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Many graphics/display solutions are
motivated by visual perception

MM.204

MPEG-4/AVC

Image & video
compression

Display spectral emission - metamerism

Camera’s
Bayer pattern

i @ cF 0@ B cE cE CE
U8 N N N 'B "N N ‘N
i Ul ol ol 0F VE 0B VR E
'8 U8B "N ‘'@ ‘B ‘B ‘B ‘B

L

SU T BT BET BT B BT T
i CW Ol UE CE Gl E
ICL BT BT WO BT WO BT
L RO T R Rl R Rl
.a..ﬂ..ﬁ‘,ﬂ.ﬂ.ﬂ'.ahﬂh
i O U o oW W oE Gl e

Display’ s subpixels
Halftonning Color wheel in DLPs



I Perceived brightness of light




Luminance (again)

» Luminance — measure of light weighted by the response
of the achromatic mechanism. Units: cd/m?
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Steven’ s power law for brightness

» Stevens (1906-1973) measured the perceived magnitude
of physical stimuli

Loudness of sound, tastes, smell, warmth, electric shock and

brightness

Using the magnitude estimation methods

Ask to rate loudness on a scale with a known reference

» All measured stimuli followed the power law:

Perceived
magnitude
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Physical
stimulus

» For brightness (5 deg target in dark),a = 0.3
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Steven' s law for brightness
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Steven’ s law vs. Gamma correction

Stevens’ law
a=0.3

Gamma function

=2.2

Gamma

Perceived brightness

Luma
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Detection and discrimination




Detection thresholds

» The smallest detectable difference between
the luminance of the object and

the luminance of the background



Threshold versus intensity (t.v.i.)
function

» The smallest detectable difference in luminance for a
given background luminance
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t.v.1. measurements — Blackwelll946
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Psychophysics
Threshold experiments

Psychometric function
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Luminance threshold AL

t.v.1 function / c.v.i. function / Sensitivity

» The same data, different representation

Threshold vs. intensity
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Sensitivity to luminance

» Weber-law — the just-noticeable difference
is proportional to the magnitude of a
stimulus

The smallest
detectable Ernst Heinrich Weber
luminance AL [From wikipedia]
difference . k

Background % L — -
(adapting) onstant
luminance

L
Typical stimuli: AL




Consequence of the Weber-law

Smallest detectable difference in luminance

AL ror ko156 | I

L — k 100 cd/m? | cd/m?
| cd/m? 0.0l cd/m?

Adding or subtracting luminance will have different visual
impact depending on the background luminance

Unlike LDR luma values, luminance values are not
perceptually uniform!



How to make luminance (more)

perceptually uniform?

» Using “Fechnerian” integration

dR 1
i ( L) =
d - DIL(L)
Derivative of
rEpeiss Detection
threshold
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Assuming the Weber law

AL _
=

» and given the luminance transducer

1

» the response of the visual system to light is:

1 1
R(L) = | —dL= - In(L)+k
(L) ka kn()+1



Fechner law

R(L) = aln(L)

» Response of the visual system to luminance
is approximately logarithmic

Gustav Fechner
[From Wikipedia]



But...the Fechner law does not hold for
the full luminance range

» Because the Weber law does not hold either

» Threshold vs. intensity function:

log, , detection threshold AL [cd/m?]
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Weber-law revisited

» If we allow detection threshold to vary with luminance
according to the t.v.i. function:
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AL tvi(L)
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» we can get a more accurate estimate of the “response:
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R(L)=(, T di
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Fechnerian integration and Stevens’ law
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Applications of JND encoding — R(L)

» DICOM grayscale function

Function used to encode signal for medial
monitors

| 0-bit JND-scaled (just noticeable
difference)

Equal visibility of gray levels

» HDMI 2.0a (HDRI10)
PQ (Perceptual Quantizer) encoding
Dolby Vision

To encode pixels for high dynamic range
images and video

22

DOLBY
VISION

The Future of Vision
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Spatial contrast sensitivity
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Resolution and sampling rate

» Pixels per inch [ppi]

Does not account for vision

i w - screen width [m]
» The visual resolution depends on r - screen resolution
screen size
screen resolution - viewing distance [m]
viewing distance "
» The right measure

Pixels per visual degree [ppd]

In frequency space
Cycles per visual degree [cpd]
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Fourier analysis

» Every N-dimensional function (including images) can be
represented as a sum of sinusoidal waves of different

frequency and phase
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» Think of “equalizer” in audio software, which manipulates
each frequency
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Spatial frequency in images

» Image space units: cycles per sample (or cycles per pixel)

1

Pixel value
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Plxel posnlon

What are the screen-space frequencies of the red and green
sinusoid?

» The visual system units: cycles per degree

If the angular resolution of the viewed image is 55 pixels per
degree, what is the frequency of the sinusoids in cycles per

degree!
27
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Fixel value

Nyquist frequency

» Sampling density restricts the highest spatial frequency

signal that can be (uniquely) reconstructed
Sampling density — how many pixels per image/visual angle/...

