νX.(S ∪ ϕ(X)) ⊆ νX.ϕ(X)

as νX.ϕ(X) is the greatest postfixed point. Clearly S ⊆ νX.(S ∪ ϕ(X)) so
S ⊆ νX.ϕ(X), as required. 2

We are especially concerned with this lemma in the case where S is a sin-
gleton set {p}. In this case the lemma specialises to

p ∈ νX.ϕ(X)⇔ p ∈ ϕ(νX.({p} ∪ ϕ(X))).

The equivalence says a process p satisfies a recursively defined property iff the
process satisfies a certain kind of unfolding of the recursively defined property.
The unfolding is unusual because into the body of the recursion we substitute
not just the original recursive definition but instead a recursive definition in
which the body is enlarged to contain p. As we shall see, there is a precise
sense in which this small modification, p ∈ ϕ(νX.({p} ∪ ϕ(X))), is easier to
establish than p ∈ νX.ϕ(X), thus providing a method for deciding the truth of
recursively defined assertions at a process.

We allow processes to appear in assertions by extending their syntax to
include a more general form of recursive assertion, ones in which finite sets of
processes can tag binding occurrences of variables:
If A is an assertion in which the variable X occurs positively and p1, · · · , pn
are processes, then νX{p1, · · · , pn}A is an assertion; it is to be understood as
denoting the same property as νX.({p1, · · · , pn} ∨A).
(The latter assertion is sensible because assertions can contain sets of processes
as constants.)
We allow the set of processes {p1, · · · , pn} to be empty; in this case νX{ }A
amounts simply to νX.A. In fact, from now on, when we write νX.A it is to be
understood as an abbreviation for νX{ }A.

Exercise 4.16 Show (p |= νX{p1, · · · , pn}A) = true if p ∈ {p1, · · · , pn}. 2

With the help of these additional assertions we can present an algorithm for
establishing whether a judgement p |= A is true or false. We assume there are
the usual boolean operations on truth values. Write ¬T for the operation of
negation on truth values; thus ¬T (true) = false and ¬T (false) = true. Write
∧T for the operation of binary conjunction on T ; thus t0 ∧T t1 is true if both
t0 and t1 are true and false otherwise. Write ∨T for the operation of binary
disjunction; thus t0 ∨T t1 is true if either t0 or t1 is true and false otherwise.
More generally, we will use

t1 ∨T t2 ∨T · · · ∨T tn
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for the disjunction of the n truth values t1, · · · , tn; this is true if one or more
of the truth values is true, and false otherwise. An empty disjunction will be
understood as false.

With the help of the Reduction Lemma we can see that the following equa-
tions hold:

(p |= S) = true if p ∈ S
(p |= S) = false if p /∈ S
(p |= T ) = true

(p |= F ) = false

(p |= ¬B) = ¬T (p |= B)

(p |= A0 ∧A1) = (p |= A0) ∧T (p |= A1)

(p |= A0 ∨A1) = (p |= A0) ∨T (p |= A1)

(p |= 〈a〉B) = (q1 |= B) ∨T · · · ∨T (qn |= B)

where {q1, · · · , qn} = {q|p a→ q}
(p |= 〈.〉B) = (q1 |= B) ∨T · · · ∨T (qn |= B)

where {q1, · · · , qn} = {q|∃a.p a→ q}
(p |= νX{→r }B) = true if p ∈ {→r }
(p |= νX{→r }B) = (p |= B[νX{p,→r }B/X]) if p 6∈ {→r }

(In the cases where p has no derivatives, the disjunctions indexed by its deriva-
tives are taken to be false.)
All but possibly the last two equations are obvious. The last equation is a spe-
cial case of the Reduction Lemma, whereas the last but one follows by recalling
the meaning of a “tagged” maximum fixed point (its proof is required by the
exercise above).

The equations suggest reduction rules in which the left-hand-sides are re-
placed by the corresponding right-hand-sides, though at present we have no
guarantee that this reduction does not go on forever. More precisely, the re-
duction rules should operate on boolean expressions built up using the boolean
operations ∧,∨,¬ from basic satisfaction expressions, the syntax of which has
the form p ` A, for a process term p and an assertion A. The boolean expressions
take the form:

b ::= p ` A | true | false | b0 ∧ b1 | b0 ∨ b1 | ¬b

The syntax p ` A is to be distinguished from the truth value p |= A.
To make the reduction precise we need to specify how to evaluate the boolean

operations that can appear between satisfaction expressions as the reduction
proceeds. Rather than commit ourselves to one particular method, to cover the
range of different methods of evaluation of such boolean expressions we merely
stipulate that the rules have the following properties:

For negations:

(b→∗ t⇔ ¬b→∗ ¬T t), for any truth value t.



64 CHAPTER 4. LOGICS FOR PROCESSES

For conjunctions:
If b0 →∗ t0 and b1 →∗ t1 and t0, t1 ∈ T then

(b0 ∧ b1)→∗ t⇔ (t0 ∧T t1) = t, for any truth value t.

For disjunctions:
If b0 →∗ t0 and b1 →∗ t1 and t0, t1 ∈ T then

(b0 ∨ b1)→∗ t⇔ (t0 ∨T t1) = t, for any truth value t.

More generally, a disjunction b1∨ b2∨· · ·∨ bn should reduce to true if, when all
of b1, · · · , bn reduce to values, one of them is true and false if all of the values
are false. As mentioned, an empty disjunction is understood as false.

Certainly, any sensible rules for the evaluation of boolean expressions will
have the properties above, whether the evaluation proceeds in a left-to-right,
right-to-left or parallel fashion. With the method of evaluation of boolean ex-
pressions assumed, the heart of the algorithm can now be presented in the form
of reduction rules:

(p ` S) → true if p ∈ S
(p ` S) → false if p /∈ S
(p ` T ) → true

(p ` F ) → false

(p ` ¬B) → ¬(p ` B)

(p ` A0 ∧A1) → (p ` A0) ∧ (p ` A1)

(p ` A0 ∨A1) → (p ` A0) ∨ (p ` A1)

(p ` 〈a〉B) → (q1 ` B) ∨ · · · ∨ (qn ` B)

where {q1, · · · , qn} = {q|p a→ q}
(p ` 〈.〉B) → (q1 ` B) ∨ · · · ∨ (qn ` B)

where {q1, · · · , qn} = {q|∃a.p a→ q}
(p ` νX{→r }B) → true if p ∈ {→r }
(p ` νX{→r }B) → (p ` B[νX{p,→r }B/X]) if p 6∈ {→r }

(Again, in the cases where p has no derivatives, the disjunctions indexed by its
derivatives are taken to be false.)
The idea is that finding the truth value of the satisfaction assertion on the left
is reduced to finding that of the expression on the right. In all rules but the
last, it is clear that some progress is being made in passing from the left- to
the right-hand-side; for these rules either the right-hand-side is a truth value,
or concerns the satisfaction of strictly smaller assertions than that on the left.
On the other hand, the last rule makes it at least thinkable that reduction may
not terminate. In fact, we will prove it does terminate, with the correct answer.
Roughly, the reason is that we are checking the satisfaction of assertions by
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finite-state processes which will mean that we cannot go on extending the sets
tagging the recursions forever.

Under the assumptions to do with the evaluation of boolean expressions
the reduction rules are sound and complete in the sense of the theorem below.
(Notice that the theorem implies the reduction terminates.)

Theorem 4.17 Let p ∈ P be a finite-state process and A be a closed assertion.
For any truth value t ∈ T ,

(p ` A)→∗ t iff (p |= A) = t.

Proof: Assume that p is a finite-state process. Say an assertion is a p-assertion
if for all the recursive assertions νX{r1, · · · , rk}B within it r1, · · · , rk ∈ Pp, i.e.
all the processes mentioned in the assertion are reachable by transitions from p.
The proof proceeds by well-founded induction on p-assertions with the relation

A′ ≺ A iff A′ is a proper subassertion of A

or A,A′ have the form

A ≡ νX{→r }B and A′ ≡ νX{p,→r }B with p 6∈ {→r } .

As Pp is a finite set, the relation ≺ is well-founded.
We are interested in showing the property

Q(A)⇔def ∀q ∈ Pp ∀t ∈ T. [(q ` A)→∗ t⇔ (q |= A) = t]

holds for all closed p-assertions A. The proof however requires us to extend the
property Q to p-assertions A with free variables FV (A), which we do in the
following way:
For p-assertions A, define

Q+(A)⇔def ∀θ, a substitution from FV(A) to closed p-assertions.

[(∀X ∈ FV (A). Q(θ(X)))⇒ Q(A[θ])].

Notice that when A is closed Q+(A) is logically equivalent to Q(A). Here θ
abbreviates a substitution like B1/X1, · · · , Bk/Xk and an expression such as
θ(Xj) the corresponding assertion Bj .

We show Q+(A) holds for all p-assertions A by well-founded induction on
≺. To this end, let A be an p-assertion such that Q+(A′) for all p-assertions
A′ ≺ A. We are required to show it follows that Q+(A). So letting θ be a
substitution from FV (A) to closed p-assertions with ∀X ∈ FV (A). Q(θ(X)),
we are required to show Q(A[θ]) for all the possible forms of A. We select a few
cases:

A ≡ A0∧A1: In this case A[θ] ≡ A0[θ]∧A1[θ]. Let q ∈ Pp. Let (q |= A0[θ]) = t0
and (q |= A1[θ]) = t1. As A0 ≺ A and A1 ≺ A we have Q+(A0) and Q+(A1).
Thus Q(A0[θ]) and Q(A1[θ]), so (q ` A0[θ])→∗ t0 and (q ` A1[θ])→∗ t1. Now,
for t ∈ T ,
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(q ` A0[θ] ∧A1[θ])→∗ t ⇔ ((q ` A0[θ]) ∧ (q ` A1[θ]))→∗ t
⇔ t0 ∧T t1 = t

by the property assumed of evaln. of conjns.
⇔ (q |= A0[θ]) ∧T (q |= A1[θ]) = t
⇔ (q |= A0[θ] ∧A1[θ]) = t

Hence Q(A[θ]) in this case.

A ≡ X: In this case, when A is a variable, Q(A[θ]) holds trivially by the
assumption on θ.

A ≡ νX{→r }B: In this case A[θ] ≡ νX{→r }(B[θ])—recall θ is not defined on X

because it is not a free variable of A. Let q ∈ Pp. Either q ∈ {→r } or not. If

q ∈ {→r } then it is easy to see

(q ` νX{→r }(B[θ]))→∗ t⇔ t = true, for any t ∈ T,

and that (q |= νX{→r }(B[θ])) = true. Hence Q(A[θ]) when q ∈ {→r } in this case.

Otherwise q 6∈ {→r }. Then νX{q,→r }B ≺ A, so Q(νX{q,→r }(B[θ])). Define a
substitution θ′ from Y ∈ FV (B) to closed p-assertions by taking

θ′(Y ) =

{
θ(Y ) if Y 6≡ X
νX{q,→r }(B[θ]) if Y ≡ X

Certainly Q(θ′(Y )), for all Y ∈ FV (B). As B ≺ A we have Q+(B). Hence

Q(B[θ′]). But B[θ′] ≡ (B[θ])[νX{q,→r }(B[θ])/X]. Thus from the reduction
rules,

(q ` νX{→r }(B[θ]))→∗ t ⇔ (q ` (B[θ])[νX{q,→r }(B[θ])/X])→∗ t
⇔ (q ` B[θ′])→∗ t
⇔ (q |= B[θ′]) = t as Q(B[θ′])

⇔ (q |= (B[θ])[νX{q,→r }(B[θ])/X]) = t

⇔ (q |= νX{→r }(B[θ])) = t by the Reduction Lemma.

Hence, whether q ∈ {→r } or not, Q(A[θ]) in this case.

For all the other possible forms of A it can be shown (Exercise!) thatQ(A[θ]).
Using well-founded induction we conclude Q+(A) for all p-assertions A. In
particular Q(A) for all closed assertions A, which establishes the theorem. 2

Example: Consider the two element transition system given in CCS by

P
def
= a.Q

Q
def
= a.P

—it consists of two transitions P
a→ Q and Q

a→ P . We show how the rewriting
algorithm establishes the obviously true fact that P is able to do arbitrarily
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many a’s, formally that P |= νX.〈a〉X. Recalling that νX.〈a〉X stands for
νX{ }〈a〉X, following the reductions of the model-checking algorithm we obtain:

P ` νX{ }〈a〉X → P ` 〈a〉X[νX{P}〈a〉X/X]

i.e.P ` 〈a〉νX{P}〈a〉X
→ Q ` νX{P}〈a〉X
→ Q ` 〈a〉X[νX{Q,P}〈a〉X/X]

i.e.Q ` 〈a〉νX{Q,P}〈a〉X
→ P ` νX{Q,P}〈a〉X
→ true.

2

Hence provided the constants of the assertion language are restricted to
decidable properties the reduction rules give a method for deciding whether or
not a process satisfies an assertion. We have concentrated on the correctness
rather than the efficiency of an algorithm for local model checking. As it stands
the algorithm can be very inefficient in the worst case because it does not exploit
the potential for sharing data sufficiently (the same is true of several current
implementations).

Exercise 4.18

(i) For the CCS process P defined by

P
def
= a.P

show p ` νX.〈a〉T ∧ [a]X reduces to true under the algorithm above.

(ii) For the CCS definition

P
def
= a.Q

Q
def
= a.P + a.nil

show P ` µX.[a]F ∨ 〈a〉X reduces to true. 2

Exercise 4.19 * (A project) Program a method to extract a transition system
table for a finite-state process from the operational semantics in e.g. SML
or Prolog. Program the model checking algorithm. Use it to investigate the
following simple protocol. 2

Exercise 4.20 * A simple communication protocol (from [28]) is described in
CCS by:
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Sender = a.Sender’

Sender’ = b.(d.Sender + c.Sender’)

Medium = b.(c.Medium + e.Medium)

Receiver = e.f.d.Receiver

Protocol = (Sender ‖ Medium ‖ Receiver)\ {b, c, d, e}

Use the tool developed in Exercise 4.19 (or the Concurrency Workbench or TAV
system) to show the following:
The process Protocol does not satisfy Inv([a](ev〈f〉T )).
Protocol does satisfy Inv([f ](ev〈a〉T )).
(Here Inv(A) ≡ νX.(A∧ [.]X) and ev(A) ≡ µX.(A∨ (〈.〉T ∧ [.]X)), with Inv(A)
satisfied by precisely those processes which always satisfy A, and ev(A) satisfied
by precisely those processes which eventually satisfy A.) 2



Chapter 5

Process equivalence

The important process equivalence of strong bisimilarity is introduced, and re-
lated to Hennessy-Milner logic and the modal µ-calculus. Its equational laws are
derived and its use in reasoning about processes indicated. Weak bisimilarity,
to take account of the invisibility of τ -actions, is treated very briefly.

5.1 Strong bisimulation

In the absence of a canonical way to represent the behaviour of processes, equiv-
alences on processes saying when processes have the same behaviour become
important. Originally defined, by Milner and Park, between simple labelled
transition systems as here, it is proving to have much broader currency, not just
to much more general languages for concurrent processes, but also in reasoning
about recursively-defined datatypes where there is no reference to concurrency.

Definition: A (strong) bisimulation is a binary relation R between CCS pro-
cesses with the following property: If pRq then

(i)∀λ, p′. p λ−→ p′ ⇒ ∃q′.q λ−→ q′ & p′Rq′ , and

(ii)∀λ, q′. q λ−→ q′ ⇒ ∃p′.p λ−→ p′ & p′Rq′ .

Write p ∼ q, and say p and q are (strongly) bisimilar (or strongly bisimulation
equivalent), iff there is a strong bisimulation R for which pRq.

For convenience we define bisimulation between CCS processes, making use
of the transition system given by the operational semantics. But, as should be
clear, the definition applies to any labelled transition system.

From the definition of bisimulation we see that to show two processes are
bisimilar it suffices to exhibit a bisimulation relating them.

Techniques for building bisimulations:

Proposition 5.1 Assume that R,S and Ri, for i ∈ I, are strong bisimulations.
Then so are

69
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(i) IdP , the identity relation.

(ii) Rop, the opposite relation.

(iii) R ◦ S, the composition, and

(iv)
⋃
i∈I Ri, the union.

Proof: Exercise! 2

Exercise 5.2 Show the proposition above. 2

It follows that:

Proposition 5.3 Strong bisimilarity ∼ is an equivalence relation.

Proof: That ∼ is reflexive follows from the identity relation being a bisimu-
lation. The symmetry of ∼ is a consequence of the converse of a bisimulation
relation being a bisimulation, while its transitivity comes from the relation com-
position of bisimulations being a bisimulation. 2

Example: (1) Bisimulation abstracts from looping:�'
� i i - - -

?
• • • . . .

b b b∼ •

b

(2) Bisimulation abstracts from inessential branching:

i i
6

6

�
�
��

6

Z
Z
ZZ}







�

S
S
So

• •

•

••••

• •

a a
a

b
bbb

∼

(3) But:

i i
6

�
�
��

Z
Z

ZZ}

S
S
So






�

@
@@I

�
��7

• •

•

•

• •

a a
a

b

6∼

c
cb

• • •

In the second process, after an a-action the process is prepared to do both a b-
and a c-action (which may depend on the environment). The first process, how-
ever, is committed to either a b- or a c-action after an initial a-action (and might
deadlock should the environment only be prepared to do one of the actions).
Note, in particular, that bisimulation equivalence is not language equivalence
(where two processes are language equivalent iff they gives rise to the same
strings of actions).
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5.2 Strong bisimilarity as a maximum fixed point

Given a relation R between CCS processes, define the relation ϕ(R) to be such
that:

p ϕ(R) q iff

(i) ∀a, p′. p a−→ p′ ⇒ ∃q′.q a−→ q′ & p′Rq′ , and

(ii) ∀a, q′. q a−→ q′ ⇒ ∃p′.p a−→ p′ & p′Rq′ .

It is easily seen that ϕ is monotonic, i.e. if R ⊆ S, then ϕ(R) ⊆ ϕ(S). We
see that a binary relation R between processes is a strong bisimulation iff

R ⊆ ϕ(R) .

In other words, R is a bisimulation iff R is a postfixed point of ϕ regarded as
function on Pow(P × P). Note that the relation ∼ can be described by

∼=
⋃
{R | R is a strong bisimulation} .

But, by Tarski’s fixed point theorem, this relation is precisely νR.ϕ(R), the
maximum fixed point of ϕ. The relation ∼ is itself a bisimulation and moreover
the largest bisimulation.

Exercise 5.4 (Bisimulation testing) Because strong bisimulation can be ex-
pressed as a maximum fixed point, the testing of bisimulation between two
finite-state processes can be automated along the same lines as local model
checking. Suggest how, and write a program, in e.g. SML or Prolog, to do it.

2

5.3 Strong bisimilarity and logic

It turns out that the equivalence of strong bisimilarity is induced by Hennessy-
Milner logic. This logic includes a possibly infinite conjunction, and its asser-
tions A are given by

A ::=
∧
i∈I

Ai | ¬A | 〈a〉A

where I is a set, possibly empty, indexing a collection of asertions Ai, and a
ranges over actions. The notion of a process p satisfying an assertion A is
formalised in the relation p |= A defined by structural induction on A:

p |=
∧
i∈I

Ai iff p |= Ai for all i ∈ I,

p |= ¬A iff not p |= A,

p |= 〈a〉A iff p
a−→ q & q |= A for some q.
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(An empty conjunction fulfils the role of true as it holds vacuously of all pro-
cesses.)

Because minimum and maximum fixed points can be understood as (possibly
infinite) disjunctions and conjunctions, Hennessy-Milner logic is as expressive
as the modal µ-calculus.

Now we define p � q iff (p |= A)⇔ (q |= A) for all assertions A of Hennessy-
Milner logic.

We show that � coincides with strong bisimulation, i.e. �=∼. So, for finite-
state processes the equivalence � and strong bisimulation coincide with the
equivalence induced by the modal µ-calculus.

Theorem 5.5 �=∼.

Proof: A routine structural induction on A shows that

∀p, q. p ∼ q ⇒ (p |= A⇔ q |= A).

This shows � ⊇ ∼.
From the definition of ∼, in order to show the converse inclusion, �⊆∼,

it suffices to show that � is a strong bisimulation. This part is best proved
by assuming that � is not a bisimulation, and deriving a contradiction. So,
suppose � is not a bisimulation. This could only be through (i) or (ii) failing
in the definition of strong bisimulation. By symmetry it is sufficient to consider
one case, (i). So assume there are processes p, q with p � q for which p

α→ p′

and yet,
∀r. q α→ r ⇒ (p′, r) /∈ � .

From the definition of �, for any r such that q
α→ r there must be an assertion

Br such that
p′ |= Br and r 6|= Br

—because (p′, r) /∈ � the processes p′, r must be distinguished by an assertion
holding for one and not the other; using negation, if necessary, we can always
find such a Br. Now, take

A ≡ 〈α〉(
∧
r∈I

Br)

where
I = {r | q α→ r} .

