Topics in Concurrency

Lecture 3

Glynn Winskel

13 February 2019

Towards a more basic language

- Aim: removal of variables to reveal symmetry of input and output
- Transitions for value-passing carry labels τ , a?n, a!n

- This suggests introducing prefix α ?n.p (as well as α !n.p) and view α ? $x \to p$ as a sum $\sum_{n} \alpha$?n.p[n/x] infinite sum
- View α ?n and α !n as complementary actions
- Synchronization can only occur on complementary actions

Pure CCS

- Actions: *a*, *b*, *c*, . . .
- Complementary actions: \overline{a} , \overline{b} , \overline{c} , ...
- Internal action: au
- Notational convention: $\overline{a} = a$
- Processes:

• Process definitions:

$$P\stackrel{\mathrm{def}}{=} p$$

Transition rules for pure CCS

- Nil process no rules
- Guarded processes

$$\lambda.p \xrightarrow{\lambda} p$$

Sum

$$\frac{p_j \xrightarrow{\lambda} p' \qquad j \in I}{\sum_{i \in I} p_i \xrightarrow{\lambda} p'_0}$$

Parallel composition

$$\begin{array}{cccc} & p_0 \xrightarrow{\lambda} p_0' & & p_1 \xrightarrow{\lambda} p_1' \\ \hline p_0 \parallel p_1 \xrightarrow{\lambda} p_0' \parallel p_1 & & p_0 \parallel p_1 \xrightarrow{\lambda} p_0 \parallel p_1' \\ \hline & & & & \\ \hline p_0 \xrightarrow{a} p_0' & & p_1 \xrightarrow{\overline{a}} p_1' \\ \hline & & & & \\ \hline p_0 \parallel p_1 \xrightarrow{\tau} p_0' \parallel p_1' & & \\ \hline \end{array}$$

Restriction

$$\frac{p \xrightarrow{\lambda} p' \qquad \lambda \not\in L \cup \overline{L}}{p \setminus L \xrightarrow{\lambda} p' \setminus L} \quad \text{where } \overline{L} = \{ \overline{a} \mid a \in L \}$$

where
$$L = \{a \mid a \in P \setminus L \xrightarrow{\lambda} p' \setminus L\}$$

Relabelling

$$\frac{p \xrightarrow{\lambda} p'}{p[f] \xrightarrow{f(\lambda)} p'[f]}$$

where f is a function such that $f(\tau) = \tau$ and $f(\overline{a}) = \overline{f(a)}$

Identifiers

$$rac{p \stackrel{\lambda}{
ightarrow} p' \qquad P \stackrel{\mathrm{def}}{=} p}{P \stackrel{\lambda}{
ightarrow} p'}$$

Transition systems

- Given a CCS process p, can construct its transition system
- A transition system is:

(S, i, L, tran)

Transition systems

- Given a CCS process p, can construct its transition system
- A transition system is:

Transition systems

- Given a CCS process p, can construct its transition system
- A transition system is:

Graphically:

Transition systems from CCS

- Example: $(a \parallel \overline{b})[f]$ where f(a) = w and f(b) = w
- Example: $a[f] \parallel \overline{b}[f]$ where f(a) = w and f(b) = w

Realising transition systems

Give pure CCS terms for:

CCS operations on transition systems

• *λ.p*:

CCS operations on transition systems

• *λ.p*:

• $p_0 + p_1$:

• $a.b \parallel \overline{b}$:

ullet $a.b \parallel ar{b}$:

• P where $P \stackrel{\text{def}}{=} p$:

• $a.b \parallel \bar{b}$:

• P where $P \stackrel{\text{def}}{=} p$:

 $p \setminus L, p[f]: \ldots$

A denotational semantics!

р	\widehat{p}
nil	nil

р	\hat{p}
nil	nil
(au o p)	$(au.\widehat{p})$

р	p	
nil	nil	
(au o p)	$(\tau.\widehat{p})$	
$(\alpha! a \rightarrow p)$	$\overline{\alpha} \overline{m}.\widehat{p}$	where a evaluates to m

р	p	
nil	nil	
(au o p)	$(\tau.\widehat{p})$	
$(\alpha! a \rightarrow p)$	$\overline{\alpha m}.\widehat{p}$	where a evaluates to m
$(\alpha?x \rightarrow p)$	$\sum_{m \in \mathbf{Num}} \alpha m. \widehat{p[m/x]}$	

р	p	
nil	nil	
(au o p)	$(au.\widehat{p})$	
$(\alpha! a \rightarrow p)$	$\overline{\alpha m}.\widehat{p}$	where a evaluates to m
$(\alpha?x \rightarrow p)$	$\sum_{m \in \mathbf{Num}} \alpha m. \widehat{p[m/x]}$	
(b o p)	p	if b evaluates to true
	nil	if b evaluates to false

