Topics in Concurrency

Lectures 6

Glynn Winskel

20 February 2019

CTL: Computation tree logic
A logic based on paths

A = At|AorAL A VAL |-A| T F|
EXA|EGA|E[A U A;]

A path from state s is a maximal sequence of states
™= (7T0,7T1,...,71’,'...)

such that s = mg and m; — ;41 for all /.

seEXA iff Exists a path from s along which the
neXt state satisfies A

sEEGA iff Exists a path from s along which
Globally each state satisfies A

s=E[AUB] iff Exists a path from s along which
A holds Until B holds

Derived assertions

AX B
EF B
AG B
AF B
A[BU C]

The Until operator is strict

-EX -B

E[T U B]

-EF -B

-EG -B
-E[-CU-BA-C]A-EG-C

From CTL to

Want a modal-u assertion equivalent to EG A.
Begin by writing a fixed point equation:
X =p(X) where ©o(X)=AnA([-]F Vv {(-)X)
Least or greatest fixed point? Consider:
Ay g A pXAN([-]FVv(=)X) =2
s '\—/.f vXAn([-]F v{(=)X) ={s,t}

Alternatively, consider the approximants for finite-state systems.

A translation into modal-x

EX a (-)A
EGa VY. Ar([-]F Vv {-)Y)
E[aUb] = uZBv(Ar{(-)Z)

Based on this, we get a translation of CTL into the modal-y calculus.

Proposition

sEvY. An([-]FVv{(-)Y)

in a finite-state transition system iff
there exists a path w from s such that w; = A for all i.

Proof:
Take o(Y) " An ([-]F v (-)Y).

vY.o(Y)=()"(T) where T2p(T)2--

new

since ¢ is monotonic and (-continuous due to the set of states being

finite.

By induction, for n>1

sE"(T) iff thereis a path of length < n from s along which
all states satisfy A and the final state has no
outward transition
or there is a path of length n from s along which

all states satisfy A and the final state has some
outward transition

Assuming the number of states is k, we have
P(T) = ¢4(T)

and hence vY.p(Y) = o*(T).
sevY.o(Y) iff sEK(T)
iff there exists a maxmial A path of length < k from s
or there exists a necessarily looping A path
of length k from s O

Model checking modal-u

Assume processes are finite-state
@ Brute force (+ optimizations) computes each fixed point

@ Local model checking [Larsen, Stirling and Walker, Winskel]
"“Silly idea” Reduction Lemma

peVX.p(X) = pep(uX.{p} v (X))

Modal-p for model checking

Extend the syntax with defined basic assertions and adapt the fixed point
operator:

As=U|T|F|-A|ArB|AvVB|(a)A|()A|vX{p1.....pn}.A

Semantics identifies assertions with subsets of states:

U is an arbitrary subset of states

T=8

F=92

—A=S\A

ArNB=AnB

AvB=AuB

(a)A={peS|3gp>qgnrqecA}

° (—)A:{p€S|EIq,a.pi>q/\qu}

o vX{p1,...,pn}A=U{UCS|Uc{ps,....,pa} VA[U/X]}

As before, uX.A = -vX.-A[-X/X] and now
vX.A=vX{}.A

The reduction lemma

Lemma
Let ¢ : P(S) — P(S) be monotonic. For all Uc S,

UcvX.p(X)
= UcpwX.(Uup(X)))

In particular,
pevX.po(X)

= pep(X.({p}up(X)))

Model checking algorithm

Given a transition system and a set of basic assertions {U, V,...}:

prU
prU
p-T
p+-F
p+-B
p-AAB
p-AvB
p+{(a)B

p vX{7}.B
pruvX{Ff}.B

true if peU
false if p¢ U
true

false

not(p+ B)

prA and p+ B

prA or prB

qgu-Bor ...org,-B
{gr,--.an} ={qlp>q}

true if pe {7}

prBlwX{p,7}.B/X] if p¢{r}

Can use any sensible reduction technique for not,or and and.

Examples

Define the pure CCS process

P %" 2 (a.nil + a.P)

Check
Pr+uvX.(a)X
and check
PrpY.[-]FVv(-)Y
Note:

wY.[-]Fv{(=)Y =Y. =([-]F v{-)-Y))

Well-founded induction

A binary relation < on a set A is well-founded iff there are no infinite
descending chains
e <@, << ap<ag

The principle of well-founded induction:
Let < be a well-founded relation on a set A. Let P be a property on A.
Then
Vae A P(a)
iff
Vae A ((Vb<a. P(b)) = P(a))

Correctness and termination of the algorithm

Write (p £ A) = true iff p is in the set of states determined by A.

Theorem

Let p € P be a finite-state process and A be a closed assertion. For any
truth value t € {true, false},

(prA) ="t <« (peA)=t

Proof sketch

For assertions A and A’, take

A’ is a proper subassertion of A
A<A << o A=zuvX{F}B &
Ip A =uvX{F,p}B & p¢r

Want, for all closed assertions A,
Q(A) <= VqgePVt(qrA) >"t <= (geA)=t

We show the following stronger property on open assertions by
well-founded induction:

Vclosed substitutions for free variables
QY (A) = Bi/X1,...,Bn/Xy:
Q(B)&...&Q(B,) = QA[B1/X1,.... BalXa])

The proof (presented in the lecture notes) centrally depends on the
reduction lemma.