Then
p |= A and q 6|= A,

contradicting (p, q) ∈�. Hence � is a strong bisimulation. 2

Corollary 5.6 Bisimilar states satisfy the same modal µ-calculus assertions
and the same CTL assertions.

Exercise 5.7 Provide the structural induction establishing � ⊇ ∼ omitted
from the proof of the theorem above. 2
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5.4 Equational properties of bisimulation

A major purpose of process equivalences like bisimulation is to support equa-
tional reasoning about processes where congruence properties such as the fol-
lowing are useful.

Proposition 5.8 Sum and parallel are commutative and associative with re-
spect to strong bisimilarity.

Assume p ∼ q. Then,

(1) λ.p ∼ λ.q

(2) p+ r ∼ q + r

(3) p ‖ r ∼ q ‖ r

(3) p \ L ∼ q \ L

(4) p[f ] ∼ q[f ]

Proof: All the claims rest on producing an appropriate bisimulation, for exam-
ple to show the commutativity of ‖ the bisimulation is

{((p ‖ q), (q ‖ p)) | p, q ∈ P} .

We’ll only do (3) in detail.
(3) Define

R = {(p ‖ s, q ‖ s) | p ∼ q & s ∈ P} .

To show R is a bisimulation suppose (p ‖ s)R(q ‖ s) and that p ‖ s α−→ t. There
are three cases:
Case p

α−→ p′ and t ≡ p′ ‖ s.
Then, as p ∼ q, we obtain q

α−→ q′, so q ‖ s α−→ q′ ‖ s with (p′ ‖ s)R(q′ ‖ s).
Case s

α−→ s′ and t ≡ p ‖ s′. Then, q ‖ s α−→ q ‖ s′ and (p ‖ s′)R(q ‖ s′).
Case p

l−→ p′, s
l̄−→ s′, α = τ and t ≡ p′ ‖ s′. Then, as p ∼ q, we obtain

q
l−→ q′ with p′ ∼ q′. So q ‖ s τ−→ q′ ‖ s′ and (p′ ‖ s′)R(q′ ‖ s′).
The proofs of (4) and (5) are similar, while those of (1) and (2) are easy.

They are left to the reader. 2

Exercise 5.9 (i) Show

rec(P = p) ∼ p[rec(P = p)/P ] .

(ii) Show that
(p+ q) \ L ∼ p \ L+ q \ L ,

(p+ q)[f ] ∼ p[f ] + q[f ] ,

but that
(p+ q) ‖ r 6∼ (p ‖ r) + (q ‖ r) .

[Hint: For the latter, taking p ≡ a.nil, q ≡ b.nil and r ≡ c.nil suffices.] 2
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5.4.1 Expansion theorems

The parallel composition of processes behaves as if the actions of the processes
were nondeterministically shuffled together, though with the possibility of syn-
chronisation of complementary actions. So ultimately parallel composition is
understood in terms of nondeterministic sum; certainly any finite process built
up using parallel composition will be bisimilar to one not mentioning this opera-
tion. The role of the expansion theorem for parallel composition is to (partially)
eliminate occurrences of parallel-composition operator in favour of nondetermin-
istic sums.

Notice first that any CCS process is bisimilar to its expansion to a sum over
its initial actions.

Proposition 5.10 Let p be a pure CCS process. Then,

p ∼ Σ{λ.p′ | p λ−→ p′} .

Proof: Clearly

{(p,Σ{λ.p′ | p λ−→ p′})} ∪ {(r, r) | r ∈ P}

is a bisimulation. 2

Because restriction and relabelling distribute through sum we immediately
obtain the following proposition.

Proposition 5.11

(1) (Σi∈Iαi.pi) \ L ∼ Σ{αi.(pi \ L) | αi /∈ L ∪ L} .

(2) (Σi∈Iαi.pi)[f ] ∼ Σi∈If(αi).(pi[f ]) .

The expansion theorem for parallel composition is more interesting. It ex-
presses how the parallel composition of two processes allows the processes to
proceed asynchronously, or through joint τ -action of synchronisation whenever
their actions are complementary.

Theorem 5.12 Suppose

p ∼ Σi∈Iαi.pi and q ∼ Σj∈Jβj .qj .

Then,
(p ‖ q) ∼Σi∈Iαi(pi ‖ q) + Σj∈Jβj(p ‖ qj)+

Σ{τ.(pi ‖ qj) | αi = β̄j} .

In practice, to save writing, it’s often best to use a combination of the ex-
pansion laws for parallel composition, restriction and relabelling. For example,
suppose

p ∼ Σi∈Iαi.pi and q ∼ Σj∈Jβj .qj .
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Then,

(p ‖ q) \ L ∼Σ{αi(pi ‖ q) \ L | αi /∈ L}+ Σ{βj(p ‖ qj \ L) | βj /∈ L}+
Σ{τ.(pi ‖ qj) \ L | αi = β̄j} .

Exercise 5.13 Write down an expansion law for three components set in par-
allel. 2

As an example of the expansion laws in use we study a binary semaphore in
parallel with two processes which are imagined to get the semaphore when they
wish to access their critical region. Define

Sem
def
= get. put. Sem ,

P1
def
= ¯get. a1. b1. ¯put.P1 ,

P2
def
= ¯get. a2. b2. ¯put.P2 .

Combining them together, we obtain

SY S ≡ (P1 ‖ P2 ‖ Sem) \ {get, put} .

To understand the behaviour of SY S, we apply the expansion laws and
derive:

SY S

∼ ( ¯get.a1.b1. ¯put.P1 ‖ ¯get.a2.b2. ¯put.P2 ‖ get.put.Sem) \ {get, put}

∼ τ.((a1.b1. ¯put.P1 ‖ P2 ‖ put.Sem) \ {get, put}) + τ.((P1 ‖ a2.b2. ¯put.P2 ‖ put.Sem) \ {get, put})

∼ τ.a1.b1.(( ¯put.P1 ‖ P2 ‖ put.Sem) \ {get, put}) + τ.a2.b2.((P1 ‖ ¯put.P2 ‖ put.Sem) \ {get, put})

∼ τ.a1.b1.τ.((P1 ‖ P2 ‖ Sem) \ {get, put}) + τ.a2.b2.τ.((P1 ‖ P2 ‖ Sem) \ {get, put})

∼ τ.a1.b1.τ.SY S + τ.a2.b2.τ.SY S .

Exercise 5.14 A semaphore with capacity 2 in its start state can be defined
as the process Twosem0 in the definition

Twosem0
def
= get.Twosem1 ,

Twosem1
def
= get.Twosem2 + put.Twosem0 ,

Twosem2
def
= put.Twosem1 .

Exhibit a bisimulation showing that

Twosem0 ∼ Sem ‖ Sem ,

where Sem is the unary semaphore above. 2
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5.5 Weak bisimulation and observation congru-
ence

Strong bisimilarity discriminates between, for example, the three CCS processes
nil, τ.nil and τ.τ.nil, though their only difference is in the number of invisible
τ -actions they perform. The τ -actions are invisible in the sense that no process
can interact with a τ -action, although they can have a marked effect on the
course a computation follows as in the process a.p+ τ.q, where the τ -action can
make a preemptive choice.

In order to take better account of the invisibility of τ -actions, Hennessy and
Milner developed weak bisimilarity. In fact weak bisimilarity can be viewed
as strong bisimilarity on a transition system modified to make the number of
τ -actions invisible.

For CCS processes, define

p
τ⇒ q iff p(

τ→)∗q ,

i.e. p can do several, possibly zero, τ -actions, to become q. Thus p
τ⇒ p, for any

CCS process p. For any non-τ action l, define

p
l⇒ q iff ∃r, r′. p τ⇒ r & r

l→ r′ & r′
τ⇒ q .

A weak bisimulation is a binary relation R between CCS processes with the
following property: If pRq then

(i)∀λ, p′. p λ⇒ p′ ⇒ ∃q′.q λ⇒ q′ & p′Rq′ , and

(ii)∀λ, q′. q λ⇒ q′ ⇒ ∃p′.p λ⇒ p′ & p′Rq′ .

Two processes p and q are weakly bisimilar, written p
∼∼ q, iff there is a weak

bisimulation relating them.

So, weak bisimilarity is simply strong bisimilarity but based on
λ⇒- rather

than
λ→-transitions.

The following exercise guides you through the key properties of weak bisim-
ulation.

Exercise 5.15 Show that if p ∼ q, then p
∼∼ q.

Show p
∼∼ τ.p.

Explain why, if p
∼∼ q, then

α.p
∼∼ α.q , p ‖ r ∼∼ q ‖ r , p \ L ∼∼ q \ L , p[f ]

∼∼ q[f ] .

Explain why, though nil
∼∼ τ.nil, it is not the case that nil+a.nil

∼∼ τ.nil+a.nil.
2

As the exercise above shows, it is possible for p
∼∼ q and yet p + r 6∼∼ q + r.

The failure of this congruence property led Milner to refine weak bisimulation
to observation congruence which takes more careful account of initial actions.
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Processes p, q are observation congruent iff

p
α→ p′ ⇒ ∃q′. q τ⇒ α→ τ⇒ q′ & p′

∼∼ q′ , and

q
α→ q′ ⇒ ∃p′. p τ⇒ α→ τ⇒ p′ & p′

∼∼ q′ .

Consequently, if processes p, q are strongly bisimilar, then they are observation
congruent.

Exercise 5.16 Writing = for observation congruence, show that if p = q, then
p+r = q+r. (In fact, all the expected congruence properties hold of observation
congruence—see [22] ch.7.) 2

5.6 On interleaving models

The two CCS processes a.b.nil+b.a.nil and a.nil ‖ b.nil have isomorphic transi-
tion systems according to the operational semantics, and so are certainly bisimi-
lar, despite one being a parallel composition and the other not even containing a
parallel composition. The presentation of parallelism here has, in effect, treated
parallel composition by regarding it as a shorthand for nondeterministic inter-
leaving of atomic actions of the components. This is despite the possibility that
the a- and b-actions in a.nil ‖ b.nil might be completely separate and indepen-
dent of each other. Consider too the parallel composition a.nil ‖ rec(P = τ.P ).
This process might perform an infinite sequence of τ -actions without performing
the a-action, even though the a-action might in reality be completely indepen-
dent of all the τ -actions; a biproduct of an interleaving model is that processes
compete for execution time. If one were interested in the independence of ac-
tions the transition semantics is too abstract. We turn next to a model designed
to make such independence explicit.
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Chapter 6

Petri nets

This chapter provides a quick introduction to Petri nets, probably the best
known example of a model which makes explicit the causal independence of
events. Nets will be applied in the next chapter in order to give an event-based
semantics and analysis of security protocols.

6.1 Preliminaries on multisets

The explanation of general Petri nets involves a little algebra of multisets (or
bags), which are like sets but where multiplicities of elements matters. Its
convenient to also allow infinite multiplicities, so we adjoin an extra element ∞
to the natural numbers.

Extend the natural numbers ω by the new element ∞ and write ω∞ =
ω ∪ {∞}. Extend addition on integers to the element ∞ by defining ∞ + n =
n +∞ = ∞, for all n ∈ ω∞. We can also extend subtraction to an operation
between ω∞, on the left of the minus, and ω, on the right, by taking

∞− n =∞ ,

for all n ∈ ω. In this way we avoid∞−∞! We also extend the order on numbers
by setting n ≤ ∞ for any n ∈ ω∞.

A ∞-multiset over a set X is a function f : X → ω∞, associating a nonneg-
ative number or∞ with each x ∈ X; here it is usual to write fx instead of f(x).
Write m∞X for the set of ∞-multisets over X. (It is helpful to think of a ∞-
multiset f over X as a kind of vector in a space m∞X with basis X serving to
index its components, or entries, fx.) We call multisets those∞-multisets whose
entries are never∞. Write mX for the space of multisets over X. In particular,
the null multiset over X is the function x 7→ 0 for any x ∈ X. We can iden-
tify subsets of X with those multisets of f ∈mX such that fx ≤ 1 for all x ∈ X.

79
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Some operations on multisets
Useful operations and relations on ∞-multisets are induced pointwise by

operations and relations on integers, though some care must be taken to avoid
negative entries and operations with ∞.

Let f, g ∈m∞X. Define

f ≤ g ⇐⇒ ∀x ∈ X. fx ≤ gx.

Clearly ∞-multisets are closed under + but not, in general, under −. Define

(f + g)x = fx + gx ,

for all x ∈ X. If g ≤ f , for ∞-multiset f and multiset g, then their difference
f − g is a multiset with

(f − g)x = fx − gx .

6.2 General Petri nets

Petri nets are a well-known model of parallel computation. They come in several
variants. Roughly, a Petri net can be thought of as a transition system where,
instead of a transition occurring from a single global state, an occurrence of an
event is imagined to affect only the conditions in its neighbourhood.

We start with the definition of general nets, where multisets play an explicit
role. Later we will specialise to two subclasses of nets for the understanding of
which only sets need appear explicitly; the implicit use of multisets does however
help explain the nets’ behaviour.

A general Petri net (often called a place-transition system) consists of

- a set of conditions (or places), P ,

- a set of events (or transitions), T ,

- a precondition map pre : T →mP , which to each t ∈ T assigns a multiset
of conditions pre(t). It is traditional to write ·t for pre(t).

- a postcondition map post : T → m∞P which to each t ∈ T assigns a
∞-multiset of conditions post(t), traditionally written t·.

- a capacity function Cap ∈m∞P which to each p ∈ P assigns a nonnegative
number or ∞, bounding the multiplicity to which a condition can hold; a
capacity of ∞ means the capacity is unbounded.

A state of a Petri net consists of a marking which is an ∞-multiset M over
P bounded by the capacity function, i.e.

M≤ Cap .

A marking captures a notion of distributed, global state.
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6.2.1 The token game for general nets

Markings can change as events occur, precisely how being expressed by the
transitions

M t→M′

events t determine between markings M and M′.
For markings M, M′ and t ∈ T , define

M t−→ M′ iff ·t ≤M and M′ =M− ·t+ t· .

An event t is said to have concession (or be enabled) at a markingM iff its pre-
conditions are met by the marking and its occurrence would lead to a legitimate
marking, i.e. iff

·t ≤M and M− ·t+ t· ≤ Cap .

There is a widely-used graphical notation for nets in which events are rep-
resented by squares, conditions by circles and the pre- and postcondition maps
by directed arcs weighted by nonzero numbers or ∞. A marking is represented
by the presence of tokens on a condition, the number of tokens representing the
multiplicity to which the condition holds. So, for example, a marking M in
which a

Mp = 2, Mq = 5 and Mr =∞,

would be represented by 2 tokens residing on the condition p, a number of 5
tokens on condition q and countably infinitely many tokens residing on r. As an
event t occurs for each condition p it removes (·t)p tokens from p and sets (t·)p
tokens onto p—for the event to have concession it must be possible to do this
without violating the capacity bounds. Note that it is possible for a condition
p to be both a precondition and postcondition of the same event t in the sense
that both (·t)p 6= 0 and (t·)p 6= 0; then there would be arcs in both directions
between p and t.

Example:

(1) Assuming that no capacities are exceeded, for example if the conditions
have unbounded capacities, the occurrence of the event affects the marking in
the way shown:
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(2) The following simple net represents, for example, a buffer which can store
up to five identical items, into which an item is put on each occurrence of the
event in. Initially it contains three items. The event in has no preconditions so
can occur provided in so doing it does not cause the capacity to be exceeded.
Consequently, the event in can only occur twice.

&%
'$

-

capacity 5

1
in •

• •

The following simple net represents a buffer which can store up to five identical
items, into which 2 items are put on each occurrence of the event in, and out of
which one item is taken on each occurrence of the event out. Initially it contains
three items. If the event out does not occur, then the event in can only occur
once, but can occur additionally as the buffer is emptied through occurrences
of out.

&%
'$

- -

capacity 5

2 1
in out•

• •

(3) Events can be in conflict, in the sense that the occurrence of one excludes
the occurrence of the other, either through competing at their preconditions, as
in:

&%
'$

-�2 •
• • 2

or through competing at their postconditions if the occurrence of both would
violate the capacity bounds, as in:

&%
'$

- �2 •
• •

capacity 5

2

This shows how nondeterminism can be represented in a net. (4) The behaviour
of general nets can be quite complicated, even with unbounded capacities, as is
assumed of the net below:
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[In fact, the use of finite capacities does not lead to any richer behaviour over nets
without any capacity constraints; for the conditions with a finite capacity there
is a way to adjoin “complementary” conditions so that all capacities may be set
to ∞ without upsetting the net’s behaviour—a special case of this construction
is given in Exercise 6.4 below.]

Exercise 6.1 Explain in words the behaviour of the net drawn in (4) of the
example above.

We won’t make use of it here, but more generally one can talk of a multiset
of events having concession, and whose joint, or concurrent, occurrence leads
from one marking to another. The concurrent, or independent, occurrence of
events is more easily understood for simpler nets of the kind we consider next.

6.3 Basic nets

We instantiate the definition of general Petri nets to a case where in all the
multisets the multiplicities are either 0 or 1, and so can be regarded as sets.
In particular, we take the capacity function to assign 1 to every condition, so
that markings become simply subsets of conditions. The general definition now
specialises to the following.

A basic Petri net consists of

- a set of conditions, B,

- a set of events, E, and

- two maps: a precondition map pre : E→Pow(B), and a postcondition map
post : E → Pow(B). We can still write ·e for the preconditions and e· for
the postconditions of e ∈ E.
[Note that it is possible for a condition to be both a precondition and a

postcondition of the same event.]

Now a marking consists of a subset of conditions, specifying those conditions
which hold.
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6.3.1 The token game for basic nets

Markings can change as events occur, precisely how being expressed by the
transitions

M e→M′

events e determine between markings M,M′.
For M,M′ ⊆ B and e ∈ E, define

M e→M′ iff (1) ·e ⊆M & (M\·e) ∩ e· = ∅ (Concession), and

(2) M′ = (M\·e) ∪ e· .

Property (1) expresses that the event e has concession at the marking M. Re-
turning to the definition of concession for general nets, of which it is an instance,
it ensures that the event does not load another token on a condition that is al-
ready marked. Property (2) expresses in terms of sets the marking that results
from the occurrence of an event. So, an occurrence of the event ends the holding
of its preconditions and begins the holding of its postconditions.

There is an alternative characterisation of the transitions between markings
induced by event occurrences:

Proposition 6.2 Let M,M′ be markings and e an event of a basic net. Then

M e→M′ iff ·e ⊆M & e· ⊆M′ & M\·e =M′ \ e·.

Exercise 6.3 Prove the proposition above. 2

For basic nets, it is simple to express when two events are independent of
each other; two events are independent if their neighbourhoods of conditions
are disjoint. Events e0, e1 are independent iff

(·e0 ∪ e·0) ∩ (·e1 ∪ e·1) = ∅ .

We illustrate by means of a few small examples how basic nets can be used to
model nondeterminism and concurrency. We can still make use of the commonly
accepted graphical notations for nets, though now conditions either hold or don’t
hold in a marking and the directed arcs always implicitly carry multiplicity 1.
The holding of a condition is represented by marking it by a single “token”.
The distribution of tokens changes as the “token game” takes place; when an
event occurs the tokens are removed from its preconditions and placed on its
postconditions.

Example:
(1) Concurrency: j j

kk6
6 6

6

• •

1 2
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The events 1 and 2 can occur concurrently, in the sense that they both have
concession and are independent in not having any pre or post conditions in
common.
(2)

j j

m

j i

m
6 6

Z
ZZ}

�
��> @

@@R

.

�
��=

? ?
1 2

•

• •
Forwards conflict: Backwards conflict:

1 2

Either one of events 1 and 2 can occur, but not both. This shows how nonde-
terminism can be represented in a basic net.

(3) Basic nets are generally more complicated of course, and may possess
looping behaviour. In the net below, initially, at the marking shown, the events
1, 2 and 3 all have concession. The events 1 and 3 can occur concurrently as
can the events 2 and 3. The events 1 and 2 are however in conflict with each
other, and only one of them can occur. Once either (1 and 3) or (2 and 3) have
occurred the event 4 has concession, and its occurrence will the restore the net
back to its initial marking.

& %6 6� %
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• •

(4) Contact:

mn m- - - -••
1 2

The event 2 has concession. The event 1 does not—its post condition holds—and
it can only occur after 2.

