Topics in Concurrency
Lecture 11 + Lecture 12

Jonathan Hayman

9 & 11 March 2015

The NSL protocol in SPL

The initiator initiator of the protocol is parameterized by the identity of
the initiator and their intended participant:

Init(A,B) = outnew x {x,A}pyup)-
in {X,Y» B}Pub(A)'
out {y}pub(B)
The responder:
Resp(B) = in {X7Z}F’ub(B)-

outnew y {x,y, B}Pub(z)'
in {y}pPub(B)

Dolev-Yao assumptions

We can program various forms of attacker process. Viewing messages as
persisting once output to the network, they output new messages built

from existing ones.

Spy1
Spy»
Spys
Spya

Spy

in t1.in Y. out (Y1, 12)

in (1,2). out)y out 1),

in X.in 9. out {4} pup(x)

in Priv(X).in {¢} pup(x)- out ¢

||ie{1,2,3,4} Spy;

The NSL system [p91]

We reason about concurrent runs of the protocol in parallel with w-copies
of the attacker.

Pspy = Spy

Pinie = || nit(A,B)
A,BeAgents

Presp = || IResp(A)
AcAgents

Messages from one run of the protocol can be used by the attacker
against another run of the protocol.

NSL = | P;

i€{resp,init,spy}

Operational semantics [p92]

@ A configuration is a tuple
(p.s,t)

e pis a closed process term
e s is a finite subset of names: the names already in use
o t is a subset of closed messages: the messages that have been
output to the network
@ Proper configurations:

@ names(p) Cs
@ A € s for every agent identifier A
Q U{names(M) | M et} Cs

@ Transitions are labelled with actions

a:=outnewrn M|inM|i:«

Operational semantics [p92]

@ Output: if 7 all distinct and not in s

outnew i M[i/X]

(outnew X M.p,s, t) (plr/X],sU{n}, tU{M[r/X]})

o Input: if M[7/R][N/y] € t

in M[7i/<)[N /]
) ———

(in pat X,9 M.p, s, t plA/RN /4], s, t)

o Parallel:
(pj,s,t) = (pi,s',t") jel

(lier pi, s t) == (llier P, s, t')

where p} = p; for j # i

Reasoning from the transition semantics

Secrecy of the responder’s nonce:
Suppose Priv(A) and Priv(B) do not occur as the contents of any
message in ty. For all runs

Qr

<NSL, S0, to) T <p,_175,_1, t,_1> — ...

where (NSL, s, to) is proper, if «, has the form
resp: B : j:outnew n {m,n,B}pyya), then n & t; for any | € w.

Proof idea: strengthen hypothesis, prove by induction / assume earliest
violation.

The model obscures the key reasoning technique: that a violation must
be by an event that causally depends (either through input/output or
control) on an earlier event that violates the invariant.

~~ a Petri net semantics for SPL

Petri net semantics of SPL [p93]

A net with persistent conditions representing all of SPL (not just
particular processes at first).

Conditions viewed as being: control, network and name

@ Control conditions form a set C of capacity-1 conditions
b::=outnew X M.p|in pati’,JM.p |i:b

the control state of each thread

@ Network conditions: form a set O of persistent conditions
O = {closed messages}

the messages already output

@ Name conditions: form a set S of capacity-1 conditions

S = Names

the names in use

Control conditions [p93]

For a process p, the subset of control conditions

Ie(p)

is called its initial conditions.

Ic(outnew X M.p) = {outnew X M.p}
Ic(in pat)?',1/7 M.p) {in pat)?,1/_; M.p}
(|| p) = Ui lelp)

iel iel

where j: C={i:b|be C} for C CC.

The events of SPL: output [p94]

The set Events includes:

if outnew X M.p is a closed term and i = ny,..., n; are distinct names
to match X = x1,...,x

Out(out new X M.p; ni)
outnew X M.p

outnew i M[ri/X]

: . : i/
le(plri/x])

Events are labelled with an action.

The events of SPL: input [p95]

The set Events includes:

if in pat X,9 M.p is a closed term and 17 = ny, ..., n; are names to match
X=x1,...,xyand L = Ly,..., L, are messages to match) = 1,..., ¢y

In(in pat X, v M.p: 7, Z)

in pat >_<',1/_)'M‘p M[r/X, Z/ﬁ]

in M7/, L/ 4]

le(plii/%, L/4])

The events of SPL: tags [p95]

If e.g. there is an event

Induction on size [p91]

A well-founded relation representing the size of terms:
@ p[i/X] < outnew X M. p for any substitution 7i/X

o p[fi/R][L/1)] < in pat X, M.p for any substitution of names /%
and closed messages L/1/)

© pj < ||, pi forany j el

Proposition
The relation < is well-founded.

