
Topics in Concurrency
Lecture 7

Glynn Winskel

22 February 2019



Petri nets

Introduced in 1962 (though claimed to have been invented by 1939)

Starting point: think of a transition system where a number of
processes can be in a given state and then allow coordination

Conditions: local components of state

Events: transitions and coordination

Allows study of concurrency of events, reasoning about causal
dependency and how the action of one process might conflict with
that of another

The first of a range of models: event structures, Mazurkiewicz trace
languages, asynchronous transition systems, . . .

Many variants with different algorithmic properties and expressivity



∞-multisets

Multisets generalise sets by allow elements to occur some number of
times. ∞-multisets generalise further by allowing infinitely many
occurrences.

ω∞ = ω ∪ {∞}

Extend addition:
n +∞ =∞ for n ∈ ω∞

Extend subtraction
∞− n =∞ for n ∈ ω

Extend order:
n ≤∞ for n ∈ ω∞

An ∞-multiset over a set X is a function

f ∶ X → ω∞

It is a multiset if f ∶ X → ω.



Operations on ∞-multisets

f ≤ g iff ∀x ∈ X .f (x) ≤ g(x)
f + g is the ∞-multiset such that

∀x ∈ X . (f + g)(x) = f (x) + g(x)

For g a multiset such that g ≤ f ,

∀x ∈ X . (f − g)(x) = f (x) − g(x)



General Petri nets

A general Petri net consists of

a set of conditions P

a set of events T

a pre-condition map assigning to each event t a multiset of
conditions ●t

3

5

a post-condition map assigning to each event t an ∞-multiset of
conditions t●

2

∞

a capacity map Cap an ∞-multiset of conditions, assigning a
capacity in ω∞ to each condition



Dynamics

A marking is an ∞-multiset M such that

M ≤ Cap

giving how many tokens are in each condition.
∞

The token game:

For M,M′ markings, t an event:

M tÐ→M′ iff ●t ≤M & M′ =M − ●t + t●

An event t has concession (is enabled) at M iff

●t ≤M & M − ●t + t● ≤ Cap



Cap: ∞

Cap: 1

Cap: 4

2

1

2

Cap: ∞

Cap: 1

Cap: 4

2

1

2



Further examples

Cap: 5
1

Cap: 5
2 1

2 2

Cap: 5
2 2



Basic Petri nets

Often don’t need multisets and can just consider sets.

A basic net consists of

a set of conditions B

a set of events E

a pre-condition map assigning a subset of conditions ●e to any event
e

a post-condition map assigning a subset of conditions e● to any
event e such that

●e ∪ e● ≠ ∅

The capacity of any condition is implicitly taken to be 1:

∀b ∈ B ∶ Cap(b) = 1

A marking M is now a subset of conditions.

M eÐ→M′ iff
●q ⊆M & (M ∖ ●e) ∩ e● = ∅

& M′ = (M ∖ ●e) ∪ e●



Concepts

Concurrency

Forwards conflict Backwards conflict

Contact



Safe nets

Contact occurs in marking M if there exists an event e such that

●e ⊆ M (M ∖ ●e) ∩ e● ≠ ∅

A basic net is safe if there is no marking reachable from the initial
marking in which contact occurs.



CCS operations on basic nets

A safe Petri net semantics for CCS can be constructed by ‘surgery’ on
the nets:

Nil process

Prefixing

p + q

p ∥ q