Example (4) above illustrates contact. In general, there is contact at a
marking M when for some event e

·e ⊆M & (M\·e) ∩ e· 6= ∅.
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Contact has a paradoxical feel to it; the occurrence of an event is blocked through
conditions, which it should begin, holding already. However blocking through
contact is perfectly consistent with the understanding that the occurrence of an
event should end the holding of its preconditions and begin the holding of its
postconditions; if the postconditions already hold, and are not also preconditions
of the event, then they cannot begin to hold on the occurrence of the event.
Often contact is avoided at the markings which can arise in the behaviour of
nets. For example, often nets come equipped with an initial marking from which
all future markings are reachable through the occurrences of events. Such nets
are called safe when contact never occurs at any reachable marking, and many
constructions on nets preserve safeness. In fact, any net can be turned into a
safe net with essentially the same behaviour.

Exercise 6.4 Define the complement of a condition b in a net to be the condi-
tion b̃ such that

∀ events e. b̃ ∈ ·e iff b ∈ e· & b /∈ ·e ,
b̃ ∈ e· iff b ∈ ·e & b /∈ e·

—so the starting and ending events of b̃ are the reverse of those of b.
Here’s a way to make a non-safe net (so a net with an initial marking) into a

safe net with the same behaviour: adjoin, in addition to the existing conditions
b all their complements, extending the pre- and postcondition maps accordingly,
and take b̃ to be in the initial marking iff b is not in the initial marking.

Perform this operation on the net with contact exampled above. Why is the
result safe? 2

One important use of Petri nets and related independence models has been in
“partial-order” model-checking, where the independence of events is exploited in
exploring the reachable state space of a process. A net markingM is reachable
if there is a sequence of events

e1, · · · ei, ei+1 · · · ek

such that

M0
e1−→ · · · ei−→ Mi

ei+1−→ Mi+1 · · ·
ek−→ Mk ,

whereM0 is the initial marking andMk =M. If two consecutive events ei, ei+1

are independent, then the sequence

e1, · · · ei+1, ei · · · ek ,

with the two events interchanged, also leads to M. Two such sequences are
said to be trace-equivalent. Clearly in seeking out the reachable markings it
suffices to follow only one event sequence up to trace equivalence. This fact
is the corner stone of partial-order model-checking, the term “partial order”
referring to a partial-order of event occurrences that can be extracted via trace
equivalence.
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Exercise 6.5 Check that, in a net, if

M e1−→ M1
e2−→ M′

where the events e1, e2 are independent, then

M e2−→ M2
e1−→ M′

for some marking M2. 2

Exercise 6.6 Try to describe the operations of prefix, sum and parallel com-
position of pure CCS in terms of (graphical) operations on Petri nets. Assume
that the nets’ events carry labels. (This will be illustrated in the lectures.) 2

6.4 Nets with persistent conditions

Sometimes we have use for conditions which once established continue to hold
and can be used repeatedly. This is true of assertions in traditional logic, for
example, where once an assertion is established to be true it can be used again
and again in the proof of further assertions. Similarly, if we are to use net events
to represent rules of the kind we find in inductive definitions, we need conditions
that persist.

Persistent conditions can be understood as an abbreviation for conditions
within general nets which once they hold, do so with infinite multiplicity. Con-
sequently any number of events can make use of them as preconditions but
without their ever ceasing to hold. Such conditions, having infinite capacity,
can be postconditions of several events without there being conflict. Let us be
more precise.

We modify the definition of basic net given above by allowing certain condi-
tions to be persistent. A net with persistent conditions will still consist of events
and conditions related by pre- and postcondition maps which to an event will
assign a set of preconditions and a set of postconditions. But, now amongst the
conditions are the persistent conditions forming a subset P . A marking of a net
with persistent conditions will be simply a subset of conditions, of which some
may be persistent.

We can understand a net with persistent conditions as a general net with
the same sets for conditions and events. (It is this interpretation that leads to
the token game for nets with persistent conditions.) The general net’s capacity
function will be either 1 or∞ on a condition, being∞ precisely on the persistent
conditions. When p is persistent, p ∈ e· is interpreted in the general net as
(e·)p = ∞, and p ∈ ·e as (·e)p = 1. A marking of a net with persistent
conditions will correspond to a marking in the general Petri net in which those
persistent conditions which hold do so with infinite multiplicity.

Graphically, we’ll distinguish persistent conditions by drawing them as dou-
ble circles: l�
��
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6.4.1 Token game for nets with persistent conditions

The token game is modified to account for the subset of conditions P being
persistent. Let M and M′ be markings (i.e. subsets of conditions), and e an
event. Define

M e→M′ iff ·e ⊆M & (M\ (P ∪ ·e)) ∩ e· = ∅ (e has concession), and

M′ = (M\ ·e) ∪ e· ∪ (M∩ P ) .

The token game of a net with persistent conditions fits our understanding
of persistency, and specifically it matches the token game in the interpretation
as a general net.

We will find nets with persistent conditions useful in modelling and analysing
security protocols.

6.5 Other independence models

Petri nets are an example of an independence model, in the sense that they
make explicit the independence of events. Other examples of independence
models are Mazurkiewicz trace languages (languages subject to trace equiv-
alence determined by the independence of actions), event structures (sets of
events with extra relations of causality and conflict), pomset languages (lan-
guages of labelled partial orders of events) and transition systems with an extra
relation of independence on transitions or actions. Despite their superficial dif-
ferences, independence models, including nets, are closely related, and there are
translations between the different models (see [34]). For example, just as one
can unfold a transition system to a tree, so can one unfold a net to an occur-
rence net, a trace language, or an event structure. Trace languages give rise
to event structures with a partial order of causal dependence on events (the
reason for the term “partial order” model checking). Not only do Petri nets
determine transition systems with independence (with the markings as states),
but conversely transition systems with independence give rise to Petri nets (the
conditions being built out of certain subsets of states and transitions).



Chapter 7

Security protocols

Security protocols raise new issues of correctness. A process language SPL
(Security Protocol Language) in which to formalise security protocols is intro-
duced. Its Petri-net semantics supports a form of event-based reasoning in the
analysis of security protocols (similar to that used in strand spaces and Paul-
son’s inductive method). Several reasoning principles are extracted from the
semantics and applied in proofs of secrecy and authentication.1

7.1 Introduction

Security protocols are concerned with exchanging messages between agents via
an untrusted medium or network. The protocols aim at providing guarantees
such as confidentiality of transmitted data, user authentication, anonymity etc.
A protocol is often described as a sequence of messages, and usually encryption
is used to achieve security goals.

As an example consider the Needham-Schröder-Lowe (NSL) protocol:

(1) A −→ B : {m,A}Pub(B)

(2) B −→ A : {m,n,B}Pub(A)

(3) A −→ B : {n}Pub(B)

This protocol, like many others of its kind, has two roles: one for the initiator,
here A, and one for the responder, here B. It is a public-key protocol that
assumes an underlying public-key infrastructure, such as RSA. Both A and B
have their own, secret private keys. Public keys in contrast are known to all
participants in the protocol. In addition, the NSL protocol makes use of nonces,
m, n. One can think of them as newly generated, unguessable numbers whose
purpose is to ensure the freshness of messages.

Suppose A and B are agent names standing say for agents Alice and Bob.
The protocol describes an interaction between the initiator Alice and the re-
sponder Bob as following: Alice sends to Bob a new nonce m together with her

1This chapter is based on joint work with Federico Crazzolara.
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own agent name A both encrypted with Bob’s public key. When the message
is received by Bob, he decrypts it with his secret private key. Once decrypted,
Bob prepares an encrypted message for Alice that contains a new nonce together
with the nonce received from Alice and his name B. Acting as responder, Bob
sends it to Alice, who recovers the clear text using her private key. Alice con-
vinces herself that this message really comes from Bob, by checking whether she
got back the same nonce sent out in the first message. If that is the case, she
acknowledges Bob by returning his nonce. He will do a similar test.

The NSL protocol aims at distributing nonces m and n in a secure way,
allowing no one but the initiator and the responder to know them (secrecy).
Another aim of the protocol is authentication: Bob should be guaranteed that
m is indeed the nonce sent by Alice.

The protocol should be thought of as part of a longer message-exchange
sequence. After initiator and responder complete a protocol exchange, they will
continue communication, possibly using the exchanged nonces to establish a
session key.

Even if protocols are designed carefully, following established criteria, they
may contain flaws. Protocols involve many concurrent runs among a set of
distributed users. Then, the NSL protocol is prone to a “middle-man” attack if
the name B is not included in the second message. This attack on the original
protocol of Needham and Schröder was discovered by Gavin Lowe. B is not
included in the second message. Consider the original protocol of Needham and
Schröder:

(1) A −→ B : {m,A}Pub(B)

(2) B −→ A : {m,n}Pub(A)

(3) A −→ B : {n}Pub(B)

The following is a sequence of message exchanges, following the above protocol
and leading to an attack.

A E B

•
{m,A}Pub(E) // •

•
{m,A}Pub(B) // •

• •
{m,n}Pub(A)oo

•
{n}Pub(E) // •

•
{n}Pub(B) // •
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The agent E not only gets to know the “secret” nonce n but also convinces B
that he is talking to A, when A is instead talking to E. It is both an attack on
secrecy and on the desired authentication guarantee for B.

Exercise 7.1 Suppose Alice wishes to send a secret message to Bob by an
untrustworthy messager. Alice has her own padlock, the key to which only she
possesses. Similarly, Bob has his own padlock and key. Alice also has a casket
which is impregnable when padlocked. How can Alice send her secret message
to Bob without revealing it to the untrustworthy messenger? 2

7.1.1 Security properties

When we talk about secrecy we mean:

“A message M is secret if it never appears unprotected on the net-
work.”

A common definition of authentication is an agreement property defined for
instance by Lowe:

“An initiator A agrees with a responder B on same message M if
whenever A completes a run of the protocol as initiator, using M
apparently with B, then there exists a run of the protocol where B
acts as responder using M apparently with A.”

7.2 SPL—a language for security protocols

In order to be more explicit about the activities of participants in a protocol and
those of a possible attacker we design a little process language for the purpose.
The language SPL(Security Protocol Language) is close to an asynchronous
Pi-Calculus of Milner and is similar to the Spi-calculus of Abadi and Gordon.

7.2.1 The syntax of SPL

We start by giving the syntactic sets of the language:

• An infinite set of Names, with elements n,m, · · · , A,B, · · ·.

• Variables over names x, y, · · · , X, Y, · · ·.

• Variables over messages ψ,ψ′, ψ1, · · ·.

• Indices i ∈ Indices with which to index components of parallel composi-
tions.

The other syntactic sets of the language are described by the grammar shown
in Figure 7.1. Note we use “vector” notation; for example, the “vector” ~x
abbreviates some possibly empty list x1, · · · , xl.
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Name expressions v ::= n,A, · · · | x,X, · · ·
Key expressions k ::= Pub(v) | Priv(v) | Key(v1, v2)
Messages M ::= v | k | M1,M2 | {M}k |ψ
Processes p ::= out new~xM.p |

in pat~x~ψM.p |
‖i∈Ipi

Figure 7.1: Syntax of SPL

We take fv(M), the free variables of a a message M , to be the set of variables
which appear in M , and define the free variables of process terms by:

fv(out new~xM.p) = (fv(p) ∪ fv(M))\{~x}
fv(in pat~x~ψM.p) = (fv(p) ∪ fv(M))\{~x, ~ψ})
fv(‖i∈Ipi) =

⋃
i∈I fv(pi)

As usual, we say that a process without free variables is closed, as is a
message without variables. We shall use standard notation for substitution into
the free variables of an expression, though we will only be concerned with the
substitution of names or closed (variable-free) messages, obviating the problems
of variable capture.

We use Pub(v), Priv(v) for the public, private keys of v, and Key(v1, v2)
for the symmetric key of v1 and v2. Keys can be used in building up encrypted
messages. Messages may consist of a name or a key, be the composition of two
messages (M1,M2), or an encrypted message {M}k representing the message
M encrypted using the key k.

An informal explanation of the language:

out new~xM.p This process chooses fresh, distinct names ~n and binds them to
the variables ~x. The message M [~n/~x] is output to the network and the
process resumes as p[~n/~x]. The communication is asynchronous in the
sense that the action of output does not await input.

The new construct abstracts out an important property of a value chosen
randomly from some large set; such a value is likely to be new.

in pat~x~ψM.p This process awaits an input that matches the pattern M for some
binding of the pattern variables ~x~ψ and resumes as p under this binding.
All the pattern variables ~x~ψ must appear in the pattern M .

‖i∈Ipi This process is the parallel composition of all components pi for i in
the indexing set I. The set I is a subset of Indices. Indices will help us
distinguish in what agent and what run a particular action occurs. The nil
process, written nil, abbreviates the empty parallel composition (where
the indexing set is empty).

Convention 7.2 It simplifies the writing of process expressions if we adopt
some conventions.
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First, we simply write

out M.p

when the list of “new” variables is empty.

Secondly, and more significantly, we allow ourselves to write

· · · in M.p · · ·

in an expression, to be understood as meaning the expression

· · · in pat~x~ψM.p · · ·

where the pattern variables ~x, ~ψ are precisely those variables left free in M by
the surrounding expression. For example, we can describe a responder in NSL
as the process

Resp(B) ≡ in{x, Z}Pub(B).
out new y {x, y,B}Pub(Z).
in {y}Pub(B).
nil

For the first input, the variables x, Z in {x, Z}Pub(B) are free in the whole
expression, so by convention are pattern variables, and we could instead write

in pat x, Z {x, Z}Pub(B). · · · .

On the other hand, in the second input the variable y in {y}Pub(B) is bound by
the outer new y · · · and so by the convention is not a pattern variable, and has
to be that value sent out earlier.

Often we won’t write the nil process explicitly, so, for example, omitting its
mention at the end of the responder code above.

A parallel composition can be written in infix form via the notation

p1‖p2 · · · ‖pr ≡ ‖i∈{1,···,r}pi .

Replication of a process, !p, abbreviates ‖i∈ωp, consisting of a countably
infinite copies of p set in parallel.

The set of names of a process is defined to be all the names that appear in
its subterms and submessages (even under encryption).

Note that the language permits the coding of privileged agents such as key
servers, whose power is usually greater than one would anticipate of an attacker.
As an extreme, here is code for a key-server gone mad, which repeatedly outputs
private keys unprotected onto the network on receiving a name as request

!(in X. out Priv(X).nil) .
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Init(A,B) ≡ out new x{x,A}Pub(B).
in {x, y,B}Pub(A).
out{y}Pub(B).
nil

Resp(B) ≡ in{x, Z}Pub(B).
out new y {x, y,B}Pub(Z).
in {y}Pub(B).
nil

Figure 7.2: Initiator and responder code

Spy1 ≡ in ψ1.in ψ2.out(ψ1, ψ2).nil (composing)
Spy2 ≡ in(ψ1, ψ2).out ψ1.out ψ2.nil (decomposing)
Spy3 ≡ in x.in ψ.out {ψ}Pub(x).nil (encryption)
Spy4 ≡ in Priv(x).in {ψ}Pub(x).out ψ.nil (decryption)

Spy ≡ ‖i∈{1,...,4}Spyi

Figure 7.3: Attacker code

7.2.2 NSL as a process

We can program the NSL protocol in the language SPL, and so formalise the
introductory description given in the Section 7. We assume given a set of agent
names, Agents, of agents participating in the protocol. The agents partici-
pating in the NSL protocol play two roles, as initiator and responder with any
other agent. Abbreviate by Init(A,B) the program of initiator A ∈ Agents
communicating with B ∈ Agents and by Resp(B) the program of responder
B ∈ Agents. The code of both an arbitrary initiator and an arbitrary responder
is given in Figure 7.2. In programming the protocol we are forced to formalise
aspects that are implicit in the informal description, such as the creation of new
nonces, the decryption of messages and the matching of nonces.

We can model the attacker by directly programming it as a process. Figure
7.3, shows a general, active attacker or “spy”. The spy has the capability of
composing eavesdropped messages, decomposing composite message, and using
cryptography whenever the appropriate keys are available; the available keys are
all the public keys and the leaked private keys. By choosing a different program
for the spy we can restrict or augment its power, e.g., to passive eavesdropping
or active falsification.

The whole system is obtained by putting all components in parallel. Com-
ponents are replicated, to model multiple concurrent runs of the protocol. The
system is described in Figure 7.4.
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Pinit ≡ ‖A,B ! Init(A,B)
Presp ≡ ‖A ! Resp(A)
Pspy ≡ ! Spy

NSL ≡ ‖i∈{resp,init,spy} Pi

Figure 7.4: The NSL process

Induction on size

Often definitions and proofs by structural induction won’t suffice, and we would
like to proceed by induction on the “size” of closed process expressions, i.e.,
on the number of prefix and parallel composition operations in the process
expression. But because of infinite parallel compositions, expressions may not
contain just a finite number of operations, so we rely on the following well-
founded relation.

Definition: Define the size relation on closed process terms:

p[~n/~x] ≺ (out new~xM.p) ,

for any substitution of names ~n/~x.

p[~n/~x, ~L/~ψ] ≺ (in pat~x~ψM.p) ,

for any substitution of names ~n/~x, and closed messages ~L/~ψ.

pj ≺ (‖i∈Ipi) , for any index j ∈ I .

Proposition 7.3 The size relation ≺ is well-founded.

Proof: Let @1 denote the subexpression relation between process expressions;
so p′ @1 p iff p′ is an immediate subexpression of p. Then

q′ ≺ q ⇐⇒ q′ ≡ p0[σ] & p0 @1 q

for some process expression p0 and some substitution σ making q′ a closed
substitution instance of p0. A simple structural induction on q shows that

p @1 q[σ]⇒ ∃q′ @1 q. p ≡ q′[σ] .

Hence any infinite descending ≺-chain would induce an infinite descending @1-
chain, and so a contradiction. 2

As we go down with respect to the relation ≺ so does the “size” of the closed
term in the sense that less prefix and parallel operations appear in the closed
term. This cannot go on infinitely. We shall often do proofs by well-founded
induction on the relation ≺ which we will call “induction on the size” of closed
terms.2

2Alternatively, using ordinals, we could define the size measure size(p) of a process term
p to be an ordinal measuring the height of the number of process operations in a term, e.g.

size(out new~xM.p) = 1 + size(p), size((‖i∈Ipi) = 1 + supi∈Isize(pi) .
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(output) Provided the names ~n are all distinct and not in s,

〈out new ~xM.p, s, t〉 out new ~nM [~n/~x]−→ 〈p[~n/~x], s ∪ {~n}, t ∪ {M [~n/~x]}〉

(input) Provided M [~n/~x, ~N/~ψ] ∈ t,

〈in pat~x~ψM.p, s, t〉 in M [~n/~x, ~N/~ψ]−→ 〈p[~n/~x, ~N/~ψ], s, t〉

(par)

〈pj , s, t〉
α−→ 〈p′j , s′, t′〉

〈‖i∈Ipi, s, t〉
j:α−→ 〈‖i∈Ipi[p′j/j], s′, t′〉

j ∈ I

Figure 7.5: Transition semantics

7.2.3 A transition semantics

A configuration consists of a triple

〈p, s, t〉

where p is a closed process term, s is a subset of the set of names Names, and
t is a subset of closed (i.e., variable-free) messages. We say the configuration
is proper iff the names in p and t are included in s. The idea is that a closed
process p acts in the context of the set of names s that have been used so far,
and the set of messages t which have been output, to input a message or to
generate new names before outputting a message.

Actions α may be inputs or new-outputs, possibly tagged by indices to show
at which parallel component they occur:

α ::= out new ~n.M | in M | i : α

where M is a closed message, ~n are names and i is an index drawn from Indices.
We write out M for an output action, outputting a message M , where no new
names are generated.

How configurations evolve is expressed by transitions

〈p, s, t〉 α−→ 〈p′, s′, t′〉 ,

given by the rules displayed in Figure 7.5.
The transition semantics allows us to state formally many security proper-

ties. It does not support directly local reasoning of the kind one might wish
to apply in the analysis of security protocols. To give an idea of the difficulty,
imagine we wished to establish that the nonce generated by B as responder in
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NSL was never revealed as an open message on the network. More exactly:

Secrecy of responder’s nonce:

Suppose Priv(A), P riv(B) do not appear as the contents of any
message in t0. For all runs

〈NSL, s0, t0〉
α1−→ · · · 〈pr−1, sr−1, tr−1〉

αr−→ · · · ,

where 〈NSL, s0, t0〉 is proper, if αr has the form resp : B : j :
out new n {m,n,B}Pub(A), then n /∈ tl, for all l ∈ ω.

A reasonable way to prove such a property is to find a stronger invariant, a
property which can be shown to be preserved by all the reachable actions of
the process. Equivalently, one can assume that there is an earliest action αl in
a run which violates the invariant, and derive a contradiction by showing that
this action must depend on a previous action, which itself violates the invariant.

An action might depend on another action through being, for example, an
input depending on a previous output, or simply through occurring at a later
control point in a process. A problem with the transition semantics is that
it masks such local dependency, and even the underlying process events on
which the dependency rests. The wish to support arguments based on local
dependency leads to an event-based semantics.