Reason: if p < g then p has fewer instances of || and prefixing . .

Correspondence [p95]

Let act(e) be the action label on any event.

Theorem
Q If
<p7 57 t> i> <pl7sl7 t/>
then

le(p)UsuUt S Ie(p)us’ ut

for some event e such that act(e) = «

Q If
le(p)Usut S M

then there exists a closed process p’ and setss’ CS andt' C O

such that
{(p,s,t) L((e)) (p',s' t)

and M' = Ic(p')Us Ut

Proof: induction (on size, though structural induction works here)

o We now write (p,s,t) = (p/,s', t') to mean
le(p)UsUt S le(p)us Ut
@ We also implicitly assume that the initial marking is proper, from

which it follows that every marking encountered will be proper
(Lemma 7.8)

Elementary properties [p103]

Proposition (Well-foundedness)
Given a property P on configurations, if a run

€rt1

<p03507t0> e—1> i) <pr,5r7tr> —

contains configurations satisfying P(po, So, to) and —=P(py, s, t;) then
there is an event ey, for 0 < h < r such that —P(pn, Sp, tn) and
P(pi,si, t;) for all i < h.

(Po, S0, t0) = (p1,s1,t1) —> -+ (Ph—1,Sh—1th—1) —> (P Sh, th)

€h+1

— <pr75r7tr>

Elementary properties [p103]

Proposition (Well-foundedness)
Given a property P on configurations, if a run

€rt1

<p03507t0> e—1> i) <pr,5r7tr> —

contains configurations satisfying P(po, So, to) and —=P(py, s, t;) then
there is an event ey, for 0 < h < r such that —P(pn, Sp, tn) and
P(pi,si, t;) for all i < h.

(Po, S0, t0) = (p1,s1,t1) —> -+ (Ph—1,Sh—1th—1) —> (P Sh, th)

€h+1

— <pr75r7tr>
PX

Elementary properties [p103]

Proposition (Well-foundedness)
Given a property P on configurations, if a run

€rt1

<p03507t0> e—1> i) <pr,5r7tr> —

contains configurations satisfying P(po, So, to) and —=P(py, s, t;) then
there is an event ey, for 0 < h < r such that —P(pn, Sp, tn) and
P(pi,si, t;) for all i < h.

(Po, S0, t0) = (p1,s1,t1) —> -+ (Ph—1,Sh—1th—1) —> (P Sh, th)
PX

€h+1

— <pr75r7tr>
PX

Elementary properties [p103]

Proposition (Well-foundedness)
Given a property P on configurations, if a run

€rt1

<p03507t0> e—1> i) <pr,5r7tr> —

contains configurations satisfying P(po, So, to) and —=P(py, s, t;) then
there is an event ey, for 0 < h < r such that —P(pn, Sp, tn) and
P(pi,si, t;) for all i < h.

(Po, S0, t0) = (p1,s1,t1) —> -+ (Ph—1,Sh—1th—1) —> (P Sh, th)
PV PX

€h+1

— <pr75r7tr>
PX

Elementary properties [p103]

Proposition (Well-foundedness)
Given a property P on configurations, if a run

€rt1

<p03507t0> £1_> _ef_) <pr,5r7tr> —

contains configurations satisfying P(po, So, to) and —=P(py, s, t;) then
there is an event ey, for 0 < h < r such that —P(pn, Sp, tn) and
P(pi,si, t;) for all i < h.

(Po, S0, t0) = (p1,s1,t1) —> -+ (Ph—1,Sh—1th—1) —> (P Sh, th)
PV PV PX

€h+1

— <pr75r7tr>
PX

Elementary properties [p103]

Proposition (Well-foundedness)
Given a property P on configurations, if a run

€rt1

<p03507t0> £1_> _ef_) <pr,5r7tr> —

contains configurations satisfying P(po, So, to) and —=P(py, s, t;) then
there is an event ey, for 0 < h < r such that —P(pn, Sp, tn) and
P(pi,si, t;) for all i < h.

(Po, S0, t0) = (p1,s1,t1) —> -+ (Ph—1,Sh—1th—1) —> (P Sh, th)
PV Py Py PX

€h+1

— <pr75r7tr>
PX

Elementary properties [p103]

Proposition (Well-foundedness)
Given a property P on configurations, if a run

€rt1

<p03507t0> £1_> _ef_) <pr,5r7tr> —

contains configurations satisfying P(po, So, to) and —=P(py, s, t;) then
there is an event ey, for 0 < h < r such that —P(pn, Sp, tn) and
P(pi,si, t;) for all i < h.

earliest
(Po, S0, t0) = (p1,s1,t1) —> -+ (Ph—1,Sh—1th—1) —> (P Sh, th)
PV PV PV PX

€h+1

<pr7 sl’v tr>
PX

Elementary properties [p103]