р	p	
nil	nil	
(au o p)	$(\tau.\widehat{p})$	
$(\alpha! a \rightarrow p)$	$\overline{\alpha}\overline{m}.\widehat{p}$	where a evaluates to m
$(\alpha?x \to p)$	$\sum_{m \in \mathbf{Num}} \alpha m. \widehat{p[m/x]}$	
(b o p)	\widehat{p}	if b evaluates to true
	nil	if b evaluates to false
$p_0 + p_1$	$\widehat{ ho_0}+\widehat{ ho_1}$	

р	p	
nil	nil	
(au o p)	$(au.\widehat{p})$	
$(\alpha! a \rightarrow p)$	$\overline{\alpha m}.\widehat{p}$	where a evaluates to m
$(\alpha?x \rightarrow p)$	$\sum_{m \in \mathbf{Num}} \alpha m. \widehat{p[m/x]}$	
(b o p)	$ \hat{p} $	if b evaluates to true
	nil	if b evaluates to false
$p_0 + p_1$	$\widehat{ ho_0}+\widehat{ ho_1}$	
$p_0 \parallel p_1$	$ \widehat{ ho_0} \parallel \widehat{ ho_1} $	

р	\widehat{p}	
nil	nil	
(au o p)	$(au.\widehat{p})$	
$(\alpha! a \rightarrow p)$	$\overline{\alpha m}.\widehat{p}$	where a evaluates to m
$(\alpha?x \rightarrow p)$	$\sum_{m \in \mathbf{Num}} \alpha m. \widehat{p[m/x]}$	
(b o p)	\widehat{p}	if b evaluates to true
	nil	if b evaluates to false
$p_0 + p_1$	$\widehat{ ho_0}+\widehat{ ho_1}$	
$p_0 \parallel p_1$	$\mid\widehat{ ho_0}\mid\mid\widehat{ ho_1}\mid$	
$p \setminus L$	$\widehat{p} \setminus \{\alpha m \mid \alpha \in L \& m \in Num\}$	

A translation giving a pure CCS process \widehat{p} from a value-passing CCS closed term p

р	\widehat{p}	
nil	nil	
(au o p)	$(au.\widehat{p})$	
$(\alpha! a \rightarrow p)$	$\overline{\alpha m}.\widehat{p}$	where a evaluates to m
$(\alpha?x \rightarrow p)$	$\sum_{m \in \mathbf{Num}} \alpha m. \widehat{p[m/x]}$	
(b o p)	p	if b evaluates to true
	nil	if b evaluates to false
$p_0 + p_1$	$\widehat{ ho_0}+\widehat{ ho_1}$	
$p_0 \parallel p_1$	$\mid \widehat{ ho_0} \mid \mid \widehat{ ho_1} \mid$	
$p \setminus L$	$\widehat{p} \setminus \{\alpha m \mid \alpha \in L \& m \in Num\}$	
$P(a_1,\cdots,a_k)$	P_{m_1,\cdots,m_k}	where a_i evaluates to m_i

For every definition $P(x_1, \dots, x_k)$, we have a collection of definitions P_{m_1,\dots,m_k} indexed by $m_1,\dots,m_k \in \mathbf{Num}$.

Correspondence

Theorem

$$p \xrightarrow{\lambda} p' \ \textit{iff} \ \widehat{p} \xrightarrow{\widehat{\lambda}} \widehat{p'}$$

Recursion: an alternative

Instead of a process

P where
$$P \stackrel{\text{def}}{=} p$$

we can use

$$rec(P = p)$$

with rule

$$\frac{p[\operatorname{rec}(P=p)/P] \xrightarrow{\lambda} p'}{\operatorname{rec}(P=p) \xrightarrow{\lambda} p'}$$

• Example: rec(P = a.nil + b.P)

Recursion: an alternative

Instead of a process

$$P$$
 where $P \stackrel{\text{def}}{=} p$ and $Q = q$

we can use the notation

$$\mathsf{rec}_1(P=p,Q=q)$$

and for Q we can use

$$rec_2(P=p,Q=q)$$

Recursion: an alternative

Instead of a process

$$P$$
 where $P \stackrel{\text{def}}{=} p$ and $Q = q$

we can use the notation

$$rec_1(P = p, Q = q)$$

and for Q we can use

$$rec_2(P = p, Q = q)$$

• Generally, instead of P_j where $P_i = p_i$ is a collection of definitions indexed by $i \in I$, can use

$$rec_j(P_i = p_i)_{i \in I}$$

which is also written

$$rec_i(\vec{P} = \vec{p})$$

Proofs of correctness

- By satisfying formulas in a logic
- By satisfying an equivalence