7.3 A net from SPL

In obtaining an event-based semantics, we follow the lead from Petri nets, and
define events in terms of how they affect conditions. We can discern three kinds
of conditions: control, output and name conditions.

The set of control conditions C consists of output or input processes, perhaps
tagged by indices, and is given by the grammar

b ::= out new ~xM.p | in pat~x~ψM.p | i : b

where i ∈ Indices. A condition in C stands for the point of control in a
process. When C is a subset of control conditions we will write i : C to mean
{i : b | b ∈ C}.

The set of network conditions O consists of closed message expressions. An
individual condition M in O stands for the message M having been output on
the network. Network conditions are assumed to be persistent; once they are
made to hold they continue to hold forever.

The set of name conditions is precisely the set of names Names. A condition
n in S stands for the name n being in use.

We define the initial conditions of a closed process term p, to be the subset
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Ic(p) of C, given by the following induction on the size of p:

Ic(out new ~xM.p) = {out new ~xM.p}

Ic(in pat~x~ψM.p) = {in pat~x~ψM.p}

Ic(‖i∈Ipi) =
⋃
i∈I

i : Ic(pi)

where the last case also includes the base case nil, when the indexing set is
empty.

We will shortly define the set of events Events as a subset of

Pow(C)× Pow(O)× Pow(S)× Pow(C)× Pow(O)× Pow(S) .

So an individual event e ∈ Events is a tuple

e = (ce,oe,se, ec, eo, es)

where ce is the set of C-preconditions of e, ec is the set of C-postconditions of e,
etc. Write ·e for ce ∪oe ∪se, all preconditions of e, and e· for all postconditions
ec ∪ eo ∪ es. Thus an event will be determined by its effect on conditions.

Earlier in the transition semantics we used actions α to specify the nature of
transitions. An event e is associated with a unique action act(e), though carry
more information.

The set of events associated with SPL is given by an inductive definition.
Define Events to be the smallest set which includes all

- output events Out(out new ~xM.p;~n), where ~n = n1, · · · , nl are distinct
names to match the variables ~x = x1, · · · , xl, consists of an event e with
these pre- and postconditions:

ce = {out new ~xM.p} , oe = ∅ , se = ∅ ,
ec = Ic(p[~n/~x]) , eo = {M [~n/~x]} es = {n1, · · · , nl} .

The action of an output event act(Out(out new ~xM.p;~n)) is out new ~n M [~n/~x].
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����� M [~n/~x]

out new ~xM . p

out new ~nM [~n/~x]

. .n1 nl. . .

Ic(p[~n/~x])

An occurrence of the output event Out(out new ~xM.p;~n) affects the con-
trol conditions and puts the new names n1, · · · , nl into use, necessarily for
the first time as according to the token game the event occurrence must
avoid contact with names already in use.
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The definition includes the special case when ~x and ~n are empty lists, and
we write Out(out M.p) for the output event with no name conditions and
action out M .

- input events In(in pat~x~ψM.p;~n, ~L), where ~n is a list of names to match ~x

and ~L is a list of closed messages to match ~ψ, consists of an event e with
these pre- and postconditions:

ce = {in pat~x~ψM.p} , oe = {M [~n/~x, ~L/~ψ]} , se = ∅ ,

ec = Ic(p[~n/~x, ~L/~ψ]) , eo = ∅ , es = ∅ .

The action of an input event act(In(in pat~x~ψM.p;~n, ~L)) is in M [~n/~x, ~L/~ψ].
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M [~n/~x, ~L/~ψ]

inM [~n/~x, ~L/~ψ]

. . . Ic(p[~n/~x, ~L/~ψ])

in pat~x~ψM.p

- indexed events i : e where e ∈ Events, where i ∈ Indices and

c(i : e) = i :c e , o(i : e) =o e , s(i : e) =s e ,

(i : e)c = i : ec , (i : e)o = eo , (i : e)s = es .

The action of an indexed event act(i : e) is i : α, where α is the action of
e.

When E is a subset of events we will generally use i : E to mean {i : e | e ∈ E}.
Having specified its conditions and events, we have now defined a (rather

large) net from the syntax of SPL. Its behaviour is closely related to the earlier
transition semantics.

7.4 Relating the net and transition semantics

The SPL-net has conditions C ∪O ∪ S and events Events. Its markings M
will be subsets of conditions and so of the form

M = c ∪ s ∪ t

where c ⊆ C, s ⊆ S, and t ⊆ O. The set of conditions O are persistent and
determine the following token game.
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Letting c ∪ s ∪ t and c′ ∪ s′ ∪ t′ be two markings, c ∪ s ∪ t e−→ c′ ∪ s′ ∪ t′ iff

the event e has concession,
·e ⊆ c ∪ s ∪ t & ec ∩ c = ∅ & es ∩ s = ∅ ,
and

c′ = (c \ce) ∪ ec & s′ = s ∪ es & t′ = t ∪ eo .

In particular, the occurrence of e begins the holding of its name postconditions
es—these names have to be distinct from those already in use to avoid contact.

It turns out that all the markings reached in the behaviour of processes will
have the form

M = Ic(p) ∪ s ∪ t

for some closed process term p, names s and network conditions and t. There
will be no contact at control conditions, throughout the reachable behaviour of
the net, by the following.

Proposition 7.4 Let p be a closed process term. Let e ∈ Events. Then,

ce ⊆ Ic(p)⇒ ec ∩ Ic(p) = ∅ .

Proof: By induction on the size of p. 2

The behaviour of the SPL-net is closely related to the transition semantics
given earlier.

Theorem 7.5

(1) If

〈p, s, t〉 α−→ 〈p′, s′, t′〉 ,

then
Ic(p) ∪ s ∪ t e−→ Ic(p′) ∪ s′ ∪ t′

in the SPL-net, for some e ∈ Events with act(e) = α.

(2) If

Ic(p) ∪ s ∪ t e−→ M′ ,

then

〈p, s, t〉 act(e)−→ 〈p′, s′, t′〉 and M′ = Ic(p′) ∪ s′ ∪ t′ ,

for some closed process p′, s′ ⊆ S and t′ ⊆ O.

Proof: Both (1) and (2) are proved by induction on the size of p.

(1)

Consider the possible forms of the closed process term p.
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Case p ≡ out new ~xM.q:

Assuming 〈p, s, t〉 α−→ 〈p′, s′, t′〉, there must be distinct names ~n = n1, · · · , nl,
not in s, for which α = out new ~n.M [~n/~x] and p′ ≡ q[~n/~x].

The initial conditions Ic(p) form the singleton set {p}. The output event

e = Out(out new ~xM.q;~n)

is enabled at the marking {p} ∪ s ∪ t, its action is α, and

Ic(p) ∪ s ∪ t e−→ Ic(q[~n/~x]) ∪ s′ ∪ t′ .

Case p ≡ in pat~x~ψM.q:

The argument is very like that above for the output case.

Case p ≡ ‖i∈Ipi:

Assuming 〈p, s, t〉 α−→ 〈p′, s′, t′〉, there must be 〈pj , s, t〉
β−→ 〈p′j , s′, t′〉, with

α = j : β and p′ ≡ ‖i∈Ip′i, where p′i = pi whenever i 6= j. Inductively,

Ic(pj) ∪ s ∪ t
e−→ Ic(p′j) ∪ s′ ∪ t′ ,

for some event e such that act(e) = β. It is now easy to check that

Ic(p) ∪ s ∪ t j:e−→ Ic(‖i∈Ip′i) ∪ s′ ∪ t′ .

(2)

Consider the possible forms of the closed process term p.

Case p ≡ out new ~xM.q:

Assume that
Ic(p) ∪ s ∪ t e−→ M′.

Note that Ic(p) = {p}. By the definition of Events, the only possible events
with concession at {p} ∪ s ∪ t, are ones of the form

e = Out(out new ~xM.q;~n) ,

for some choice of distinct names ~n not in s. The occurrence of e would make
s′ = s ∪ {~n} and t′ = t ∪ {M [~n/~x]}. Clearly, from the transition semantics,

〈p, s, t〉 act(e)−→ 〈q[~n/~x], s′, t′〉 .
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Case p ≡ in pat~x~ψM.q: The argument is like that for the output case.

Case p ≡ ‖i∈Ipi:

Assume that

Ic(p) ∪ s ∪ t e−→ c′ ∪ s′ ∪ t′ ,

for c′ ⊆ C, s′ ⊆ S, and t′ ⊆ O.

From the token game and by the definition of Events, the event e can only
have the form e = j : e′, where

Ic(pj) ∪ s ∪ t
e′−→ c′j ∪ s′ ∪ t′

and

c′ =
⋃
i 6=j

Ic(pi) ∪ j : c′j .

Inductively,

〈pj , s, t〉
act(e′)−→ 〈p′j , s′, t′〉 and c′j = Ic(p′j) ,

for some closed process p′j . Thus, according to the transition semantics,

〈p, s, t〉 act(e)−→ 〈‖i∈Ip′i, s′, t′〉 ,

where p′i = pi whenever i 6= j. Hence, c′ = Ic(‖i∈Ip′i). 2

Definition: Let e ∈ Events. Let p be a closed process term, s ⊆ S, and t ⊆ O.
Write

〈p, s, t〉 e−→ 〈p′, s′, t′〉

iff

Ic(p) ∪ s ∪ t e−→ Ic(p′) ∪ s′ ∪ t′

in the SPL-net.

7.5 The net of a process

The SPL-net is awfully big of course. Generally for a process p only a small
subset of the events Events can ever come into play. For this reason it’s useful
to restrict the events to those reachable in the behaviour of a process.
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The events Ev(p) of a closed process term p are defined by induction on size:

Ev(out new ~xM.p) ={Out(out new ~xM.p;~n) | ~n distinct names}

∪
⋃
{Ev(p[~n/~x]) | ~n distinct names}

Ev(in pat~x~ψM.p) ={In(in pat~x~ψM.p;~n, ~L) | ~n names, ~L closed messages}

∪
⋃
{Ev(p[~n/~x, ~L/~ψ]) | ~n names, ~L closed messages}

Ev(‖i∈Ipi) =
⋃
i∈I

i : Ev(pi) .

A closed process term p denotes a net Net(p) consisting of the global set of
conditions C∪O∪S built from SPL, events Ev(p) and initial control conditions
Ic(p).

The net Net(p) is open to the environment at its O- and S-conditions; the
occurrence of events is also contingent on the output and name conditions that
hold in a marking. The net of a closed process term ‖i∈Ipi is the net with
initial conditions

⋃
i∈I i : Ic(pi) and events

⋃
i∈I i : Ev(pi). We can view this

as a parallel composition of the nets for pi, i ∈ I; only the control conditions
of different components are made disjoint so the components’ events affect one
another through the name and output conditions that they have in common.
We can define the token game on the net Net(p) exactly as we did earlier for
the SPL-net, but this time events are restricted to being in the set Ev(p).

It’s clear that if an event transition is possible in the restricted net Net(p)
then so is it in the SPL-net. The converse also holds provided one starts from
a marking whose control conditions either belong to Ic(p) or are conditions of
events in Ev(p).

Definition: Let p be a closed process term. Define the control-conditions of p
to be

pc = Ic(p) ∪
⋃
{ec | e ∈ Ev(p)} .

Proposition 7.6 Let p be a closed process term and e ∈ Events. If ce ⊆ pc,
then e ∈ Ev(p).

Proof: By induction on the size of p. 2

Lemma 7.7 Let M∩C ⊆ pc. Let e ∈ Events. Then,

M e−→ M′ in the SPL-net

iff

e ∈ Ev(p) & M e−→ M′ in Net(p) .

Proof: “if”: Clear. “only if”: Clear by Proposition 7.6. 2
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Consequently, in analysing those sequences of event transitions

〈p0, s0, t0〉
e1−→ · · · er−→ 〈pr, sr, tr〉

er+1−→ · · · ,

a closed process p can perform, or correspondingly those of the transition se-
mantics, it suffices to study the behaviour of Net(p) with its restricted set of
events Ev(p). This simplification is especially useful in proving invariance prop-
erties which amount to an argument by cases on the form of events possible in
the process.

Recall that we say a configuration 〈p, s, t〉 is proper iff the names in p and t
are included in s.

Proposition 7.8 Let e ∈ Events. Suppose that 〈p, s, t〉 and 〈p′, s′, t′〉 are con-
figurations, and that 〈p, s, t〉 is proper. If

〈p, s, t〉 e−→ 〈p′, s′, t′〉 ,

then 〈p′, s′, t′〉 is also proper.

Proof: By considering the form of e. Input and output events are easily seen
to preserve properness, and consequently indexed events do too. 2

Important convention: From now on we assume that all configurations
〈p, s, t〉 are proper. Notice, in particular, that in a proper configuration 〈NSL, s, t〉
the set s will include all agent names because all agent names are mentioned in
NSL, the process describing the Needham-Schröder-Lowe protocol.

7.6 The events of NSL

We can classify the events Ev(NSL) involved in the NSL protocol.
Initiator events:

Out(Init(A,B);m):
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Init(A,B)

in{m, y,B}Pub(A).out{y}Pub(B)

out new m {m,A}Pub(B)
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in{m,n,B}Pub(A)
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Out(out{n}Pub(B)):
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out{n}Pub(B)

out{n}Pub(B)

Responder events:

In(Resp(B);m,A):

�
��

�
��
��
��
����

@
@R

�
��	

�
��=

{m,A}Pub(B)Resp(B)

out new y {m, y,B}Pub(A).in {y}Pub(B)

in {m,A}Pub(B)

Out(out new y {m, y,B}Pub(A).in {y}Pub(B);n):
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out new y {m, y,B}Pub(A).in {y}Pub(B)

in {n}Pub(B)

out new n {n,B}Pub(A)

In(in {n}Pub(B)):
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Spy events:

Composition, Spy1 ≡ in ψ1.in ψ2.out(ψ1, ψ2):m
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Decomposition, Spy2 ≡ in(ψ1, ψ2).out ψ1.out ψ2:
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Encryption, Spy3 ≡ in x.in ψ.out {ψ}Pub(x):
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Decryption, Spy4 ≡ in Priv(x).in {ψ}Pub(x).out ψ:
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7.7 Security properties for NSL

In this section we apply our framework to prove authentication and secrecy
guarantees for the responder part of the NSL protocol.

7.7.1 Principles

Some principles are useful in proving authentication and secrecy of security
protocols. Write M @ M ′ to mean message M in a subexpression of message
M ′. More precisely, @ is the smallest binary relation on messages such that

M @M ,

M @ N ⇒M @ (N,N ′) & M @ (N ′, N) ,

M @ N ⇒M @ {N}k .

We also write M @ t iff ∃M ′ .M @M ′ & M ′ ∈ t, for a set of messages t.
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Proposition 7.9 (Well-foundedness) Given a property P on configurations, if
a run

〈p0, s0, t0〉
e1−→ · · · er−→ 〈pr, sr, tr〉

er+1−→ · · · ,

contains a configurations such that P(p0, s0, t0) and ¬P(pj , sj , tj), then there is
an event eh, 0 < h ≤ j, such that P(pi, si, ti) for all i < h and ¬P(ph, sh, th).

We say that a name m ∈ Names is fresh on an event e if m ∈ es and we
write Fresh(m, e).

Proposition 7.10 (Freshness) Within a run

〈p0, s0, t0〉
e1−→ · · · er−→ 〈pr, sr, tr〉

er+1−→ · · · ,

the following properties hold:

1. If n ∈ si then either n ∈ s0 or there is a previous event ej such that
Fresh(n, ej).

2. Given a name n there exists at most one event ei such that Fresh(n, ei).

3. If Fresh(n, ei) then for all j < i the name n does not appear in 〈pj , sj , tj〉.

Proposition 7.11 (Control precedence) Within a run

〈p0, s0, t0〉
e1−→ · · · er−→ 〈pr, sr, tr〉

er+1−→ · · · ,

if b ∈ cei either b ∈ Ic(p0) or there is an earlier event ej, j < i, such that
b ∈ ejc.

Proposition 7.12 (Output-input precedence) In a run

〈p0, s0, t0〉
e1−→ · · · er−→ 〈pr, sr, tr〉

er+1−→ · · · ,

if M ∈ oei either M ∈ t0 or there is an earlier event ej, j < i, such that
M ∈ ejo.

7.7.2 Secrecy

The following lemma is an essential prerequisite in proving secrecy. In fact, it
is a secrecy result in its own right.

Lemma 7.13 Consider a run

〈NSL, s0, t0〉
e1−→ · · · er−→ 〈pr, sr, tr〉

er+1−→ · · · ,

and consider an agent A0. If Priv(A0) 6@ t0, then Priv(A0) 6@ tl at all stages l.
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Proof: Assume Priv(A0) 6@ t0. Suppose there were a stage in the run at which
Priv(A0) @ tl. By well-foundedness, there would be an earliest event e = er in
the run at which Priv(A0) 6@ tr−1 and Priv(A0) @ tr.

We can show that such an earliest event e cannot exist by considering all
the possible forms it might take. We need only consider indexed output events
since only for such events do we have eo 6= ∅.

An easy check shows that e cannot be an initiator or responder event.
It remains to consider spy events. We consider only one case—the other

cases follow in a similar fashion. Suppose that the event e has the form spy : i :
2 : Out(outM2) for some run index i with Priv(A0) @ M2. Then, by control
precedence, there must be a preceding event which has as precondition the
network condition (M1,M2). Clearly, Priv(A0) @ (M1,M2). As Priv(A0) 6@ t0,
by output-input precedence, there must be an even earlier event than e that
marked the condition (M1,M2).n
n�
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2

Exercise 7.14 Complete the proof of Lemma 7.13, by considering the remain-
ing cases of spy events. 2

The following theorem shows that the nonce of a responder in the NSL
protocol remains secret.

Theorem 7.15 Consider a run

〈NSL, s0, t0〉
e1−→ · · · er−→ 〈pr, sr, tr〉

er+1−→ · · · .

Suppose it contains an event er with

act(er) = resp : B0 : j0 : out new n0 {m0, n0, B0}Pub(A0) ,

where j0 is an index. Suppose that Priv(A0) 6@ t0 and Priv(B0) 6@ t0. Then,
at all stages n0 6∈ tl.

Proof: We prove a stronger invariant: At all stages l,

for all messages M ∈ tl, if n0 @M then
either {m0, n0, B0}Pub(A0) @M or {n0}Pub(B0) @M .

Because Fresh(n0, er), by freshness (Proposition 7.10) all configurations 〈pl, sl, tl〉
where l < r satisfy this invariant. In particular so does 〈NSL, s0, t0〉. The proof
is based on the well-foundedness principle. Suppose the invariant fails to hold
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at some stage. Then there is an earliest event e in the run that violates the
invariant through having a network condition M as postcondition for which

n0 @M & {m0, n0, B0}Pub(A0) 6@M & {n0}Pub(B0) 6@M .

Assume there is such an earliest event e. We shall obtain a contradiction no
matter what the form of e. Since indexed input events leave the network con-
ditions unchanged, they cannot violate the invariant. It remains to consider
indexed output events.
Initiator events. There are two cases:
Case 1. Assume e = init : (A,B) : i : Out(out {n}Pub(B)) for some index i:

m

�
��m
eHHHj

HHHj
{n}Pub(B)

Since the event e is assumed to violate the invariant it must be the case that
n = n0 and B0 6= B. There exists a preceding event that marked e’s control
precondition. This condition determines the form of the preceding event:m
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�
��* HHHj

{m,n0, B}Pub(A)

e

{n0}Pub(B)

Consider now the network condition {m,n0, B}Pub(A). We know there exists an
even earlier event that marked it, which thus violates the invariant (remember
B 6= B0). But this contradicts e being the earliest event to violate the invariant.3

Case 2. Assume the event e = init : (A,B) : i : Out(Init(A,B);m) for some
index i. This event has the form:

- m

�
��m
m mmPPPq ��

�*

HHHj

e

{m,A}Pub(B)

Since e violates the invariant, n0 @ {m,A}Pub(B), so:

3At this point in the proof, the ingredient B 6= B0 is crucial in showing that there is
an earlier event violating the secrecy invariant. An analogous proof attempt for the original
protocol of Needham and Schröder would fail here. For the original protocol we might try
to establish the modified invariant: For all l, for all messages M ∈ tl, if n0 @ M then either
{m0, n0}Pub(A0) @ M or {n0}Pub(B0) @ M . However, at this point, we would be unable to
deduce that there was an earlier event which violated this modified invariant.
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• Either m = n0. So Fresh(e, n0). Since e is an initiator event it is distinct
from er and Fresh(er, n0), this contradicts freshness.

• Or A = n0. But in this case, by the properness of the initial configuration
n0 ∈ s0, which again contradicts freshness.

Responder events. There is only one form of event to consider. Assume
e = resp : B : i : Out(out new y {m, y,B}Pub(A).in{y}Pub(B);n):

- n

�
��m
m mmPPPq ��

�*

H
HHj

e

{m,n,B}Pub(A)

Since e violates the invariant, n0 @ {m,n,B}Pub(A), so one of the following:

• m = n0. There must then be an earlier event that marked the network
condition {m,A}Pub(B) and thus violates the invariant. This contradicts
the assumption that e is the earliest event to violate the invariant.