Write Fresh(n;, e) if e is an event that generates the new name n;. That
is, if act(e) = outnew i M and n; is in 7.
Proposition (Freshness)

Within a run

€r+1

<p07507t0> e_1> i> <pr;5r»tr> —

the following properties hold:

© if n € s; then either n € sy or there is a previous event e; such that
Fresh(n, ;)

@ For any name n, there is at most one event event e; such that
Fresh(n, e;)

@ If Fresh(n, e;) then for all j < i the name n does not appear in
<pj’ S5jy tj>'

Elementary properties [p103]

Proposition (Control precedence)

Within a run

€r+1

(Po, 50, to) = -+ 5 (py, Sp, b)) —5 -

if b € “ej then either b € Ic(py) or there is an earlier event ej with j < i
such that b € ¢;°.

Elementary properties [p103]

Proposition (Output-input precedence)
Within a run

€r+1

(Po, 50, to) = -+ 5 (py, Sp, b)) —5 -

if M € °e; then either M € t, or there is an earlier event e; with j < i
such that M € ¢;°.

The events of processes [p98/99]

@ The net constructed represents the behaviour of all possible

processes.

@ Given a particular process term p, can restrict to events that might
occur if the initial marking of control conditions is Ic(p):

Ev(outnew X M.p) =

Ev(in pat %, M.p) =

Ev < || p,-) =
iel

{Out(outnew X M.p;) | i distinct names}
UU{EV(p[ﬁ/)?]) | A distinct names}

{In(in pat %,4 M.p; i,) | # names L distinct}

U {Ev(p[A/A[L/¥]) | i names}

U{i:e|ie/&e€EV(Pf)}

@ Useful in proving invariance properties, by analysing the form of
event possible in the net for a given process term.

The events of NSL [p100]: Initiator events

(Omitting tags!)

Out(/nit(A, B); m)

() Init(A,B)

outnew m {IT'I7 A}Pub(B)

in {m, y,B}pup(a)- out{y} pus(s)

In(in {m, y, B} pup(a)- out{y } pun(e)

in {m, y, B} pus(a)- out{y} puse) () () {m,n, B} pun(a)

in{m.n,BYeusa) [

out{n} pus(s)

Out(out{n}puss))

out{n} puu(B)

out{n}pus(e)

{n}Pub(B)

The events of NSL [p101]: Responder events

In(Resp(B); m, A)

Resp(B) () {m, A} pun(e)

in {m, A} pun(B)

outnew y {m,y, B}pusa)-in {y}pus(s)

Out(out new y {m, y, B} pup(a)-in {y} pup(s): n)

O outnew y {m, y, B} pup(a)-in 1y} pub(s)

outnew n {m, n,B}pyup(a)

n {m, n, B} pup(a)

in {n} pun(B)

In(in {n}pup())

in {n}pun(B) {n} pub(®)

in {n}pun(B)

The events of NSL [pl01]: Attacker events

Spy1 = in apy.in 9)o. out (31, 1)2)

Spys = in (11, 12). out 1. out iy

Spy»

(/\/Il7 Mz) M1 M2

Spys = in X.in . out {¢} pup(x)

n M {M}Pub(n)

Spya = in Priv(X).in {¢} pup(x). out 1)

Spya

Secrecy of private keys [p103]

The submessage relation is the least transitive relation on messages such

that
MC M

MCN = MC(N,N)&MC (N, N)
MEN = McC{N},

Write M C tiff IN e t.MC N.

Lemma

Consider a run

€rt1

(NSL, sp, to) = -+ =5 (py, 5, 1) —5 .-

and agent Ag. If Priv(Ag) IZ to then Priv(Ao) IZ t; for any stage I.

Secrecy of responder’s nonce [p104]

Theorem
Consider a run
2 er €rp1
<NSL,SO’ t0> _1) AN <pr75r7 tr> _+> N
Suppose there is e, with

act(e,) = resp : Bo : jo : outnew ng {mo, no, Bo} pun(a,)

where jo is an index. If Priv(Ao) IZ to and Priv(Bo) [Z to then at all
stages ng & t;.

Prove a stronger invariant: For any stage /

for all messages M € t;, if ng C M then either
{mo, no, Bo} pub(ag) = M or {no}pups,) = M.

Prove a stronger invariant: For any stage /

for all messages M € t;, if ng C M then either
{mo, no, Bo} pub(ag) = M or {no}pups,) = M.

o We have Fresh(e,, n) and therefore, by freshness, the initial
configuration satisfies the invariant

@ Suppose for contradiction that there is a configuration that violates
the invariant. By well-foundedness, there is an earliest such
configuration

o Consider the event e that causes the violation: IM € e® satisfying
ng C M but neither {mo, no, Bo} pun(a,) © M nor {no} pu(s,)

@ e must be the earliest event with such a postcondition

@ Consider the possible forms of e in NSL: cannot be indexed input

Case: e = init : (A, B) : i : Out(out{n}pup(p)) for some index i and pair
of agents A, B.

