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Specification logics

Logics for specifying correctness properties.
We'll look at:

@ Basic logics and bisimilarity
@ Fixed points and logic
o CTL

@ Model checking



Finitary Hennessy-Milner Logic

Assertions:

As=T|F|AcnAL| A vAL | A (MA|(D)A][AA] [-]A

Satisfaction: sk A

sk T always
sE F never
sEA)ANAL if sEAy and sEA;
sEA VA if sEA) or sEA;
seE-A if not seA

s= (M)A if there exists s’ s.t. s A5 and s’ E A

sE=(-)A if thereexist s’,Ast. s A s and s’ EA

se[AJA iff foralls'st. s 2 s have s’ £ A

se[-]A iff forall s’,Ast. s 2 5" have s’ = A
Alternatively, derived assertions

NJA=-()-A  [-]A=(-)-A
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Examples

Generally:



(Strong) bisimilarity and logic

A non-finitary Hennessy-Milner logic allows an infinite conjunction

A= NA | -Al (VA

iel

with semantics

s NAiff se A forall jel
i€eA

Define

p=q iff for all assertions A of H-M logic
pEAIffge A

Theorem

-
~ = ~

This gives a way to demonstrate non-bisimilarity of states



Fixed points and model checking

@ The finitary H-M logic doesn’t allow properties such as
the process never deadlocks

o We can add particular extensions (such as always, never) to the logic
(CTL)

o Alternatively, what about defining sets of states ‘recursively’? The
set of states X that can always do some action satisfies:

X = ()T A[-1X

o A fixed point equation: X = ¢(X)

@ But such equations can have many solutions. ..



Fixed point equations

@ In general, an equation of the form X = ¢(X) can have many
solutions for X.

o Fixed points are important: they represent steady or consistent
states

@ Range of different fixed point theorems applicable in different
contexts e.g.

Theorem (1-dimensional Brouwer's fixed point theorem)
Any continuous function f : [0,1] — [0,1] has at least one fixed point

(used e.g. in proof of existence of Nash equilibria)

@ We'll be interested in fixed points of functions on the powerset
lattice ~ Knaster-Tarski fixed point theorem and least and greatest
fixed points



Least and greatest fixed points on transition systems:
examples

o« e

b

In the above transition system, what are the least and greatest subsets of
states X, Y and Z that satisfy:



The powerset lattice

@ Given a set S, its powerset is
P(S)={S5]5<S}

@ Taking the order on its elements to be inclusion, ¢, this forms a
complete lattice

We are interested in fixed points of functions of the form

p:P(S) = P(S)

@ ¢ is monotonic if S¢S’ implies (S) € p(S")
@ a prefixed point of ¢ is a set X satisfying p(X) ¢ X
@ a postfixed point of ¢ is a set X satisfying X ¢ p(X)



Knaster-Tarski fixed point theorem for minimum fixed
points

Theorem
For monotonic ¢ : P(S) — P(S), define

m=[ U XcS|p(X)cX}

Then m is a fixed point of ¢ and, furthermore, is the least prefixed point:
Q m=p(m)
Q@ »(X) < X impliesmc X

m is conventionally written
pX.p(X)

Used for inductive definitions: syntax, operational semantics, rule-based
programs, model checking



Knaster-Tarski fixed point theorem for maximum fixed
points

Theorem
For monotonic ¢ : P(S) — P(S), define

M= J{XcS|Xcp(X)}

Then M is a fixed point of p and, furthermore, is the greatest postfixed
point.

Q@ M=yp(M)
@ X cp(X) implies X c M

M is conventionally written
vX.p(X)

Used for co-inductive definitions, bisimulation, model checking



(Strong) bisimilarity as a maximum fixed point [§5.2 p68|
Bisimilarity can be viewed as a fixed point ~ model checking algorithms.

Given a relation R (on CCS processes or states of transition systems)
define:
pe(R)q
iff
Q Vo.p. pop =
3. q=>q & pRq
Q@ Voqd. g>qg =

. p=p & pPRY

Lemma
R c p(R) iff R is a (strong) bisimulation.

Hence, by Knaster-Tarski fixed point theorem for maximum fixed points:

Theorem
Bisimilarity is the greatest fixed point of .



Theorem
Bisimilarity is the greatest fixed point of .

Proof.

b4
1l

(J{R | R is a bisimulation}

U{RIR<co(R)}
vX.p(X)

(1) is by definition of ~

(2) is by Lemma

(3) is by Knaster-Tarski for maximum fixed points: note that ¢ is
monotonic

Question: How is this different from the least fixed point of ?



The modal p-calculus [§4.2 p48]

Az=T|F|AoAAL|Agv A=Al (NA](5)A]| X | vX.A

To guarantee monotonicity (and therefore the existence of the fixed
point), require the variable X to occur only positively in A in vX.A. That
is, X occurs only under an even number of —s.

sevX.A iff sevX.A
ie. seU{ScP|ScA[S/X]}
the maximum fixed point of the monotonic
function S — A[S/X]

As before, we take

Now also take
/,LXA = ﬁVX(—!A[—!X/X])



Example

Consider the process
P 2. (a.P + b.c.nil)

Which states satisfy
o uX.(a)X
o vX.(a)X
o pX.[a]X
e vX[a]X



Approximants

Let ¢ : P(S) —» P(S) be monotonic.

@ is M-continuous iff for all decreasing chains Xp2 X;2---2X,2 -

et -o(Nx)

new new

If the set of states S is finite, continuity certainly holds

Theorem
If o : P(S) -» P(S) is N-continuous:

vXo(X) = 1¢"(S)

new



Approximants

Let ¢ : P(S) —» P(S) be monotonic.
@ is U-continuous iff for all increasing chains Xy € Xj €

U et = (Ux)

new new

If the set of states S is finite, continuity certainly holds

Theorem
If o : P(S) - P(S) is U-continuous:

pX.o(X) = U ¢"(2)

new

N

N



Proving interpretations

Proposition

s uX.(a)T v (=)X in any transition system iff there exists a sequence
of transitions from s to a state t where an a-action can occur.



Proving interpretations

Proposition
s = vX.(a)X in a finite-state transition system iff there exists an infinite
sequence of a-transitions from s.

There are infinite-state transition systems where ©(X) = (a)X is not
(N-continuous.



Bisimilarity and modal u

For finite-state processes, modal-u can be encoded in infinitary H-M logic

if finite-state processes p and g are bisimilar then they
satisfy the same modal-x assertions

Note that logical equivalence in modal-x does not generally imply
bisimilarity (due to the lack of infinitary conjunction)