- n0

�
��mn�
��
m mm�

��3 PPPq ��
�*

�
�3 H

HHj
{m,A}Pub(B)

e

{m,n0, B}Pub(A)

• n = n0. Then since e violates the invariant, we must have e 6= er. We
have Fresh(e, n0) and Fresh(er, n0) which contradicts freshness.

• The case B = n0 is excluded because n0 is fresh on er and so cannot be
an agent name in t0.

Spy events. We consider only some cases, the others follow in a similar way.
Case 1. Assume the event e = spy : 4 : i : Out(outM) for some index i:

�
��m
m
PPPq

HHHj

e

M

By precedence there is an earlier event that marked {M}Pub(A).
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Priv(A) {M}Pub(A)

e

M

Lemma 7.13 guarantees that Priv(A) 6= Priv(A0) and Priv(A) 6= Priv(B0), so
that A 6= A0 and A 6= B0. Therefore because e violates the invariant, n0 @ M
with {m0, n0, B0}Pub(A0) 6@ {M}Pub(A) and {n0}Pub(B0) 6@ {M}Pub(A). This
contradicts e being the earliest event to violate the invariant.
Case 2. Assume the event e = spy : 2 : i : Out(outM2) for some index i:

m

�
��m
H
HHj

H
HHj

e

M2

By precedence there is an earlier event marking the persistent condition (M1,M2).

n
n�
��
m m

�
��m �
��m
Q
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��3 PPPq �
��* HHHj

�
�3 HHHj

HHHj

(M1,M2) M1

e

M2

Even though e violates the invariant, it may still be that {m0, n0, B0}Pub(A0) @
M1 or {n0}Pub(B0) @M1 (and this prevents us from immediately deducing that
there is an even earlier event which violates the invariant by virtue of hav-
ing (M1,M2) as a postcondition). However, in this situation only an earlier
spy event can have marked a network condition with (M1,M2) as submessage.
Consider the earliest such spy event e′ in the sequence of transitions. A case
analysis (Exercise!) of the possible events which precede e′ always yields an ear-
lier event which either violates the invariant or outputs a message with (M1,M2)
as submessage. 2

Exercise 7.16 Complete the proof of secrecy, Theorem 7.15, by finishing off
the case analysis marked “Exercise!” in the proof. 2

Exercise 7.17 (Big exercise: Secrecy of initiator’s nonce)
Consider a run

〈NSL, s0, t0〉
e1−→ · · · er−→ 〈pr, sr, tr〉

er+1−→ · · · ,
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containing the initiator event er where

act(er) = init : (A0, B0) : j0 : out newm0 {m0, A0}Pub(B0) ,

with j0 an index, and such that Priv(A0) 6@ t0 and Priv(B0) 6@ t0. Show that
at all stages m0 6∈ ti.
[Use the invariant: For all r and for all messages M ∈ tr, if m0 @M then either
{m0, A0}Pub(B0) @M or {m0, n0, B0}Pub(A0) @M . ] 2

Simplifying the attacker events

We have described the possible events of an attacker as those of an SPL process
Spy. We could, however, reduce the number of cases to consider and simplify
proofs by describing the attacker events directly as having the following form—
note all the conditions involved are network conditions and so persistent:

- Composition events: an event with two network conditions M1 and M2 as
preconditions, and the network condition (M1,M2) as postcondition.

- Decomposition events: an event with an network condition network con-
dition (M1,M2) as precondition, and the two network conditions M1 and
M2 as postconditions.

- Encryption events: an event with network conditions M and a name n as
preconditions, and the network condition {M}Pub(n) as postcondition.

- Decryption events: an event with the two network conditions {M}Pub(n)

and a key Priv(n) as preconditions, and the output condition M as post-
condition.

Then, we can show security properties of an SPL process p by establishing
properties of the net obtained by setting Net(p) in parallel with all the attacker
events.

7.7.3 Authentication

We will prove authentication for a responder in an NSL protocol in the sense
that: To any complete session of agent B0 as responder, apparently with agent
A0, there corresponds a complete session of agent A0 as initiator.

In the proof it’s helpful to make use of a form of diagrammatic reasoning
which captures the precedence of events. When the run

〈p0, s0, t0〉
e1−→ · · · er−→ 〈pr, sr, tr〉

er+1−→ · · ·

is understood we draw

e // e′

when e precedes e′ in the run, allowing e = e′.
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Theorem 7.18 (Authentication) If a run of NSL

〈NSL, s0, t0〉
e1−→ · · · er−→ 〈pr, sr, tr〉

er+1−→ · · · ,

contains the responder events b1, b2, b3, with actions

act(b1) = resp : B0 : i : in {m0, A0}Pub(B0) ,
act(b2) = resp : B0 : i : out new n0 {m0, n0, B0}Pub(A0) ,
act(b3) = resp : B0 : i : in{n0}Pub(B0) ,

for an index i, and Priv(A0) 6@ t0, then the run contains initiator events

a1, a2, a3 with a3
// b3 , where, for some index j,

act(a1) = init : (A0, B0) : j : out newm0 {m0, A0}Pub(B0) ,
act(a2) = init : (A0, B0) : j : in{m0, n0, B0}Pub(A0) ,
act(a3) = init : (A0, B0) : j : out{n0}Pub(B0) .

Proof: By control precedence we know that

b1 // b2 // b3 .

Consider the property of configurations

Q(p, s, t)⇔ ∀M ∈ t. n0 @M ⇒ {m0, n0, B0}Pub(A0) @M .

By freshness, the property Q holds immediately after b2, but clearly not imme-
diately before b3. By well-foundedness there is a earliest event following b2 but
preceding b3 that violates Q. Let e be such an event.

b1 // b2 //

��

b3

e

??

Inspecting the events of the NSL protocol, in a similar way to the proof of
secrecy, using the assumption that Priv(A0) 6@ t0, one can show (Exercise!)
that e can only be an initiator event a′3 with action

act(a′3) = init : (A,B0) : j : out{n0}Pub(B0)

for some index j and agent A. There must also be preceding events a′1, a
′
2 with

actions

act(a′1) = init : (A,B0) : j : out newm {m,A}Pub(B0) ,
act(a′2) = init : (A,B0) : j : in{m,n0, B0}Pub(A) .

b1 // b2 //

��

b3

a′1 // a′2 // a′3

??
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Since Fresh(b2, n0), the event b2 must precede a′2. The property Q holds on
configurations up to a′3 and, in particular, on the configuration immediately
before a′2. From this we conclude that m = m0 and A = A0. Hence a′3 = a3,
a′2 = a2, and a′1 = a1 as described below.

b1 // b2 //

��

b3

a1
// a2

// a3

OO

(Since Fresh(a1,m0), the event a1 precedes b1.) 2

Exercise 7.19 Complete the proof of Theorem 7.18 at the point marked “Ex-
ercise!” in the proof. 2

As the proof of Theorem 7.18 suggests, authentication for a responder in NSL
can be summarised in a diagram showing the dependency of the key events. For
all NSL-runs in which events b1, b2, b3 occur with actions

act(b1) = resp : B0 : i : in {m0, A0}Pub(B0) ,
act(b2) = resp : B0 : i : out new n0 {m0, n0, B0}Pub(A0) ,
act(b3) = resp : B0 : i : in{n0}Pub(B0) ,

for an index i, and where Priv(A0) is not a submessage of any initial output
message, there are events a1, a2, a3 with actions

act(a1) = init : (A0, B0) : j : out newm0 {m0, A0}Pub(B0) ,
act(a2) = init : (A0, B0) : j : in{m0, n0, B0}Pub(A0) ,
act(a3) = init : (A0, B0) : j : out{n0}Pub(B0) ,

such that
b1 // b2 //

��

b3

a1

OO

// a2
// a3.

OO

In particular, the occurrence of the event b3 depends on the previous occurrence
of an event a3 with action having the form above. Drawing such an event-
dependency diagram, expressing the intended event dependencies in a protocol,
can be a good preparation for a proof of authentication.

Exercise 7.20 (Big exercise: Authentication guarantee for initiator)
Consider a run of NSL

〈NSL, s0, t0〉
e1−→ · · · er−→ 〈pr, sr, tr〉

er+1−→ · · · ,

containing the initiator events a1, a2, a3 where

act(a1) = init : (A0, B0) : j : out newm0 {m0, A0}Pub(B0) ,
act(a2) = init : (A0, B0) : j : in{m0, n0, B0}Pub(A0) ,
act(a3) = init : (A0, B0) : j : out{n0}Pub(B0) ,
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for an index j. Assume Priv(A0) 6@ t0 and Priv(B0) 6@ t0. Show the run

contains responder events b1, b2 with b2 // a3 , where, for some index i,

act(b1) = resp : B0 : i : in {m0, A0}Pub(B0) ,
act(b2) = resp : B0 : i : out new n0 {m0, n0, B0}Pub(A0) .

In addition, show that if Priv(A0) ∈ t0, then there is an attack violating the
above authentication. 2

In the verification of the authentication property of NSL, we assumed a
particular history given by a sequence of occurrences of events in the Petri net
for NSL. We then deduced certain dependencies w.r.t. that history. In the next
chapter we turn to a model in which such dependencies are paramount and not
derived in such roundabout fashion.
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Chapter 8

Event structures

Event structures are a fundamental model of concurrent computation. They are
the concurrent analogue of trees. Just as a transition system unfolds to a tree
so a Petri net unfolds to an event structure. Along with their representation
via rigid families, event structures will provide a mathematical foundation for
concurrent games.

8.1 Event structures from Petri nets

As a motivation for event structures, we illustrate the close relationship between
Petri nets (based on the changes events incur on local states) and the ‘partial-
order models’ of occurrence nets and event structures (possessing a global partial
order of causal dependency on events). We consider how a Petri net can be
unfolded first to a net of occurrences and from there to an event structure [?].
The unfolding construction is analogous to the well-known method of unfolding
a transition system to a tree, and is central to several analysis tools in the
applications above. In the figure, the net on top has loops. It is an example of
a (1-safe) Petri net. Its conditions drawn as circles stand for local states. An
event, a rectangle, when it occurs ends the holding of its preconditions (those
conditions with arcs into the event) and begins the holding of its postconditions
(those conditions with arcs from the event). Initially the two conditions at the
bottom are imagined to hold, shown by their being marked. Initially any of
the three events with marked preconditions can occur, ending the holding of its
respective precondition and beginning the holding of its postcondition. Though
of them, the two events on the left are in conflict, in the sense that only one of
them can occur—they compete to end the holding of their common precondition.
Either of those two events can occur concurrently with the third event to the
right, in the sense that the third event shares no pre- or postconditions with
them and so can occur independently. Once one of the two conflicting events
and the event to the right have occurred all the preconditions of the top event
will hold and it can occur, restoring the marking of conditions to its original

117
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A Petri net and its unfolding

state.

The net below it is its occurrence-net unfolding. It consists of all the occur-
rences of conditions and events of the original net, and is infinite because of the
original repetitive behaviour. The occurrences keep track of what enabled them.
Notice how the shared postcondition of the conflicting events on left splits into
two occurrences according to which of the two conflicting events gave rise to it.
Similarly the top event splits into occurrences according to the nature of the
occurrence of its left precondition.

The conditions in the occurrence net play two roles. They provide links of
causal dependency between event occurrences. They also show when event oc-
currences are in conflict through sharing a common precondition. The simplest
form of event structure arises by abstracting away the conditions in the occur-
rence net and capturing their two roles in relations of causal dependency and
conflict (or its complementary relation of consistency) on event occurrences.

8.2 Event structures—the definition

Event structures are a fundamental model of concurrent computation and, along
with their extension to rigid families, provide a mathematical foundation for
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distributed/concurrent games.
An event structure comprises (E,≤,Con), consisting of a set E, of events

which are partially ordered by≤, the causal dependency relation, and a nonempty
consistency relation Con consisting of finite subsets of E, which satisfy

{e′ | e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆ X ∈ Con⇒ Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈ X ⇒ X ∪ {e} ∈ Con.

The events are to be thought of as event occurrences without significant dura-
tion; in any history an event is to appear at most once. We say that events e, e′

are concurrent, and write e co e′ if {e, e′} ∈ Con & e 6≤ e′ & e′ 6≤ e. Concurrent
events can occur together, independently of each other. The relation of imme-
diate dependency e _ e′ means e and e′ are distinct with e ≤ e′ and no event in
between. Clearly ≤ is the reflexive transitive closure of _. (Sometimes we shall
need to distinguish the precise event structure to which a relation is associated
and write, for instance, ≤E , _E or coE ; on those occasions where a subscript
would be too clumsy we shall write “≤ in E” etc..)

There is an accompanying notion of state, or history, those events that may
occur up to some stage. The configurations of an event structure E consist of
those subsets x ⊆ E which are

Consistent: ∀X ⊆ x. X is finite⇒ X ∈ Con, and

Down-closed: ∀e, e′. e′ ≤ e ∈ x⇒ e′ ∈ x.

We shall largely work with finite configurations, written C(E). Write C∞(E)
for the set of finite and infinite configurations of the event structure E.

The configurations of an event structure are ordered by inclusion, where
x ⊆ x′, i.e. x is a sub-configuration of x′, means that x is a sub-history of x′.
Note that an individual configuration inherits an order of causal dependency on
its events from the event structure so that the history of a process is captured
through a partial order of events. The finite configurations correspond to those
events which have occurred by some finite stage in the evolution of the process,
and so describe the possible (finite) states of the process.

For X ⊆ E we write [X] for {e ∈ E | ∃e′ ∈ X. e ≤ e′}, the down-closure of
X. The axioms on the consistency relation ensure that the down-closure of any
finite set in the consistency relation is a finite configuration, and that any event
appears in a configuration: givenX ∈ Con its down-closure {e′ ∈ E | ∃e ∈ X. e′ ≤ e}
is a finite configuration; in particular, for an event e, the set [e] =def {e′ ∈ E | e′ ≤ e}
is a configuration describing the whole causal history of the event e.

Exercise 8.1 Show that for partial orders in general it need not be the case
that ≤=_∗. (Consider e.g. the reals.) Prove that it is so for event structures.

2
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Two event structures are regarded as essentially the same if they are iso-
morphic, i.e. there is a bijection between their sets of events which preserves
and reflects the relations of causal dependency and conflict.

Example: The diagram below illustrates an event structure representing streams
of 0s and 1s:

000 001 010 011 110 111

00

�ZZe _LLR_LLR

01

_LLR = 99D

.

.

. 11

= 99D_LLR

0

�ZZe _LLR

1

= 99D

Above we have indicated conflict (or inconsistency) between events by . The
event structure representing pairs of 0/1-streams and a/b-streams is represented
by the juxtaposition of two event structures:

000 001 010 011 110 111

00

�ZZe _LLR_LLR

01

_LLR > 99D

.

.

. 11

> 99D_LLR

0

�ZZe _LLR

1

> 99D

aaa aab aba abb bba bbb

aa

�ZZe _LLR_LLR

ab

_LLR > 99D

.

.

. bb

> 99D_LLR

a

�ZZe _LLR

b

> 99D

Exercise 8.2 Draw the event structure of the occurrence net unfolding in the
introduction. 2

8.3 Event structures from rigid families

Sometimes an event structure presents itself more naturally in terms of its com-
putation paths, leading to the important construction of an event structure from
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a rigid family, here defined.
We can describe a computation path by a partial order p = (|p|,≤p) for

which the set {e′ ∈ |p| | e′ ≤p e} is finite for all e ∈ |p|. We can regard a path
as an event structure in which the conflict relation is empty. Two paths over
a common set of events are the same iff their relations of immediate causal
dependency coincide (why?). There is a useful subpath order of rigid inclusion.
Let p = (|p|,≤p) and q = (|q|,≤q) be paths. Write

p ↪→ q iff |p| ⊆ |q| & ∀e ∈ |p|, e′ ∈ |q|. e′ ≤p e ⇐⇒ e′ ≤q e .

In other words, |p| forms a down-closed subset of q and the order ≤p is the
restriction of ≤q to |p|. We shall often use this reformulation in proofs.

Proposition 8.3 A rigid family R comprises a non-empty subset of finite paths
which is down-closed w.r.t. rigid inclusion, i.e. p ↪→ q ∈ R implies p ∈ R. A
rigid family determines an event structure Pr(R) whose order of finite configu-
rations is isomorphic to (R, ↪→). The event structure Pr(R) has events P those
elements of R with a top event—in this case write top(p) for the top element of
p ∈ P ; its causal dependency is given by rigid inclusion; and its consistency by
compatibilty w.r.t. rigid inclusion. The order isomorphism ϕR : R ∼= C(Pr(R))
is given by

ϕR(q) = {p ∈ P | p ↪→ q}

for q ∈ R. Its inverse acts so θR(x) =
⋃
x, on x ∈ C(Pr(R)), the union of the

partial orders in x—ensured compatible by consistency.

We can view a configuration x of an event structure E as determining a
computation path, viz. the partial order with underlying set x ordered by that
inherited from E. The event structure E determines a rigid family, viz. the rigid
family consisting of all its finite configurations x ∈ C(E) with partial order on x
the restriction of that of E; all inclusions between configurations are necessarily
rigid.

There can be several rigid families which yield essentially the same (i.e. iso-
morphic) event structures, as seen in the following example.

Example: One rigid family consists of the partial order a _ c and b _ c with
all partial orders which are rigidly included in them. The other is similar but
consists of the partial order a _ c and b _ d closed under rigid inclusions. Both
yield isomorphic event structures under Pr. In the former notice that the two
ways in which c occurs is associated with two distinct events under Pr; such
extra generality is surprisingly useful. 2

8.4 The CCS operations on event structures

You are invited to try to define the CCS operations on event structures in
a semantics, which like the Petri net semantics you have seen earlier and in
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constrast to the interleaving semantics, expresses parallelism as causal inde-
pendence, i.e. as concurrency. The events will carry CCS action labels. Most
operations are relatively straightforward but parallel composition is the excep-
tion. Try to describe an event structure of the CCS process a.nil‖ā.b.nil. Can
you see how to describe the CCS parallel composition of arbitrary labelled event
structures—the labels being CCS action labels? It’s tricky! Fortunately rigid
families come to the rescue and we can define CCS parallel compositions as the
product construction followed by a restriction to remove all unwanted events.

8.5 The product of event structures

The construction is based on the product of sets with partial functions: suppos-
ing A and B are sets, take

A×∗ B =def {(a, ∗) | a ∈ A} ∪ {(a, b) | a ∈ A, b ∈ B} ∪ {(∗, b) | b ∈ B}

with projections π1 : A ×∗ B ⇀ A and π2 : A ×∗ B ⇀ B so that, for instance,
π1((a, b)) = a while π1((∗, b)) is undefined.

Now, let A and B be event structures. We first describe the rigid family R
of their product. A finite partial order p = (|p|,≤p) is in R iff

(i) |p| ⊆ |A| ×∗ |B|;

(ii) π1|p| ∈ C(A) and π2|p| ∈ C(B) and the projections are locally injective
on |p| in the sense that ∀c, c′ ∈ |p|. π1(c) = π1(c′) ⇒ c = c′ and ∀c, c′ ∈
|p|. π2(c) = π2(c′)⇒ c = c′ ;

(iii) ≤p is the least transitive relation such that

c ≤p c′ if π1(c) ≤A π1(c′) or π2(c) ≤B π2(c′) .

So, a finite computation path of the product is a partial order of events of the
form (a, ∗), (∗, b) or (a, b), where a is an event of A and b of B, which respects
the causal dependency and consistency of the components A and B.

In showing that R is a rigid family it is useful to have a more explicit
description of the order on its elements:

Proposition 8.4 As above, let p = (|p|,≤p) comprise |p| ⊆ |A| ×∗ |B| and ≤p
be the least transitive relation such that c ≤p c′ if π1(c) ≤A π1(c′) or π2(c) ≤A
π2(c′). Then, c ≤p c′ iff

∃(α1, β1), · · · , (αn, βn) ∈ |p|. c = (α1, β1) & c′ = (αn, βn) &

(α1 ≤A α2 or β1 ≤B β2) & · · · & (α(n−1) ≤A αn or β(n−1) ≤B βn) .

Proof: Define c ≤0 c
′ iff

∃(α1, β1), · · · (αn, βn) ∈ |p|. c = (α1, β1) & c′ = (αn, βn) &

∀i(1 < i ≤ (n− 1)). α(i−1) ≤A αi or β(i−1) ≤B βi .
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Clearly ≤0 is transitive (by concatenating chains) and clearly included in any
transitive relation ≤ on |p| such that c ≤ c′ if π1(c) ≤A π1(c′) or π2(c) ≤A π2(c′).

2

Lemma 8.5 R forms a rigid family.