{n}Pub(B)

out{n}pus(B)

Event violates invariant, so n = ny and B # By

Case: e = init : (A, B) : i : Out(out{n}p,y(p)) for some index i and pair
of agents A, B.

O {”}Pub(B)

{m, no, B} pup(a)

out{n}pub(B)

By control precedence, there is an earlier event in the run that marks its
pre-control condition which must be of the form shown.

Case: e = init : (A,B) : i : Out(out{n}pup(p)) for some index i and pair
of agents A, B.

{m, no, B} pup(a) O {n}pub(B)

out{n}pub(g)

By output-input precedence, there is an earlier event that marks the
condition {m, ng, B} pyp(a). Since B # By, this also violates the invariant,
contradicting e being the earliest event in the run to do so.

Case: e = init : (A, B) : i : Out(/nit(A, B); m) for some index i and pair
of agents A, B and name m.

O {m, A}pun(s)

Case: e = init : (A, B) : i : Out(/nit(A, B); m) for some index i and pair
of agents A, B and name m.

O
o

{m, A} pups)

e violates the invariant, so either m = ng or A = ng.

Case: e = init: (A, B) : i : Out(Init(A, B); m) for some index i and pair
of agents A, B and name m.

O {m, A} pun(s)

Suppose m = ny. e # e, since e is an initiator event and e, is a responder
event. Fresh(ng,e) and Fresh(no, e,), contradicting the freshness lemma.

Case: e = init : (A, B) : i : Out(/nit(A, B); m) for some index i and pair
of agents A, B and name m.

@,
e
e
O {m, A}pun(s)

Suppose A = ng. Then ng is an agent identifier and therefore ng € sg,
again contradicting freshness.

Case: e = init : (A, B) : i : Out(/nit(A, B); m) for some index i and pair
of agents A, B and name m.

O
O m

{m, A} pun(s)

+ other cases for the responder and attacker processes

Authentication for the responder

Theorem

Consider a run

€rt1

(NSL, sp, to) == -+ =5 (py, 55, t) —5 -

If it contains events by, b, and bz with

act(by) = resp:Bg:i:in{mo,Ao}pussy)
act(by) = resp:Bg:i:outnew ny {mo, no,Bo}pun(a,)
act(bs) = resp:Bo:i:in{no}puns,)

and Priv(Ag) [Z ty then the run contains events ay, ay, a3 with a3 — b3
where, for some index j

act(al) = nit: (Ao, Bo) :j 1 outnew mg {mo, AO}Pub(BO)
act(ag) = init: (Ao, Bo) 2jin {m()., ng, BO}Pub(Ag)
act(az) = init: (Ao,Bo) :Jj:out{no}pus(y)

Authentication: proof

by by

Draw e — €’ if e precedes €’ in the run

b3

Authentication: proof

by

Control precedence

b3

Authentication: proof

by b b3

The invariant
Q(p,s,t) <= VM ct:nnC M = {mo,no,Bo}pua) C M

@ must be violated in the configuration immediately before b3

@ must hold in the configuration immediately after and all
configurations before b, by freshness

Authentication: proof

by b b3

The invariant

Q(p,s,t) <= VM ct:nnC M = {mo,no,Bo}pua) C M

@ must be violated in the configuration immediately before b3

@ must hold in the configuration immediately after and all
configurations before b, by freshness

@ so there exists an earliest event e that breaks the invariant

Authentication: proof

by b b3

D

The invariant

Q(p,s,t) <= VM ct:nnC M = {mo,no,Bo}pua) C M

@ must be violated in the configuration immediately before b3

@ must hold in the configuration immediately after and all
configurations before b, by freshness

@ so there exists an earliest event e that breaks the invariant

Authentication: proof

by b b3

The only kind of event that can break the invariant
Q(p,s,t) <= YMect:n T M = {mg,no,Bo}privn,) = M

is an initiator event

act(a3) = init : (A, Bo) : j : out{no} pus(sy)

using secrecy of Priv(Ao)

Authentication: proof

by

Control precedence

Authentication: proof

by by b3

Q(p,S, t) — VYMet:nnC M — {mo, no, BO}Priv(Ao) M

Q holds immediately before a5, so A= Ag and m = mq

Authentication: proof

Taking a; = &}, a» = a, and a3 = a4 we have

act(al) = init: A : i :outnew myg {mo,Ao}Pub(Bo)
act(az) = init 1 Ag:i:in {mo, no,Bo}pus(a,)
act(az) = init:Ag:i:out{no}pun,)