0.5

I I f f 1

Pixel position

Any number of sinusoids can be fitted to this set of samples

It is possible to fit an infinite number of sinusoids if we allow
infinitely high frequency
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Fixel value

Nyquist frequency

» Sampling density restricts the highest spatial frequency

signal that can be (uniquely) reconstructed
Sampling density — how many pixels per image/visual angle/...

AV AVIAVIAVIAN

= 10

0 1
Pixel position

Any number of sinusoids can be fitted to this set of samples

It is possible to fit an infinite number of sinusoids if we allow
infinitely high frequency
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Fixel value

Nyquist frequency

» Sampling density restricts the highest spatial frequency

signal that can be (uniquely) reconstructed
Sampling density — how many pixels per image/visual angle/...

0.5

Pixel position

Any number of sinusoids can be fitted to this set of samples

It is possible to fit an infinite number of sinusoids if we allow
infinitely high frequency
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Fixel value

Nyquist frequency

» Sampling density restricts the highest spatial frequency

signal that can be (uniquely) reconstructed
Sampling density — how many pixels per image/visual angle/...

0.5

Pixel position

Any number of sinusoids can be fitted to this set of samples

It is possible to fit an infinite number of sinusoids if we allow
infinitely high frequency

31
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Nyquist frequency / aliasing

» Nuquist frequency is the highest frequency that can be
represented by a discrete set of uniform samples (pixels)

» Nuquist frequency = 0.5 sampling rate

For audio

If the sampling rate is 44100 samples per second (audio CD), then the
Nyquist frequency is 22050 Hz

For images (visual degrees)

If the sampling rate is 60 pixels per degree, then the Nyquist
frequency is 30 cycles per degree

» When resampling an image to lower resolution, the
frequency content above the Nyquist frequency needs to
be removed (reduced in practice)

Otherwise aliasing is visible
32



Modeling contrast detection

Lens Photoreceptors

Retinal ganglion cells

Visual
LGN |=~__| Cortex

Detection

\ \ Integration
Defocus & Colour opponency
i Glare P & M visual pathways .

Aberrations Luminance masking Contrast masking

_ Spectral sensitivity
Adaptation

v

Spatial- / orientation- / temporal-
Selective channels

A
v

Contrast Sensitivity Function
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Contrast

Spatial frequency [cycles per degree]

4

34

Campbell & Robson contrast sensitivity chart
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CSF as a function of spatial frequency
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CSF as a function of background
luminance
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CSF as a function of spatial frequency
and background luminance
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Contrast constancy

40




Contrast constancy

Experiment: Adjust the
amplitude of one sinusoidal
grating until it matches the

perceived magnitude of

another sinusoidal grating.
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CSF and the resolution

» CSF plotted as the

detection contrast
AL

L. |HTCVivePro |~

Expected
pam? | _natural images

— =91
Ly

01p [ oreamEs

» The contrast below each
line is invisible

001 b b T

 liphones

» Maximum perceivable oo . |Retinadisplay
. 0 10 20 30 40 50 60

resolution depends on Spatial frequency [cpc]

luminance

Detection threshold AL/L

CSF models:
Barten, P. G. J. (2004).
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Lateral inhibition and
Multi-resolution models
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Mach Bands — evidence for band-pass
visual processing

“Overshooting” along edges

— Extra-bright rims on bright sides
— Extra-dark rims on dark sides
Due to “Lateral Inhibition”

light
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Centre-surround (Lateral Inhibition)

» “Pre-processing” step within the retina Center-surround
. . . . receptive fields

Surrounding brightness level weighted negatively (groups of
A: high stimulus, maximal bright inhibition photoreceptors)

B: high stimulus, reduced inhibition & stronger response
D: low stimulus, maximal inhibition

C: low stimulus, increased inhibition &
weaker response




Centre-surround: Hermann Grid

« Dark dots at crossings : : : : : : : :
. Explanatlo-n EEEEEEEE
— Crossings (A) EEEEEEER

« More surround stimulation EEEEEEER

(more bright area) EEEEEERER

= Less inhibition EEEEEEEN

— Weaker response EEEEEEEN
— Streets (B) A B

* Less surround stimulation
= More inhibition
= Greater response

« Simulation
— Darker at crossings, brighter in streets
— Appears more steady
— What if reversed ?
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Spatial-frequency selective channels

» The visual information is
decomposed in the visual cortex
into multiple channels

The channels are selective to spatial

frequency, temporal frequency and
orientation

Sensitivity

Each channel is affected by different
,,hoise” level Spatial frequency

The CSF is the net result of From: Wandell, 1995

information being passed in noise-
affected visual channels

49




Multi-scale decomposition

Steerable pyramid
decomposition



Multi-resolution visual model

» Convolution kernels
are band-pass,
orientation selective
filters

Stimulus

» The filters have the
shape of an oriented
Gabor function
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Convolution
kernels

Static
nonlinearity
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Predicting visible differences with CSF