Proof: ClearlyR contains the empty partial order so is nonempty. To complete
the proof that R forms a rigid family suppose q ↪→ p ∈ R. We should establish
that q ∈ R. Property (i) follows directly as |q| ⊆ |p| ⊆ |A| ×∗ |B|. We require
(ii) π1|q| ∈ C(A). As π1|q| ⊆ π1|p| ∈ C(A), the set π1|q| is certainly consistent.
We require π1|q| down-closed w.r.t. ≤A. Suppose a′ ≤ a ∈ π1|q|. Then there
must be (a, β) ∈ |q|. As (a, β) is also in |p| and π1|p| is down-closed w.r.t. ≤A
there must also be (a′, β′) ∈ |p| where by definition

(a′, β′) ≤p (a, β) .

But now (a′, β′) ∈ |q| as q ↪→ p. Thus a′ ∈ π1|q|, ensuring that π1|q| is down-
closed. Essentially the same argument shows π2|q| ∈ C(B). Local injectivity on
|q| is inherited directly from that on |p|. It remains to check (iii). For this we
use Proposition 8.4 above. assume c ≤q c′. Then c ≤p c′ because q ↪→ p. By
Proposition 8.4, there is a chain (α1, β1), · · · , (αn, βn) ∈ |p| with c = (α1, β1)
and c′ = (αn, βn) such that at each link

α(i−1) ≤A αi or β(i−1) ≤B βi .

At each link we have (α(i−1), β(i−1)) ≤p (αi, βi). In particular, (α(n−1), β(n−1)) ≤p
(αn, βn) and by assumption (αn, βn) ∈ |q|. Thus (α(n−1), β(n−1) ∈ |q| as q ↪→ p.
Continuing in this way, inductively down the chain, we establish that the whole
chain is in |q| and hence, by Proposition 8.4, that (iii) holds for ≤q. 2

Write A × B =def Pr(R), the product of A and B. The product poss-
eses projections, necessarily partial, given by Π1(e) = π1(top(e)) and Π2(e) =
π2(top(e)), for e an event of Pr(R). We remark that, in fact, A × B together
with the projections Π1 and Π2 is characterised algebraically as a categorical
product in the category of event structures with event-structure maps.

For example, here is an illustration of the product of two event structures
a _ b and c, the latter comprising just a single event named c:

b (b, ∗) (b, ∗) (b, c)

× =

a

_LLR

c (a, ∗)

_LLR 7 77A

(a, c)

_LLR

(∗, c)
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The events of the product are elements p of a rigid family with a top element
top(p), indicated in the diagram. The original event b has been duplicated into
three events, one a synchronization with c, another b occurring unsynchronized
after an unsynchronized a, and the third b occurring unsynchronized after a
synchronizes with c. The splittings correspond to the different histories a syn-
chronisation with b can have.

The reason why it is awkward to describe operations such as products and
parallel compositions directly on event structures is because in an event struc-
ture an event determines its whole causal history. This is not necessarily the
case in a rigid family making the rigid family of a product of event structures
relatively easy to construct; then an event structure can be constructed from
the rigid familiy by Pr.

8.6 Maps of event structures

Maps of event structures will play a peripheral role in this course, though they
will appear on occasion and are essential to a more advanced general treatment
of event structures and concurrent games.

Let E and E′ be event structures. A (partial) map of event structures
f : E → E′ is a partial function on events f : E ⇀ E′ such that for all x ∈ C(E)
its direct image fx ∈ C(E′) and

if e1, e2 ∈ x and f(e1) = f(e2) (with both defined), then e1 = e2.

The map expresses how the occurrence of an event e in E induces the coincident
occurrence of the event f(e) in E′ whenever it is defined. The map f respects
the instantaneous nature of events: two distinct event occurrences which are
consistent with each other cannot both coincide with the occurrence of a com-
mon event in the image. Partial maps of event structures compose as partial
functions, with identity maps given by identity functions.

We will say the map is total if the function f is total. Notice that for a total
map f the condition on maps now says it is locally injective, in the sense that
w.r.t. any configuration x of the domain the restriction of f to a function from x
is injective; the restriction of f to a function from x to fx is thus bijective. Say
a total map of event structures is rigid when it preserves causal dependency.

Maps preserve concurrency, when defined. This is because they locally reflect
causal dependency in the following sense:

e1, e2 ∈ x & f(e1) ≤ f(e2) (both defined) ⇒ e1 ≤ e2 .

Exercise 8.6 Prove the assertion above, that a map of event structures locally
reflects causal dependency and preserves concurrency. 2

Exercise 8.7 According to category theory two event structures A and B are
isomorphic iff there are maps of event structures f : A → B and g : B → A
such that g ◦ f = idA and f ◦ g = idB . Show that this coincides with our earlier
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use of “isomorphic” as meaning there is a bijection between the events of A and
B which preserves and reflects causal dependency and conflict. 2

Exercise 8.8 You might like to verify that the projections Π1 and Π2 of the
previous section are indeed maps of event structures and that they make the
product construction there the categorical product. 2

Exercise 8.9 Let A ⊆ B be an inclusion of rigid families. Show that function
associated with the inclusion of the events of Pr(A) in those of Pr(B) is a rigid
map of event structures from Pr(A) to Pr(B). 2

We have seen that while maps of event structures do not always preserve
causal dependency, they do reflect it locally: When a map f : A → B of event
structures is total it determines a bijection between a configuration x of A and
its image fx, a configuration of B. Consider the causal dependencies on x and
fx inherited from their ambient event structures. The configuration x is a copy
of the configuration fx but possibly augmented with extra causal dependencies
not in fx. We discuss such augmentations in the next section.

8.7 Augmentations

In an interactive context a configuration x may be subject to causal dependen-
cies beyond those of its ambient event structure E. It will become an elementary
event structure p = (|p|,≤p) comprising an underlying set |p| = x with a partial
order ≤p which augments that from E:

∀e ∈ |p|, e′ ∈ |E|. e′ ≤E e⇒ e′ ≤p e .

Write Aug(E) for the set of such augmentations associated with E.

Proposition 8.10 Let p ∈ Aug(A). Then,

≤p= (_p
A ∪_p)

∗ ,

where _p
A is the relation of immediate causal dependency of A restricted to |p|.

Proof: Clearly ≤p includes (_p
A ∪ _p)

∗ as p is an augmentation and ≤p
includes _p. Conversely, ≤p is included in ⊆ (_p

A ∪_p)
∗ as ≤p is included in

_∗p. 2

The order of rigid inclusion of one augmentation in another expresses when
one augmentation is a sub-behaviour of another.

Exercise 8.11 Show the set of finite augmentations of an event structures
forms a rigid family. 2
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It will be useful to combine augmentations, in effect subjecting a configu-
ration simultaneously to the causal dependencies of the two augmentations—
provided this does not lead to causal loops. Define a key partial operation

∧ : Aug(E)×Aug(E) ⇀ Aug(E)

by taking

p ∧ q =
{

(|p|, (≤p ∪ ≤ q)∗) if |p| = |q| & (≤p ∪ ≤ q)∗ is antisymmetric,
undefined otherwise.

The following proposition will be useful in reasoning about p ∧ q.

Proposition 8.12 Above, if |p| = |q|, then

e′(≤p ∪ ≤q)∗e iff ∃e1, · · · , en ∈ |p|. e′ = e1 ≤p e2 ≤q · · · ≤p en−1 ≤q en = e

iff e′(_p ∪_q)
∗e .

Proof: Why? In the first “iff” we make use of the reflexivity of ≤p and ≤q. 2

Lemma 8.13 Supposing p, q ∈ Aug(E) for which p ∧ q is defined,

e′ _p∧q e⇒ e′ _p e or e′ _q e .

Proof: Assuming p ∧ q is defined, by Proposition 8.12,

e′ ≤p∧q e ⇐⇒ e′(_∗p)(_
∗
q) · · · (_∗p)(_∗q)e .

Hence if e′ _p∧q e then either e′ _∗p e or e′ _∗q e —otherwise we would
contradict the immediate causal dependency e′ _p∧q e —but then, for the
same reason, we must have e′ _p e or e′ _q e. 2

Exercise 8.14 Show that Lemma 8.13 may be strengthened as follows. Sup-
posing p, q ∈ Aug(E) for which p ∧ q is defined, e′ _p∧q e implies

[e′ _p e & (e′ _q e or e′ coq e)] or [e′ _q e & (e′ _p e or e′ cop e)] .

2

Lemma 8.15 Let E be an event structure and p, q ∈ Aug(E) for which p∧ q is
defined, If r ↪→ p ∧ q where r ∈ Aug(E) then

∃!rp, rq ∈ Aug(E). rp ↪→ p & rq ↪→ q & r = rp ∧ rq .

Proof: Let rp have events |r| with order the restriction of ≤p and, similarly, rq
have events |r| with order the restriction of ≤q. To show rp ↪→ p it suffices to
check e′ ≤p e ∈ rp implies e′ ∈ rp. However, if e′ ≤p e ∈ rp then e′ ≤p∧q e ∈ r
so e′ ∈ r as r ↪→ p∧q. Similarly, rq ↪→ q. The uniqueness of rp and rq is assured
since they must share the same underlying events |r| and via the rigid inclusions
rp ↪→ p and rq ↪→ q must have order the restrictions of p and q respectively.
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It remains to establish r = rp ∧ rq. Note rp ∧ rq is defined as rp and rq share
the same underlying set |r| and if their combined order had a nontrivial loop,
contradicting antisymmetry, then so would p ∧ q. Clearly r and rp ∧ rq share
the same underlying set |r|. As ≤r is the restriction of ≤p∧q, for e′, e ∈ |r|,

e′ ≤r e ⇐⇒ e′ = e1 ≤p e2 ≤q · · · ≤p en−1 ≤q en = e

where e1, · · · , en ∈ |p ∧ q|. This is by Proposition 8.12 characterising ≤p∧q. But
|r| is down-closed in p ∧ q, so all e1, · · · , en are necessarily in |r|. Hence e′ ≤r e
iff e′ ≤rp∧rq e, again by Proposition 8.12, this time in characterising ≤rp∧rq . 2
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Chapter 9

Games as event structures

We represent games by event structures with polarity and strategies in a game
as rigid family of its augmentations.

9.1 Event structures with polarity

An event structure with polarity comprises (A, pol) where A is an event structure
with a polarity function polA : A→ {+,−, 0} ascribing a polarity + (Player), −
(Opponent) or 0 (neutral) to its events. The events correspond to (occurrences
of) moves. It will be technically useful to allow events of neutral polarity; they
arise, for example, in a play between a strategy and a counterstrategy. A game
shall be represented by an event structure with polarity in which no moves are
neutral.

Notation: In an event structure with polarity (A, pol), with configurations x
and y, write x ⊆− y to mean inclusion in which all the intervening events are
moves of Opponent. Write x ⊆+ y for inclusion in which the intervening events
are neutral or moves of Player.

9.1.1 Operations on games

We introduce two fundamental operations on games.

Dual

The dual, A⊥, of a game A, comprises the same underlying event structure as
A but with a reversal of polarities.

We shall implicitly adopt the view of Player and understand a strategy in a
game A as strategy for Player. A counterstrategy in a game A is a strategy for
Opponent in the game A, i.e. a strategy (for Player) in the game A⊥.

129
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Simple parallel composition

This operation simply juxtaposes two games, and more generally two event
structures with polarity. Let (A,≤A,ConA, polA) and (B,≤B ,ConB , polB) be
event structures with polarity. The events of A‖B are ({1} × A) ∪ ({2} × B),
their polarities unchanged, with the only relations of causal dependency given by
(1, a) ≤ (1, a′) iff a ≤A a′ and (2, b) ≤ (2, b′) iff b ≤B b′; a finite set X of events is
consistent in A‖B iff its components XA in A and and XB in B are individually
consistent. The nullary composition of games is the empty event structure with
polarity, written ∅. We shall adopt the same operation for configurations of a
game A‖B, regarding a configuration x of the parallel composition as xA‖xB .

If we are not a little careful we can run into distracting technical issues
through (A‖B)‖C not being strictly the same as A‖(B‖C). For our purposes it
will suffice to adopt the convention that when we write e.g. A‖B‖C the simple
parallel composition of three event structures with polarity we shall mean the
event structure with events

{1} × |A| ∪ {2} × |B| ∪ {3} × |C| ,

with causal dependency and conflict copied from those of A, B and C. As in
the binary case, we adopt the same notation for configurations and can describe
a typical configuration x of A‖B‖C as xA‖xB‖xC .

9.2 Strategies

A strategy in a game will be a (special) subset of (finite) plays in the game. It
is convenient to define plays of event structures with polarity, in general, which
may have neutral events.

Definition: A play in A, an event structure with polarity, comprises an aug-
mentation, a finite elementary event structure p = (|p|,≤p) with underlying set
|p| ∈ C(A), which may augment with extra causal dependencies provided it does
so courteously:

∀a, a′ ∈ |p|. a′ _p a & polA(a′) = + or polA(a) = − ⇒ a′ _A a .

Write Plays(A) for the set of plays in A.

If A is a game, so with no neutral moves, the only augmentations allowed of
a play p additional to the immediate causal dependency of A are those of the
form 	_p ⊕.

The following proposition will provide a useful technique for reasoning about
plays in a game:

Proposition 9.1 Let p ∈ Plays(A). Then, ≤p is the least reflexive, transitive
relation on |p| which (i) contains _p

A, the relation of immediate causal depen-
dency of A restricted to |p|, and (ii) contains all instances 	 _p ⊕, where 	
and ⊕ are −ve and +ve moves in |p|.
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Proof: As p is courteous and ≤p= (_p
A ∪ _p)

∗ by Proposition 8.10; any
instance of _p not in _p

A has to be of the form 	_p ⊕. 2

The order of rigid inclusion between plays, p ↪→ q, expresses that p is a
subplay of q. We shall write

p ↪→+ q iff p ↪→ q & |p| ⊆+ |q| ,

when the extension only involves neutral or Player moves, and similarly p ↪→− q
when only Opponent moves are involved.

Lemma 9.2 Let A be an event structure with polarity. For all x ∈ C(A),
p ∈ Plays(A),

x ⊆+ |p| ⇒ ∃q ∈ Plays(A). q ↪→ p & |q| = x .

Proof: Assume x ⊆+ |p| for x ∈ C(A) and p ∈ Plays(A). Note that q is
necessarily unique, if it exists, as from q ↪→ p we must have q = (x,≤p �x). To
show, that so defined, q ↪→ p we require that x is down-closed in p. It suffices
to show

a′ _p a ∈ x⇒ a′ ∈ x

for arbitrary a′ ∈ |p|. If a′ _A a ∈ x then a′ ∈ x by the down-closure of x in
A. Suppose otherwise, that a′ _p a ∈ x where it is not the case that a′ _A a.
Because p is courteous, polA(a′) = − and polA(a) = +. But, by assumption,
x ⊆+ |p|, so x and p have the same negative events, ensuring a′ ∈ x, as required.

2

Finally, we define the notion of strategy both in a game and more generally
in the presence of neutral moves.

Definition: A bare strategy1 in A, an event structure with polarity, is a rigid
family of plays, so a nonempty subset σ ⊆ Plays(A) satisfying p ↪→ q ∈ σ ⇒
p ∈ σ, which is also

• receptive, p ∈ σ & |p| ⊆− x ∈ C(A)⇒ ∃q ∈ σ. p ↪→ q ∈ σ & |q| = x .
(Note that q is unique by courtesy.)

Write σ : A when σ is a bare strategy of A. Note A, and so σ, may involve
neutral moves. When A is a game, so an event structure with polarity without
neutral moves, we say σ is a strategy.

Exercise 9.3 Show uniqueness in receptivity, above, follows by courtesy. [First
consider the case of inclusions where x \ |p| is a singleton Opponent move.] 2

1Bare strategies, with neutral events, have been called “partial strategies” in [38] and
“uncovered strategies” in [12].
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One simple example of a strategy σ : A in an event structure with polarityA
is got by taking σ to consist of all the finite configurations of A regarded as ele-
mentary event structures in which their order of causal dependency is inherited
from A.

We shall regard a strategy in the compound game A⊥‖B, where A and B are
games, as a strategy from the A to B [8, 19]. As this suggests we shall shortly
compose strategies.

Remark. Given that rigid families determine event structures, the reader
might wonder why we do not take a strategy to be an event structure. Indeed
this is often done. However, the extra flexibility of rigid families is useful in
providing a simple definition of the composition of strategies, thus allowing us
to stick to an elementary, non category-theoretic exposition of concurrent games
and strategies.

9.2.1 Strategies from maps

A strategy σ in a game A is a rigid family and so, by Proposition 8.3, determines
an event structure S whose events are those plays in σ which have a top element.
Each top element is an event of the game A so there is a function top from the
events of S to those of A; this function is a total map of event structures and
indeed a concurrent strategy in the sense of Rideau and Winskel [30].2 Not all
the R-W concurrent strategies are obtained this way. But any R-W concurrent
strategy of has a rigid image which corresponds to a strategy as presented here.
More fully, letting A be an event structure with polarity:

Proposition 9.4 If σ : A then top : Pr(σ) → A is a total map of event struc-
tures which preserves polarity and satisfies

• courtesy, s′ _ s and pol(s′) = + or pol(s) = − in Pr(σ) implies fσ(s′) _A

fσ(s) in A , and

• receptivity, fσx ⊆− y in C(A), for x ∈ C(Pr(σ)), implies there is a unique
x′ ∈ C(Pr(σ)) such that fσx

′ = y .

Conversely:

Proposition 9.5 Let f : S → A be a total map of event structures which
preserves polarity. Define σ(f) to be the rigid family

σ(f) = {(fx,≤fx) | x ∈ C(S)}

where a′ ≤fx a ⇐⇒ ∃s′, s ∈ x. a′ = f(s′) & a = f(s) & s′ ≤S s for x ∈ C(S)
—recall x ∼= fx. Then, σ(f) : A if f is receptive and courteous.

2A major result of [30] is that receptivity and courtesy (called innocence there) are nec-
essary and sufficient conditions in order for copycat to behave as identity w.r.t. composition;
this motivated the definition of concurrent strategy there.
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Exercise 9.6 Show we cannot strengthen “if” to “iff” in the above proposition.
[Hint: Receptivity of f may fail–either iexistence or uniqueness—even though
σ(f) : A. 2

It is often convenient to describe strategies as maps. For example, the total
map f of event structures preserving polarites from the event structure S

⊕ ⊕

	

_LLR

	

_LLR

to the event structure A

⊕
	 	

represents the strategy which answers either move of Opponent in the game A
by the Player move.

Exercise 9.7 Describe the strategy σ(f) : A above as a rigid family. 2

9.3 The copycat strategy

In the composition of strategies identities are given by copycat strategies. Let
A be a game. The copycat strategy ccA : A⊥‖A is an instance of a strategy. We
obtain copycat from the finite configurations of an event structure CCA based
on the idea that Player moves, of +ve polarity, in one component of the game
A⊥‖A always copy previous corresponding moves of Opponent, of −ve polarity,
in the other component.

For c ∈ A⊥‖A we use c̄ to mean the corresponding copy of c, of opposite
polarity, in the alternative component, i.e. (1, a) = (2, a) and (2, a) = (1, a) .
Define CCA to comprise the event structure with polarity A⊥‖A together with
extra causal dependencies c̄ ≤CCA

c for all events c with polA⊥‖A(c) = +. Take
a pair of events to be in conflict in CCA iff their down-closure w.r.t. the relation
≤CCA

contains conflicting events in A⊥‖A. We should check that we do indeed
obtain an event structure by this construction, in particular that it does not
introduce any causal loops.

Proposition 9.8 Let A be a game. There is an event structure with polarity
CCA having the same events and polarity as A⊥‖A but with causal dependency
≤CCA

given as the transitive closure of the relation

≤A⊥‖A ∪ {(c̄, c) | c ∈ A⊥‖A & polA⊥‖A(c) = +} .

and conflict

c#CCA
c′ ⇐⇒ ∃c0, c′0. c0#A⊥‖Ac

′
0 & c0 ≤CCA

c & c′0 ≤CCA
c′ .
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Moreover,

(i) c _ c′ in CCA iff

c _ c′ in A⊥‖A or polA⊥‖A(c′) = + & c̄ = c′ ;

(ii) x ∈ C(CCA) iff

x ∈ C(A⊥‖A) & ∀c ∈ x. polA⊥‖A(c) = +⇒ c̄ ∈ x .

Proof: It can first be checked that defining

c ≤CCA
c′ iff (i) c ≤A⊥‖A c′ or

(ii) ∃c0 ∈ A⊥‖A. polA⊥‖A(c0) = + &

c ≤A⊥‖A c̄0 & c0 ≤A⊥‖A c′ ,

yields a partial order. Note that

c ≤A⊥‖A d iff c̄ ≤A⊥‖A d̄ ,

used in verifying transitivity and antisymmetry. The relation ≤CCA
is clearly

the transitive closure of ≤A⊥‖A together with all extra causal dependencies
(c̄, c) where polA⊥‖A(c) = +. The remaining properties required for CCA to be
an event structure follow routinely.

