Topics in Concurrency

Lectures 4

Glynn Winskel

15 February 2019

Two vending machine implementations

Ven Ven'

def —— —
User = coin.coffee.change.work

Specification and correctness:

@ Assertions and logic (e.g. (User || Ven) \ {coin, change, coffee, tea}
always outputs work)

e Equivalence

Language equivalences

@ A trace of a process p is a (possibly infinite) sequence of actions

(817 azy...,diydji41,y -)

such that
ai ap aj ai+1
p—p1L—...Pi-1 — Pi — ...

@ Two processes are trace equivalent iff they have the same sets of
traces

@ Are Ven and Ven' trace equivalent?

@ Are (User || Ven) \ {coin, change, coffee, tea} and
(User || Ven') \ {coin, change, coffee, tea} trace equivalent?

Completed trace equivalence

@ A trace is maximal if it cannot be extended (it is either infinite or
ends in a state from which there is no transition)

@ Processes are completed trace equivalent iff they have the same sets
of maximal traces.

@ Are Ven and Ven’' completed trace equivalent?

@ Are (User || Ven) \ {coin, change, coffee, tea} and
(User || Ven') \ {coin, change, coffee, tea} completed trace
equivalent?

A more subtle form of equivalence is needed to reason compositionally
about processes

Bisimulation — a process equivalence

To
@ support equational reasoning

o simplify verification

Strong bisimulation

A (strong) bisimulation is a relation R between states for which
If p R g then:
QVa,p. pSHp =
q’. g%q & pRq
Q@Va,qd. ¢5qg =
p’. p=p & pRG

(Strong) bisimilarity is an equivalence on states

p~gq iff p R g for some (strong) bisimulation R

Exhibiting bisimilarity

To show p; ~ p,, we give a relation R such that R is a bisimulation and
p1 R po.

Examples: Give bisimulations to show
@ alb~ab+b.a

@ On transition systems, s ~ v where

0 b
a/ t
S 8 b
a w
aN u

Examples: Looping

Examples: Inessential branching

b
o—0
a/ S1 S3
a b
7 7 (&——e——e
S0 \a to ty (553
b
*———o

So Sy

Examples: Internal choice

?~7

Bisimulations

If R, S, R; for i € I are strong bisimulations then so are:
@ /d, the identity relation the set of states of any transition system
@ R°P, the converse/opposite relation
@ R oS, the composition (when the transition systems involved match
up so that the composition makes sense)
Q@ U, Ri, the union (when the relations are over the same transition
systems)
(1)—(3) imply that ~ is an equivalence relation, and (4) that ~ is a
bisimulation.

Equational properties of bisimulation

+ and || are commutative and associative w.r.t. ~, with unit nil

If p ~ g then:

@ a.p~a.q
p+r~q+r
plr~qllr
p\L~qg\L
plf] ~ qlf]
... bisimilarity is a congruence

Expansion laws for CCS

In general,
p~> fap [pSp}

We can use this to remove everything but prefixing and sums:
Suppose p ~) ;. cj.p; and g ~ ZJ.GJ Bj.q;.

p\L ~ > {ai(pi\L)|a; &L}
plfl ~ D {f(a).(pilf]) i€}
plla ~ > ailpilla)+> Bi(ell a)

icl jed

+ > Al @) lai =B}

Strong bisimilarity and specifications

An example:
def
Sem = get.put.Sem
def —— —_—
Py = get.a;.by.put.Py
P2 déf g?.az.bz.m.:‘:b
def
Sys = (Sem | Py P»)\ {get, put}
Spec def T.a1.b1.Spec + 1.a>.b,.Spec
Spec’ def T.a1.b1.7.Spec’ + T.a>.by.7.Spec’
Do we have

? Sys ~ Spec ?7 or 7 Sys ~ Spec’

Weak bisimulation

Hiding 7 actions
(] 7 def *
= =

T

*——o 2 (53D)

Weak bisimulation is bisimulation w.r.t. =

Weak bisimulation

A weak bisimulation is a relation R between states for which
If p R g then:

Q@ Vop. p=p =

Aq'. g=q & pRq
QVaqd. 9g=¢ =

3. p=p & pPRYG

Weak bisimulation is not a congruence ~~ observational congruence.