» We can use CSF to find the probability of spotting a
difference beween a pair of images X; and X,:

p(f[X1] = f[X2] 1X1, Xp, CSF)  fIX]d Thepereen

of image X

Background
luminance AL L,

Ly AL¢py

Wavelet AL
decomposition _

/| —EEE— P |
= detection

Psychometric Wavelet

CSF function  yeconstruction

Compute
contrast

(simplified) Visual Difference Predictor

Daly, S. (1993).
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Applications of multi-scale models
» JPEG2000

Wavelet decomposition

» JPEG / MPEG

Frequency transforms

» Image pyramids
Blending & stitching
Hybrid images

53 Hybrid Images by Aude Oliva
http://cvcl.mit.edu/hybrid_gallery




Light and dark adaptation
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Light and dark adaptation

adaptation to light e——»
adaptation to dark e——

sudden change in illumination

» Light adaptation: from dark to bright
» Dark adaptation: from bright to dark (much slower)
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Threshold (log,,(td))

Time-course of 4.0 Cight
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Temporal adaptation mechanisms

» Bleaching & recovery of photopigment
Slow assymetric (light -> dark, dark -> light)
Reaction times (1-1000 sec)
Separate time-course for rods and cones
» Neural adaptation
Fast
Approx. symmetric reaction times (10-3000 ms)
» Pupil
Diameter varies between 3 and 8 mm

About |:7 variation in retinal illumunation

57



Night and daylight vision

Vision mode: SCOTOPIC MESOPIC PHOTOPIC
rod activit cone activit
b $ . } /: \: } y‘ i Luminance [log cd/m2]
-6 -4 -2 0 2 4 6 8
night light office light daylight
Mode properties: monochromatic vision good color perception

limited visual acuity good visual acuity

Rod\A Cone
Vi{(A) V(A)

Luminous efficiency

58 400 500 600 700



Spatial colour vision
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Spatio-chromatic CSF




Color CSF across the luminance range

C1: luminance i C2: red-green C3: blue-yellow

i

log Sensitivity (1/cone contrast)

0.2 cd/m?
0.5 1 2 4 6 05 1 2 4 6 05 1 2 4 6
Spatial frequency [cpd] Spatial frequency [cpd] Spatial frequency [cpd]
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Color CSF across the luminance range

C1: luminance i C2: red-green C3: blue-yellow

NS |

log Sensitivity (1/cone contrast)

0.5 1 2 4 6 05 1 2 4 6 05 1 2 4 6
Spatial frequency [cpd] Spatial frequency [cpd] Spatial frequency [cpd]
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Color CSF across the luminance range

C1: luminance i C2: red-green C3: blue-yellow

N

log Sensitivity (1/cone contrast)

0.5 1 2 4 6 05 1 2 4 6 05 1 2 4 6
Spatial frequency [cpd] Spatial frequency [cpd] Spatial frequency [cpd]
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Color CSF across the luminance range

C1: luminance i C2: red-green C3: blue-yellow

200 cd/m?

N

log Sensitivity (1/cone contrast)

0.5 1 2 4 6 05 1 2 4 6 05 1 2 4 6
Spatial frequency [cpd] Spatial frequency [cpd] Spatial frequency [cpd]
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Color CSF across the luminance range

C1: luminance i C2: red-green C3: blue-yellow

N

log Sensitivity (1/cone contrast)

0.5 1 2 4 6 05 1 2 4 6 05 1 2 4
Spatial frequency [cpd] Spatial frequency [cpd] Spatial frequency [cpd]
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Color CSF across the luminance range

C1: luminance i C2: red-green C3: blue-yellow

log Sensitivity (1/cone contrast)

0.5 1 2 4 6 05 1 2 4 6 05 1 2 4 6
Spatial frequency [cpd] Spatial frequency [cpd] Spatial frequency [cpd]
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Visibility of blur

blur in light-dark blur in red-green blur in blue-yellow

S lioht-dark
o iﬂur ;
. red-green

» The same amount of blur was introduced into light-dark,
red-green and blue-yellow colour opponent channels

» The blur is only visible in light-dark channel

» This property is used in image and video compression

Sub-sampling of colour channels (4:2:1)

67



High(er) level vision
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Simultaneous contrast




High-Level Contrast Processing




High-Level Contrast Processing

Checker-shadow illusion:
The squares marked A and B
are the same shade of gray.

Edward H. Adelson
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Shape Perception

N

Al

i \\: :?}. o > %ﬁg g

She e R
.r——#-—" 00-4 er-“
00000§0 0000
LR R R BN R SR R R 0 .4
LR R R R IR R 000'0
« Depends on surrounding primitives

— Directional emphasis
— Size emphasis

77 http://www.panoptikum.net/optischetaeuschungen/index.html



Shape Processing: Geometrical Clues

ﬂm http://www.panoptikum.net/optischetaeuschungen/index.html

Automatic geometrical interpretation
— 3D perspective
— Implicit scene depth

73



Impossible Scenes

» Escher et.al.

— Confuse HVS by presenting
contradicting visual clues

— Local vs. global processing

http://www.panoptikum.net/optischetaeuschungen/index.html
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caused by saccades, motion from dark to bright areas
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Law of closure
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