(i) From the above characterization of ≤CCA
.

(ii) From CCA and A⊥‖A sharing the same consistency on sets down-closed in
A⊥‖A and w.r.t. the extra causal dependency adjoined to CCA. 2

Example: We illustrate the construction of CCA for the game A comprising the
single immediate dependency a1 _ a2 from an Opponent move a1 to a Player
move a2. The event structure CCA is obtained from A⊥‖A by adjoining the
additional immediate dependencies shown:

A⊥ ā2 	 � ,,2⊕ a2 A

ā1 ⊕

_LLR

	 a1

_LLR

�llr

The copycat strategy ccA : A⊥‖A is defined by taking

ccA = {(x,≤CCA
�x) | x ∈ C(CCA)} .

In other words, ccA consists of all the finite configurations of CCA, each un-
derstood as a finite partial order through inheriting the causal dependency of
CCA.
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9.3.1 The Scott order

Consider p ∈ ccA. Then |p| = x‖y where x ∈ C(A⊥) and y ∈ C(A). However,
the configurations of A⊥ are the same as those of A so we can consider both x
and y in C(A); the interchange of polarites leaves the underlying event structure
unaffected. Not all pairs x, y of configurations can arise in this way. It turns
out that those pairs x, y arising as |p| = x‖y, for some p ∈ ccA, are precisely
those in the Scott order y vA x, now defined.

Let A be an event structure with polarity. The ⊆-order on its configurations
is obtained as compositions of the two more fundamental orders (⊆+ ∪ ⊆−)+.
We use ⊇− as the converse order to ⊆−. Define a new order, the Scott order,
between configurations x, y ∈ C∞(A), by

x vA y ⇐⇒ ∃z ∈ C∞(A). x ⊇− z ⊆+ y .

It is an straightforward exercise to show that when such a z exists it is necessarily
x ∩ y.

Exercise 9.9 Prove the last claim. (Hint: Show separately that z includes and
is included in x ∩ y by considering the two kinds of elements, of +ve and −ve
polarity.) 2

Lemma 9.10 Let A be an event structure with polarity. Let x, y ∈ C(A). The
following are equivalent:

(i) |p| = x‖y for some p ∈ ccA;

(ii) x+ ⊇ y+ and x− ⊆ y−;

(iii) y vA x;

(iv) y(⊇− ∪ ⊆+)∗x.

Moreover, the Scott order forms a partial order (C(A),vA).
[Above, z+ = {a ∈ z | polA(a) = +} and z− = {a ∈ z | polA(a) = −} for z ∈
C(A).]

Proof: “(i) ⇐⇒ (ii)”: From the dependency within copycat of the +ve
events a ∈ A on corresponding −ve events a ∈ A⊥, and vice versa, we deduce
that x‖y = |p| for some p ∈ ccA iff

(a) x+ ⊇ y+ and (b) x− ⊆ y− .

“(ii) ⇐⇒ (iii)”: We argue that (a) and (b) iff y ⊇− x ∩ y ⊆+ x. “Only if”:
Assume (a) and (b). Clearly, x ∩ y ⊆ x. Suppose a ∈ x with polA(a) = −. By
(b), a ∈ y. Consequently, x ∩ y ⊆+ x. Similarly, (a) entails y ⊇− x ∩ y. “If”:
To show (a), let a ∈ y+. Then as y ⊇− x∩ y ensures only −ve events are lost in
moving from y to x∩ y, we see a ∈ x∩ y, so a ∈ x̄+. The proof of (b) is similar.

From the last equivalence we quickly verify that vA is a partial order, whence
the equivalence “(iii) ⇐⇒ (iv).” 2
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So p ∈ ccA has |p| = x‖y with y vA x. Conversely, given y vA x write
cA(x, y) for the corresponding p ∈ ccA with |p| = x‖y: from the construction
of ccA, the elementary event structure cA(x, y) comprises the elementary event
structure x‖y, with ordering that inherited from A⊥‖A, to which extra causal
dependencies c̄ ≤ c are adjoined whenever polA⊥‖A(c) = +.

Proposition 9.11 Suppose z vB y. If e′ _ e in cB(y, z) then either

e′ = (1, b′) and e = (1, b) with b′ _B b or

e′ = (2, b′) and e = (2, b) with b′ _B b or

e′ = (1, b) and e = (2, b) with b ∈ B and polB(b) = + or

e′ = (2, b) and e = (1, b) with b ∈ B and polB(b) = −

Proof: Directly from the definition of causal dependency of copycat. 2

9.3.2 The Scott order on plays

We extend the Scott order to plays p, q ∈ Plays(A), defining

q vA p ⇐⇒ ∃r ∈ Plays(A). q ←↩− r ↪→+ p .

The next characterisation of the Scott order on plays will provide an important
technique in reasoning about strategies.

Lemma 9.12 Let A be a game and p, q ∈ Plays(A). Then, q vA p iff |q| vA |p|
and for all a, a′ ∈ |q| with polA(a) = + and polA(a′) = −,

(a′ _q a⇒ a′ ≤p a) & (a′ _p a⇒ a′ ≤q a) .

Proof: “only if”: Suppose q vA p for plays p and q. Then, q ←↩− r ↪→+ p for
some play r. We directly obtain

|q| ⊇− |r| ⊆+ |p| ,

i.e. |q| vA |p|. Let a, a′ ∈ |q| with polA(a) = + and polA(a′) = −. As a is +ve
and |q| ⊇− |r| we must have a ∈ |r|. Assume a′ _q a. Then as r ↪→ q we obtain
a′ _r a. Now as r ↪→ p we get a′ _p a, so certainly a′ ≤p a. To show the
converse implication, assume a′ _p a. As we know a ∈ |r| and r ↪→ p we get
a′ _r a, whereupon a′ _q a, so a′ ≤q a, as r ↪→ q.
“if”: Assume |q| vA |p| and

(a′ _q a⇒ a′ ≤p a) & (a′ _p a⇒ a′ ≤q a) .

for all a, a′ ∈ |q| with polA(a) = + and polA(a′) = −. We shall define a play r
with |r| = |q| ∩ |p|. We have

|q| ⊇− |r| ⊆+ |p| .
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We show |r| is a down-closed subset of q. As q is courteous, we need only
check that supposing a′ _q a with −ve a′ ∈ |q| and +ve a ∈ |r| we can
deduce a′ in |r|. However then a′ ≤p a by assumption, so a′ ∈ |p|, ensuring
a′ ∈ |q| ∩ |p| = |r|.

Similarly, we show |r| is a down-closed subset of p. Suppose a′ _p a with
a ∈ |r|. Again, as p is courteous, it suffices to consider the case with −ve a′

and +ve a. However r and p have the same −ve events because |r| ⊆+ |p|, so
a′ ∈ |r| from a′ ∈ |p|.

From the assumption and courtesy, for a, a′ ∈ |r| with a′ −ve and a +ve,

a′ ≤q a ⇐⇒ a′ ≤p a ,

—p and q restrict to the same order on |r|. We define the order of r to be this
common restriction. It follows that q ←↩− r ↪→+ p. 2

Corollary 9.13 Let A be a game and p, q ∈ Plays(A). Then, q vA p iff

|q| vA |p| & (a′ _q a ⇐⇒ a′ _p a) ,

for all a, a′ ∈ |q| with polA(a) = + and polA(a′) = −.

Proof: “If”: By Lemma 9.12, as immediate causal dependency implies causal
dependency.
“Only if”: Assume q vA p. By Lemma 9.12, |q| vA |p| and both

(i) a′ _q a⇒ a′ ≤p a and (ii) a′ _p a⇒ a′ ≤q a

hold for all a, a′ ∈ |q| with a +ve and a′ −ve. We show that the causal depen-
dencies of (i) and (ii) can be made immediate by the arguments of the following
two paragraphs. Let 	, ⊕ be moves in |q| of the indicated polarity.

Assume 	 ≤p ⊕ and that this is not immediate causal dependency. Then,

	_p a1 _p · · ·_p an _p ⊕ .

We can show that
	 <q a1 <q · · · <q an <q ⊕ .

Argue inductively down the _p-chain. Assume ai−1 _p ai ∈ |q|. If ai−1 <A ai
then ai−1 <q ai, as q is an augmentation of A. Otherwise, by courtesy, ai−1 is
−ve and ai +ve. Then ai−1 ∈ |q| because |q| vA |p|. By (ii), ai−1 <q ai. It
follows that ¬(	_p ⊕) implies ¬(	_q ⊕).

Similarly, if 	 ≤q ⊕ is not an immediate causal dependency, then, using (i)
this time,

	_q a1 _q · · ·_q an _q ⊕

implies
	 <p a1 <p · · · <p an <p ⊕

—to start the analogous argument down the chain, notice ⊕ ∈ |p| as |q| vA |p|.
Thus ¬(	_q ⊕) implies ¬(	_p ⊕).
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Consequently, we can strengthen (i) and (ii) to

(i) a′ _q a⇒ a′ _p a and (ii) a′ _p a⇒ a′ _q a ,

for all a, a′ ∈ |q| with a +ve and a′ −ve, so obtaining the corollary. 2

Corollary 9.14 Let A be a game and p, q ∈ Plays(A). If q vA p and |q| = |p|
then q = p.

Proof: By Corollary 9.13, if q vA p and |q| = |p| then p and q share the same
immediate causal dependencies 	_ ⊕ beyond those they both inherit from A.
By courtesy they also share the same partial order and ≤q and ≤p are the same.

2

As a direct corollary of receptivity and Lemma 9.2:

Lemma 9.15 Let A be a game and σ : A. For all x ∈ C(A), p ∈ σ,

x vA |p| ⇒ ∃!q ∈ σ. q vA p & |q| = x .

Lemma 9.16 Let A be a game and σ : A. Then, for p, q ∈ Plays(A),

q vA p ∈ σ ⇒ q ∈ σ .

Exercise 9.17 Prove the two lemmas above. 2

9.4 Interaction of strategies

9.4.1 A strategy against a counterstrategy

First a simple case. Consider the interaction (or play-off) of a strategy and a
counterstrategy in a game A. Recall a counterstrategy in a game A is the same
as a strategy in the dual game A⊥. A strategy σ : A and a counterstrategy
τ : A⊥ interact over the game A which they view in complementary ways; a
Player move of σ is an Opponent move of τ and vice versa. Because of this
complementarity, it is no longer sensible to ascribe a move of the interaction of
σ and τ to Player or Opponent; the move is, rather, of neutral polarity. Define
the event structure with polarity A0 to have the same underlying event structure
as A but where all events now carry neutral polarity. A play of the interaction
is in Plays(A0) and should involve the same moves according to both σ and τ
with the causal dependencies they together enforce. We can formalise this by
defining the set of plays which constitute the interaction to be given by

τ ~ σ = {p ∧ q | p ∈ σ & q ∈ τ & p ∧ q is defined} .

As one would hope:

Proposition 9.18 The interaction is a bare strategy and τ ~ σ : A0.



9.4. INTERACTION OF STRATEGIES 139

Proof: Because A0 has no moves of polarity + or −, any augmentation of a
configuration of A0 is automatically courteous and τ~σ automatically receptive.
In order for the interaction τ ~ σ to be a bare strategy, justifying our writing
τ ~ σ : A0, we should check though that it is a rigid family. However, by
Lemma 8.15, if r ↪→ p ∧ q then r = rp ∧ rq for some rp ↪→ p and rq ↪→ q, where
necessarily rp ∈ σ and rq ∈ τ because σ and τ are strategies. 2

9.4.2 Interaction in general

A play of a strategy σ in a game A⊥‖B and a play of a strategy τ in a game
B⊥‖C can interact at the common game B, where the two strategies adopt
complementary views, in which one sees a move of that game as that of Player
while the other sees it as a move of Opponent. In effect, the two plays synchro-
nise at common moves in B, one strategy being receptive to the Player moves
of the other. Together they produce a play in the event structure with polar-
ity A⊥‖B0‖C —as above, the event structure with polarity B0 has the same
underlying event structure as B but where all events now carry neutral polarity.
This is because the interaction over the game B produces moves which are no
longer open to Player or Opponent.

We can express the interaction of plays of strategies σ and τ through a
partial operation

~ : Plays(B⊥‖C)× Plays(A⊥‖B) ⇀ Plays(A⊥‖B0‖C)

defined as follows. Let p ∈ Plays(A⊥‖B), q ∈ Plays(B⊥‖C) with |p| = xA⊥‖xB
and |q| = yB⊥‖yC . Understand the configurations yC and xA⊥ as inheriting the
partial order of their ambient event structures.

First, we obtain paths

p‖yC ∈ Plays(A⊥‖B‖C) and xA⊥‖q ∈ Plays(A⊥‖B⊥‖C) ,

simply by juxtaposing the partial orders, and respecting the rechristening of
events. Courtesy is clearly maintained.

Now we have extended p and q to paths over the same underlying event
structure, we define

q ~ p =def (p‖yC) ∧ (xA⊥‖q) .

Notice that

|p‖yC | = xA⊥‖xB‖yC and |xA⊥‖q| = xA⊥‖yB⊥‖yC

so that q ~ p is defined only if xB = yB⊥ , and then only if no causal loops are
introduced.

Lemma 9.19 Let p ∈ Plays(A⊥‖B) and q ∈ Plays(B⊥‖C). Then, if defined,
q ~ p ∈ Plays(A⊥‖B0‖C).
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Proof: Assume p ∈ Plays(A⊥‖B) and q ∈ Plays(B⊥‖C) and that q ~ p is
defined. We show that q ~ p is a play. For this we require it a courteous
augementation of the order in A⊥‖B0‖C. Assuming e′ _q~p e, by Lemma 8.13
we deduce e′ _p‖yC e or e′ _x

A⊥‖q e; whereupon courtesy of q ~ p is inherited
from courtesy of p‖yC and xA⊥‖q. 2

Let σ : A⊥‖B and τ : B⊥‖C be strategies. Define their interaction (their
composition without hiding) by

τ ~ σ = {q ~ p | p ∈ σ & q ∈ τ & q ~ p is defined} ,

Lemma 9.20 Suppose r ↪→ q ~ p where p ∈ Plays(A⊥‖B), q ∈ Plays(B⊥‖C)
and r ∈ Plays(A⊥‖B0‖C). Then there exist unique p′ ↪→ p and q′ ↪→ q such
that r = q′ ~ p′.

Proof: Suppose r ↪→ q ~ p. By definition,

r ↪→ (p‖yC) ∧ (xA⊥‖q)

where p ∈ Plays(A⊥‖B), q ∈ Plays(B⊥‖C) with |p| = xA⊥‖xB and |q| =
yB⊥‖yC . By Lemma 8.15,

r = (p′‖y′C) ∧ (x′A⊥‖q
′) = q′ ~ p′

where

(p′‖y′C) ↪→ (p‖yC) and (x′A⊥‖q
′) ↪→ (xA⊥‖q) .

The uniqueness of p′ and q′ such that p′ ↪→ p and q′ ↪→ q with r = q′~p′ follows
as then we must have both |p′| and |q′| and their orders determined. 2

Lemma 9.21 The interaction of strategies σ : A⊥‖B and τ : B⊥‖C yields a
bare strategy τ ~ σ : A⊥‖B0‖C.

Proof: We first check that τ ~σ is a rigid family. It clearly contains the empty
partial order so is itself nonempty. To see it is closed under rigid inclusions, use
the previous result, Lemma 9.20. Suppose r ↪→ q ~ p ∈ τ ~ σ. By Lemma 9.20,
there are p′ ↪→ p and q′ ↪→ q, hence p′ ∈ σ and q′ ∈ τ with r = q′ ~ p′ ∈ τ ~ σ,
as required to be a rigid family.

By Lemma 9.19, the family τ ~ σ consists of plays. We require receptivity.
Suppose

|q ~ p| ⊆− z

in C(A⊥‖B0‖C). It is sufficient to consider inclusions where z \ |q ~ p| consists
of a single Opponent move. (Why?) Write |q ~ p| = xA⊥‖xB‖xC . Then either
z = x′A⊥‖xB‖xC , where x′A⊥ \ xA⊥ comprises a single Opponent event a, or
z = xA⊥‖xB‖x′C , where x′C \ xC comprises a single Opponent event c. Suppose
the former. Then

|p| = xA⊥‖xB ⊆− x′A⊥‖xB .
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From the receptivity of σ, there is a (unique) play p′ ∈ σ such that |p′| =
x′A⊥‖xB . The play q~ p is down-closed and does not contain the ‘new’ event a.
Consider

q ~ p′ =def (p′‖xC) ∧ (x′A⊥‖q) .

Firstly, it is defined. Certainly,

|p′‖xC | = x′A⊥‖xB‖xC = |x′A⊥‖q| .

If its order were to have a nontrivial causal loop, the loop would have to involve
a —as q ~ p has none—so an event of q ~ p causally dependent on a; but there
is no event of |q ~ p| causally dependent on a. Thus q ~ p′ is defined with
|q ~ p′| = z. There is an analogous argument in the other case (where x′C \ xC
comprises a single Opponent event c). We conclude that τ ~ σ is receptive, and
a bare strategy. 2

9.5 Composition of strategies

The composition of strategies will be given as their interaction followed by hiding
of the neutral moves that ensue. Hiding is achieved through an operation of
projection.

Define the projection

( )↓ : Plays(A⊥‖B0‖C)→ Plays(A⊥‖C) ,

of a play p in A⊥‖B0‖C,with |p| = xA⊥‖xB‖xC , to a play p ↓ in A⊥‖C, to be
the restriction of the order on p to the set xA⊥‖xC . We should check this is a
good definition, that:

Lemma 9.22 If p ∈ Plays(A⊥‖B0‖C) then p↓∈ Plays(A⊥‖C)

Proof: Clearly p↓ is an augmentation of |p↓| ∈ C(A⊥‖C) directly from p being
an augmentation of |p| ∈ C(A⊥‖B0‖C). We require courtesy. Suppose e′ _p↓ e.
Then

e′ _p b
′
1 _p b2 · · · bn _p e

where b1, · · · , bn is some sequence, possibly empty, of neutral events. However,
if e′ is positive then b1 cannot exist by courtesy of p, while if e is negative bn
cannot exist; the sequence must be empty and we obtain e′ _p e and we inherit
courtesy of p↓ from that of p. 2

Proposition 9.23 Let p ∈ Plays(A⊥‖B0‖C). If r ↪→ p↓, where r ∈ Plays(A⊥‖C)
then there is rp ∈ Plays(A⊥‖B0‖C) such that rp ↪→ p and rp ↓= r.

Proof: Take rp to be the down-closure of r in p. 2
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Define a partial operation

� : Plays(B⊥‖C)× Plays(A⊥‖B) ⇀ Plays(A⊥‖C)

as the composition of projection ( )↓ with interaction ~, so by

q�p = (q ~ p)↓

for p ∈ Plays(A⊥‖B) and q ∈ Plays(B⊥‖C).

Lemma 9.24 Let p ∈ Plays(A⊥‖B) and q ∈ Plays(B⊥‖C). Then, if defined,
q�p ∈ Plays(A⊥‖C).

Proof: Directly from Lemmas 9.19 and 9.22. 2

Let σ : A⊥‖B and τ : B⊥‖C be strategies. Define their composition by

τ�σ = {q�p | p ∈ σ & q ∈ τ & q�p is defined}
= {r↓ | r ∈ τ ~ σ & r↓ is defined} .

So the interaction τ ~σ is like composition, the strategy τ�σ, but before hiding
the neutral moves over the game B.

Lemma 9.25 The composition of strategies σ : A⊥‖B and τ : B⊥‖C yields a
strategy τ�σ : A⊥‖C.

Proof: We first check that τ�σ is a rigid family. It contains the empty partial
order as τ ~ σ does, so is itself nonempty. Suppose r ↪→ q�p = (q ~ p)↓∈ τ�σ.
By Proposition 9.23, there is r′ ∈ Plays(A⊥‖B0‖C) such that r′ ↪→ q~p ∈ τ~σ
and r′ ↓= r. Now r′ ∈ τ ~σ, by Lemma 9.21, ensuring r ∈ τ�σ. Therefore τ�σ
is a rigid family.

By Lemma 9.24, the family τ�σ consists of plays. To be a strategy we
require receptivity. Suppose

|q�p| ⊆− z

in C(A⊥‖C). It is sufficient to consider inclusions where z \ |q�p| consists of a
single Opponent move. By definition, q�p = (q ~ p)↓. Hence

|q ~ p| ⊆− z′

in C(A⊥‖B0‖C) where z′ ↓= z. (Here we are using that in A⊥‖B0‖C no
Opponent move, necessarily in component A⊥ or C, is dependent on a neutral
event, necessarily in B0.) As τ~σ is a bare strategy—Lemma 9.21, so receptive,

q ~ p ↪→ r

in τ ~ σ with |r| = z′. But now,

q�p = (q ~ p)↓↪→ r↓

with |r↓| = z. We have established q�p is receptive and a strategy in A⊥‖C. 2
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9.6 A category of games and strategies

We show that games and strategies form a category in which copycat strategies
are identities—for which the following lemma is useful.

