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Towards a more basic language

@ Aim: removal of variables to reveal symmetry of input and output

@ Transitions for value-passing carry labels 7, a?n, aln
2 a?0
a?x — p —— p[0/x]

a?n

pln/x]

@ This suggests introducing prefix a?n.p (as well as a!n.p) and view
a?’x — pasasum ) a?n.p[n/x] N
infinite sum

o View a?n and a!n as complementary actions

@ Synchronization can only occur on complementary actions



Pure CCS

@ Actions: a, b, c, ...
e Complementary actions: 3, b, T, ...
o Internal action: 7
o Notational convention: 3 = a
@ Processes:
p = Ap prefix
| Dieipi sum
| pollpr parallel
| p\L restriction
| plf] relabelling
| P

@ Process definitions:

def

A ranges over T, a, a
for any action a
| is an indexing set

L a set of actions
f a function on actions
process identifier



Transition rules for pure CCS

@ Nil process no rules
@ Guarded processes

A.p LN p
e Sum

A .
pi—=>p  JEl

A
> ier Pi = Pg
o Parallel composition
Ao Ay
Po — Py p1 — p1
Ao A /
po |l pr = poll P2 po |l Pr = po || P1
a a
Po — Pg p1— p1

poll 1= ph Il P}



@ Restriction
p 2 p ANZLUL

S where L={3|a€c L}
p\L=p'\L

o Relabelling
A
p=rp
o),
plf] — p'[f]
where f is a function such that f(7) = 7 and f(3) = f(a)

o ldentifiers

A Pdﬁf




Transition systems

@ Given a CCS process p, can construct its transition system

@ A transition system is:

(S,i, L, tran)
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Transition systems

@ Given a CCS process p, can construct its transition system

@ A transition system is:

initial state transition relation, tran C S x L x S
S,i, L, tran)
set of states set of labels
@ Graphically:

S = {stuv}

i = s
L = {ab,c,d}
tran = {(s,a,t),
(s, b, u),

(t,c,v),

(u,d,v) }



Transition systems from CCS

o Example: (a || b)[f] where f(a) = w and f(b) = w
o Example: a[f] || b[f] where f(a) = w and f(b) = w



Realising transition systems

Give pure CCS terms for:



CCS operations on transition systems

e \.p:




CCS operations on transition systems

e \.p:

@ po + pi:

Po + p1




e ab| b:

b

ol

N
a.b.nil || E.rglj a



e ab| b:

a b
5 B Vb
N\
a.bonil | E.rglj a b

o P where P % p:




e ab| b:

a b
5 8
\ o 4
a.bonil | E.rglj a b

o P where P % p:

p\ L p[f]: ...

A denotational semantics!



From value-passing to pure

A translation giving a pure CCS process p from a value-passing CCS
closed term p
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From value-passing to pure

A translation giving a pure CCS process p from a value-passing CCS
closed term p

nil nil

Cop [ (5)

(ala — p) am.p

where a evaluates to m



From value-passing to pure

A translation giving a pure CCS process p from a value-passing CCS
closed term p

‘ =

P

nil nil

(r=p) | (p)

(ala — p) am.p where a evaluates to m

(a@?x = p) | D menum @m.p[m/x]



From value-passing to pure

A translation giving a pure CCS process p from a value-passing CCS
closed term p

. pr P
nil nil
(r=p) | (p)
(ala— p) | am.p where a evaluates to m
(a?x = p) | D menum @M-plm/X]
(b—p) ) if b evaluates to true
nil if b evaluates to false




From value-passing to pure

A translation giving a pure CCS process p from a value-passing CCS
closed term p

. pr P
nil nil
(r=p) | (p)
(ala— p) | am.p where a evaluates to m
(a?x = p) | D menum @M-plm/X]
(b—p) ) if b evaluates to true
nil if b evaluates to false
p+p | Potp




From value-passing to pure

A translation giving a pure CCS process p from a value-passing CCS
closed term p

. pr P
nil nil
(r=p) | (p)
(ala— p) | am.p where a evaluates to m
(a?x = p) | D menum @M-plm/X]
(b—p) ) if b evaluates to true
nil if b evaluates to false
po + p1 po + p1
Po || p1 Po || p1




From value-passing to pure

A translation giving a pure CCS process p from a value-passing CCS
closed term p

-
nil nil
(r=p) | (p)
(ala— p) | am.p where a evaluates to m
(a?x = p) | D menum @M-plm/X]
(b—p) ) if b evaluates to true
nil if b evaluates to false
po + p1 po + p1
Po || pr po || p1
p\L p\{am|a € L& me Num}




From value-passing to pure

A translation giving a pure CCS process p from a value-passing CCS

closed term p

=

| P | P
nil nil
(r—p) (7-p)
(ala — p) am.p where a evaluates to m
(a?x = p) | D menum @M-plm/X]
(b—p) ) if b evaluates to true
nil if b evaluates to false
po + p1 po + p1
Po |l 1 Po |l 1
p\L p\{am|a € L& me Num}
P(ai, - ,ak) | Pmy, m, where a; evaluates to m;
For every definition P(xy,--- ,xk), we have a collection of definitions

Pmy,....m, indexed by my,--- , me € Num.




Correspondence

Theorem

p A p iff

o)

lw



Recursion: an alternative

@ Instead of a process
lef
P where P = p

we can use
rec(P = p)

with rule
A
plrec(P = p)/P] = p'

rec(P = p) 2, o
o Example: rec(P = a.nil + b.P)



Recursion: an alternative

@ Instead of a process
P where Pd:efpand R=gq
we can use the notation
reci(P=p,Q = q)
and for @ we can use

reco(P =p,Q =q)



Recursion: an alternative

@ Instead of a process
def
P where P = pand Q = g
we can use the notation

reci(P=p,Q =q)

and for @ we can use

reco(P =p,Q =q)

@ Generally, instead of P; where P; = p; is a collection of definitions
indexed by i € I, can use

I’ECJ'(P,' = Pi)ie/

which is also written
recj(P = p)



Proofs of correctness

o By satisfying formulas in a logic

o By satisfying an equivalence