Lemma 9.26 Suppose p ∈ σ where |p| = x‖y and z vB y. Then,
(i) if (2, b′) _ (2, b) in cB(y, z)~ p then (2, b′) ≤p (2, b);
(ii) if (2, b′) ≤ (2, b) in cB(y, z)~ p then (2, b′) ≤p (2, b).

Proof: (i) Assume (2, b′) _ (2, b) in cB(y, z) ~ p. Then either (2, b′) _ (2, b)
in p‖z or (2, b′) _ (2, b) in x‖cB(y, z). In the former case, necessarily (2, b′) _
(2, b) in p. In the latter case, (1, b′) _ (1, b) in cB(y, z). By Proposition 9.11,
b′ _B b. As p is a play with causal dependency augmenting that of x‖y we
must have (2, b′) ≤ (2, b) in p. (ii) follows by repeated use of (i). 2

Theorem 9.27 Composition of strategies is associative and has identity the
copycat strategy, i.e. taking objects to be games and arrows from a game A to
a game B to be strategies in the game A⊥‖B, with composition the composition
of strategies, yields a category.3

Proof: We check that copycat acts as identity w.r.t. composition. Let σ :
A⊥‖B. We require that

σ� ccA = σ = ccB�σ .

Let σ : A⊥‖B. We only show ccB�σ = σ. The proof that σ�ccA = σ is analo-
gous.

We first prove ccB�σ ⊆ σ. Suppose p′ ∈ ccB�σ. Then

p′ = cB(y, z)�p

for some p ∈ σ where |p| = x‖y and z vB y. We show

cB(y, z)�p vA⊥‖B p . (1)

Then p′ ∈ σ by Lemma 9.16. Expanding the definition, we obtain

p′ = cB(y, z)�p = (cB(y, z)~ p)↓= (p‖z ∧ x‖cB(y, z))↓ ,

where |cB(y, z)~ p| = x‖y‖z and we hide the events over y. We show p′ vA⊥‖B
p via Lemma 9.12. Because z vB y,

|p′| = x‖z vA⊥‖B x‖y = |p| .

To meet the conditions of Lemma 9.12, we in addition need

(i) e′ _p′ e⇒ e′ ≤p e and (ii) e′ _p e⇒ e′ ≤p′ e
3In fact, the category is cpo-enriched: inclusion between strategies is respected by compo-

sition and forms a cpo with bottom.
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for all e, e′ ∈ |p′| with e +ve and e′ −ve.

(i) Suppose e′ _p′ e where e, e′ ∈ |p′| with e +ve and e′ −ve. We consider the
various cases.

Case e′ = (1, a) and e = (2, b). Then

(1, a) ≤ (3, b) in cB(y, z)~ p .

The causal dependency (1, a) ≤ (3, b) is associated with a chain of immediate
causal dependencies in cB(y, z) ~ p. In fact, because (1, a) _ (2, b) in p′ =
(cB(y, z)~ p)↓, the “visible” part of cB(y, z)~ p, we must have

(1, a) _ (2, b1) _ · · ·_ (2, bn) _ (3, b) in cB(y, z)~ p ,

where (1, a) _ (2, b1) in p‖z and (2, bn) _ (3, b) in x‖cB(y, z) and all the
intermediate links (2, b1) _ · · · _ (2, bn) lie over B0. It follows that (1, a) _p

(2, b1) and bn = b. By Lemma 9.26(ii),

(2, b1) ≤p (2, bn) = (2, b) .

As (1, a) _p (2, b1), we deduce (1, a) ≤p (2, b), i.e. that e′ ≤p e as required.

Case e′ = (2, b) and e = (1, a). Very similar to that above.

Case e′ = (1, a′) and e = (1, a). Then (1, a′) ≤ (1, a) in cB(y, z) ~ p. Because
(1, a′) _ (1, a) in p′ = (cB(y, z)~ p)↓, we must have

(1, a′) _ (2, b1) _ · · ·_ (2, bn) _ (1, a) in cB(y, z)~ p ,

where (1, a′) _ (2, b1) and (2, bn) _ (1, a) in p‖z and and all the intermediate
links (2, b1) _ · · · _ (2, bn) lie over B0. It follows that (1, a′) _p (2, b1) and
(2, bn) _p (1, a). By Lemma 9.26(ii), (2, b1) ≤p (2, bn). Hence (1, a′) _p (1, a),
as required.

Case e′ = (2, b′) and e = (2, b). Then (3, b′) ≤ (3, b) in cB(y, z) ~ p. Because
(2, b′) _ (2, b) in p′ = (cB(y, z)~ p)↓, we must have

(3, b′) _ (2, b1) _ · · ·_ (2, bn) _ (3, b) in cB(y, z)~ p ,

where (3, b′) _ (2, b1) and (2, bn) _ (3, b) in x‖cB(y, z) and all the intermediate
links (2, b1) _ · · · _ (2, bn) lie over B0. From the immediate dependencies
in copycat, b′ = b1 and b = bn. By Lemma 9.26(ii), (2, b1) ≤p (2, bn). Hence
(2, b) ≤p (2, b), as required.

(ii) Suppose e′ _p e where e, e′ ∈ |p′| with e +ve and e′ −ve. There are various
cases.
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Case e′ = (1, a′) and e = (1, a). As (1, a′) _ (1, a) in p, we also have
(1, a′) _ (1, a) in p‖z, so in cB(y, z) ~ p, and so in cB(y, z)�p = p′. Thus
e′ ≤p′ e.

Case e′ = (1, a) and e = (2, b). As (1, a) _ (2, b) in p, we have

(1, a) _ (2, b) in p‖z .

We also have
(2, b) _ (3, b) in x‖cB(y, z) .

Therefore, composing the immediate causal dependencies,

(1, a) ≤ (3, b) in cB(y, z)~ p ,

so
(1, a) ≤ (2, b) in cB(y, z)�p = p′ ,

and thus e′ ≤p′ e.

Case e = (1, a) and e′ = (2, b). Similar to the previous case.

Case e′ = (2, b′) and e = (2, b). As (2, b′) _ (2, b) in p,

(2, b′) _ (2, b) in p‖z ,

so
(2, b′) _ (2, b) in cB(y, z)~ p .

In addition,

(2, b) _ (3, b) and (3, b′) _ (2, b′) in cB(y, z)~ p .

By composing the immediate causal dependencies we obtain

(3, b′) ≤ (3, b) in cB(y, z)~ p .

Hence
(2, b′) ≤ (2, b) in cB(y, z)�p = p′ .

Thus e′ ≤p′ e.

Now we prove σ ⊆ ccB�σ. Let p ∈ σ with |p| = x‖y for some x ∈ C(A⊥) and
y ∈ C(B). We show

p = cB(y, y)�p .

Note, as a special case of (1) in the proof above, that cB(y, y)�p vA⊥‖B p.
Observe that

|cB(y, y)�p| = |(p‖y ∧ x‖cB(y, y))↓| = x‖y = |p| .
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Now, by Corollary 9.14, p = cB(y, y)�p. Thus

p = cB(y, y)�p ∈ ccB�σ .

and the desired inclusion holds.

Having established both inclusions, we know ccB�σ = σ. The proof that
σ�ccA = σ is dual. Copycat behaves as identity.

Let p ∈ Plays(A⊥‖B), q ∈ Plays(B⊥‖C) and r ∈ Plays(C⊥‖D). We show

r�(q�p) = (r�q)�p ,

the two sides being equidefined, i.e. one side defined implies the other is defined
too. This property of plays directly entails the associativity of the composition
of strategies, i.e.

υ�(τ�σ) = (υ�τ)�σ ,

when σ : A⊥‖B, τ : B⊥‖C and υ : C⊥‖D.
For r�(q�p) to be defined,

|p| = x‖y , |q| = y‖z and |r| = z‖w

with x ∈ C(A), y ∈ C(B), z ∈ C(C) and w ∈ C(D). Under the assumption that
|p|, |q| and |r| take these forms, we show that

r�(q�p) = (p‖z‖w ∧ x‖q‖w ∧ x‖y‖r)↓B,C

the two sides being equidefined. Here, as elsewhere in this proof, we have
indicated those events which are hidden. (A similar argument establishes that
(r�q)�p equals, and is equidefined with, the r.h.s. above.) Argue

r�(q�p) = (q�p‖w ∧ x‖r)↓C

= ((p‖z ∧ x‖q)↓B)‖w ∧ x‖r)↓C

= ((p‖z ∧ x‖q)‖w)↓B ∧ x‖r)↓C , by (1) below,

= ((p‖z ∧ x‖q)‖w)↓B ∧ (x‖y‖r)↓B)↓C , by (2) below,

= ((p‖z ∧ x‖q)‖w) ∧ (x‖y‖r))↓B ↓C , by (3) below,

= (p‖z‖w ∧ x‖q‖w ∧ x‖y‖r)↓B,C ,

with all equalities equidefined, where we have relied on the following equalities
between plays, all equidefined—see Exercise 9.28:
For s ∈ Plays(A⊥‖B), w ∈ C(D),

s↓B ‖w = (s‖w)↓B . (1)

For x ∈ C(A), y ∈ C(B) and r ∈ Plays(C⊥‖D),

x‖r = (x‖y‖r)↓B . (2)
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For s, t ∈ Plays(A⊥‖B0‖C) and r ∈ Plays(C⊥‖D),

(s ∧ t)‖r = (s‖r) ∧ (t‖r) . (3)

2

Notation: We write σ : A + //B when σ : A⊥‖B.

Exercise 9.28 Prove the identities (1), (2) and (3) between expressions for
plays used in the proof above. 2

Exercise 9.29 Let A be a game. Suppose z vA y vA x in C(A). Show

cA(y, z)�cA(x, y) = cA(x, z) .

2

Remark. In the proofs above we are relying on a little algebra of paths
along with the start of an equational theory using Kleene equality to cope with
undefined expressions; this is probably worth pursuing in its own right. Recall
we say to expressions are “Kleene equal” iff one being defined implies the other
defined and equal to the first—exactly what we have been using in the proofs
and exercises above.

9.6.1 Deterministic strategies and other models

Let A be an event structure with polarity. A bare strategy σ : A is deterministic
iff

p ↪→+ q & p ↪→ r in σ ⇒ ∃s ∈ σ. q ↪→ s & r ↪→ s .

The interaction of deterministic bare strategies is deterministic. Similarly,
the composition of deterministic strategies is deterministic. (The proofs are
omitted—they can be found in [?].) However, for general games A, the copycat
strategy need not be deterministic. It will be deterministic iff A is race-free,
i.e.,

x ⊆+ y & x ⊆− z ⇒ y ∪ z ∈ C(A) .

Restricting to race-free games as objects and deterministic strategies as arrows
we obtain a category. Deterministic strategies coincide with the receptive in-
genuous strategies of Melliès and Mimram [21] and are closely related to the
strategies of Faggian and Piccolo [11], and Abramsky and Melliès’ strategies as
closure operators [1].

The subcategory of deterministic strategies on games which countable and
purely positive, i.e. for which there are no Opponent moves, is isomorphic to
that of Berry’s dI-domains and stable functions. If we restrict the subcategory
further to objects in which causal dependency is simply the identity relation we
obtain Girard’s qualitative domains with linear maps and if yet further insist
that consistency Con is determined in a binary fashion, i.e.

X ∈ Con ⇐⇒ ∀a1, a2 ∈ X. {a1, a2} ∈ Con ,
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his coherence spaces. In this sense we can see strategies as extending the world
of stable domain theory.

The relationship with the broader world of traditional domain theory, fol-
lowing in the footsteps of Scott, is more subtle. A strategy σ : A, in a game A,
determines a down-closed subset

|σ| =def {|p| | p ∈ σ}

of (C(A),vA), by virtue of Lemma 9.15. Accordingly a strategy σ : A + //B
between games determines a down-closed subset |σ| of (C(A⊥‖B),vA⊥‖B). But

(C(A⊥‖B),vA⊥‖B) ∼= (C(A⊥),vA⊥)× (C(B),vB)

∼= (C(A),vA)op × (C(B),vB) ,

noticing that vA⊥ is the opposite of the relation vA. Down-closed subsets of

(C(A),vA)op × (C(B),vB)

correspond to well-known linear maps between domains—[35]. The translation
from strategies to domain relations only preserves composition laxly however:
in general |τ�σ| ⊆ |τ | ◦ |σ|. In moving from a strategy σ to a domain relation
σ a lot is forgotten; in [36], it is shown how a strategy determines a presheaf
and a strategy between games a profunctor, giving a relationship with a form
of generalised domain theory [17, 4].

9.7 Extensions

The games and (bare) strategies we have considered can be extended in various
ways: to games of imperfect information where either player may be obstructed
from seeing the moves of the other; to games with winning conditions or pay-
off functions [5, 6]; to probabilistic and quantum strategies [37]; to a process
language with may and must equivalence [3]. We follow through here with the
example of probabilistic strategies—though without any proofs, which can be
found in [37, 38].



Chapter 10

Probabilistic strategies

As a first step we describe how to make event structures probabilistic, in itself
an issue, as event structures lie outside the models of probabilistic processes
most commonly considered.

10.1 Probabilistic event structures

A probabilistic event structure essentially comprises an event structure together
with a continuous valuation on the Scott-open sets of its domain of configura-
tions.1 The continuous valuation assigns a probability to each open set and
can then be extended to a probability measure on the Borel sets [18]. How-
ever open sets are several levels removed from the events of an event structure,
and an equivalent but more workable definition is obtained by considering the
probabilities of sub-basic open sets, generated by single finite configurations;
for each finite configuration x this specifies Prob(x) the probability of obtain-
ing events x, so as result a configuration which extends the finite configuration
x. Such valuations on configuration determine the continuous valuations from
which they arise, and can be characterised through the device of “drop func-
tions” which measure the drop in probability across certain generalised intervals.
The characterisation yields a workable general definition of probabilistic event
structure as event structures with configuration-valuations, viz. functions from
finite configurations to the unit interval for which the drop functions are always
nonnegative [37].

In detail, a probabilistic event structure comprises an event structure E with
a configuration-valuation, a function v from the finite configurations of E to the
unit interval which is

1A Scott-open subset of configurations is upwards-closed w.r.t. inclusion and such that if
it contains the union of a directed subset S of configurations then it contains an element of S.
A continuous valuation is a function w from the Scott-open subsets of C∞(E) to [0, 1] which
is ((normalized) w(C∞(E)) = 1; (strict) w(∅) = 0; (monotone) U ⊆ V ⇒ w(U) ≤ w(V );
(modular) w(U∪V )+w(U∩V ) = w(U)+w(V ); and (continuous) w(

⋃
i∈I Ui) = supi∈Iw(Ui),

for directed unions.
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• (normalized) v(∅) = 1 and satisfies the

• (drop condition) dv[y;x1, · · · , xn] ≥ 0 when y ⊆ x1, · · · , xn for finite con-
figurations y, x1, · · · , xn;

where the “drop” across the generalized interval starting at y and ending at one
of the x1, · · · , xn is given by

dv[y;x1, · · · , xn] =def v(y)−
∑
I

(−1)|I|+1v(
⋃
i∈I

xi)

—the index I ranges over nonempty I ⊆ {1, · · · , n} such that the union
⋃
i∈I xi

is a configuration. The “drop” dv[y;x1, · · · , xn] gives the probability of the result
being a configuration which includes the configuration y and does not include
any of the configurations x1, · · · , xn.

If x ⊆ y in C(E), then, provided v(x) 6= 0, the conditional probability
Prob(y | x) is v(y)/v(x); this is the probability that the resulting configuration
includes the events y conditional on it including the events x.

10.2 Probability with an Opponent

This prepares the ground for a definition of probabilistic distributed strate-
gies. Firstly though, we should restrict to race-free games, in particular because
without copycat being deterministic there would be no probabilistic identity
strategies. A probabilistic strategy in a game A, is a strategy σ : A in which we
endow σ with probability, while taking account of the fact that in the strategy
Player can’t be aware of the probabilities assigned by Opponent. To this end
we notice that σ, being a rigid family, has the form of a family of configura-
tions. We can’t just regard σ as a probabilistic event structure however. This
is because Player is oblivious to the probabilities of Opponent moves beyond
those determined by causal dependencies of σ. An appropriate valuation for σ
needs to take account of Opponent moves. It turns out to be useful to extend
the concept of valuation to bare strategies, which may also have neutral moves.

Let σ : A be a bare strategy in A, an event structure with polarity; so both
A and σ may involve neutral moves. A valuation on σ is a function v, from σ
to the unit interval, which is

• (normalized) v(∅) = 1,

• (oblivious) v(p) = v(q) when p ↪→− q for p, q ∈ σ , and satisfies the

• (drop condition) dv[q; p1, · · · , pn] ≥ 0 when q ↪→+ p1, · · · , pn for elements
of σ.

When p ↪→+ q in σ, we can still express Prob(q | p), the conditional prob-
ability of the additional neutral or Player moves making the play q given p, as
v(q)/v(p), provided v(p) 6= 0. The game being race-free and the valuation being



10.3. COMPOSING PROBABILISTIC STRATEGIES 151

oblivious ensure the probabilistic independence of Player or neutral moves with
Opponent moves with which they are concurrent.

For a race-free game A, the copycat strategy is deterministic and we obtain
a valuation on ccA by taking vccA

to be the function which is constantly 1.

10.3 Composing probabilistic strategies

Let A, B and C be race-free games. Assume σ : A⊥‖B, with valuation vσ,
and τ : B⊥‖C, with valuation vτ , are probabilistic strategies. To define their
interaction and composition we must define the valuations vτ~ vσ on τ ~ σ and
vτ�vσ on τ�σ, respectively.

Lemma 10.1 For r ∈ τ ~ σ, defining

(vτ~ vσ)(r) =def

∑
{vτ (q).vσ(p) | q ~ p = r} ,

yields a valuation on τ ~ σ.

Lemma 10.2 For r ∈ τ�σ, defining

(vτ�vσ)(r) =def

∑
{vτ (q).vσ(p) | p, q minimum s.t. q�p = r} ,

yields a valuation on τ�σ.

In the above lemma it is important to restrict to minimum p, q such that
q�p = r; otherwise we over-count contributions to the probability.

Theorem 10.3 For race-free games A, B and C, we define the composition of
probabilistic strategies σ from A to B, with valuation vσ, and τ from B to C,
with valuation vτ , to be τ�σ, with valuation vτ�vσ. Taking objects to be games
and arrows from a game A to a game B to be probabilistic strategies in the game
A⊥‖B, with composition as above, yields a category in which copycat, with the
constantly-1 valuation, is identity.

The next example illustrates how through probability leaks we can track
deadlocks, or divergences, that can arise in the composition of strategies. (Such
branching behaviour might otherwise be lost in the composition of strategies
and through concentrating on rigid images.)

Example: Let B be the game consisting of two concurrent Player events b1 and
b2, and C the game with a single Player event c. We illustrate the composition
of two probabilistic strategies σ from the empty game ∅ to B and τ from B to C.
The strategy σ : ∅⊥‖B plays b1 with probability 2/3 and b2 with probability 1/3
(and plays both with probability 0). The strategy τ : B⊥‖C does nothing if just
b1 is played and plays the single Player event c of C with certainty, probabilty
1, if b2 is played. Their composition yields the strategy τ�σ : ∅⊥‖C which plays
c with probability 1/3, so has a 2/3 chance of doing nothing. 2
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One way in which the probabilistic interaction of strategies is important is
in calculating the expected outcome of the competition between a probabilistic
strategy and a counterstrategy, the subject of the following example.

Example: Given a probabilistic strategy σ : A, with valuation vσ, and a coun-
terstrategy τ : A⊥, with valuation vτ , we obtain a valuation vτ~ vσ on their
interaction τ ~ σ : A0, where now all the events of the interaction are neutral.
Via the order isomorphism θ : C(Pr(τ ~ σ)) ∼= τ ~ σ we obtain a configuration-
valuation (vτ ~ vσ) ◦ θ, making Pr(τ ~ σ) a probabilistic event structure. As
such we get a probability measure µσ,τ on the Borel sets of its configurations.
Assuming a payoff given as a Borel measurable function X from C∞(A) to the
real numbers, the expected payoff is obtained as the Lebesgue integral

Eσ,τ (X) =def

∫
x∈C∞(Pr(τ~σ))

X(|x|) dµσ,τ (x) ,

where |x| ∈ C∞(A) is the configuration of A over which x ∈ C∞(Pr(τ ~ σ)) lies.
2
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