

2	

At	the	core	of	life	there	is	a	sort	of	programming;	the	DNA	sequence	
contains	both	the	code	for	the	structure	of	the	3d	parts	(usually	
proteins,	programmed	self	assembly	process)	and	the	code	that	
represents	the	manual	of	instructions	-how	much,	where,	when	a	
certain	part	should	be	produced.		
Bioinformatics	is	about	algorithms	and	machine	learning	methods	to	
identify	the	coding	elements	in	the	DNA	sequences	and	characterise	the	
parts.	
Both	DNA	sequence	and	protein	structure	research	have	adopted	good	
abstractions:	‘DNA-as-string’	(a	mathematical	string	is	a	finite	
sequence	of	symbols)	and‘a	protein-as-a	three-dimensional-labelled-
graph’.		
	

BioInformatics 2019-2020

3

Models of DNA and proteins

sources: Photograph 51’, March 1953, by Rosalind Franklin; Pencil sketch of the DNA
double helix by Francis Crick; Replica of Crick and Watson’s 1953 DNA Double Helix Model,
https://blog.sciencemuseum.org.uk/why-the-double-helix-is-still-relevant/

5-CCTGAGCCAACTATTGATGAA-3
3-GGACTCGGTTGATAACTACTT-5

ABSTRACTIONS:		
DNA		AS	A	STRING,	
PROTEIN	AS	A	LABELLED	GRAPH	
DNA	AND	PROTEINS	AS	NETWORKS 	

Machine	
learning	

Biology	and	
Medicine	

Algorithms	

4

Great	
Data	

Powerful	
tools	

Cool				
Questions	

What is BioInformatics

Bioinformatics: a central position in medicine

1-5 years 5-10 years NOW

Lo
ca

l
N

at
io

na
l

In
te

rn
at

io
na

l

NGS

CRISPR

NGS

NGS

Epigenetics

Deep Phenotyping:
Standards & Devices

Multimodal
data analytics

Databases &
Data Sharing

Cybersecurity

Early diagnosis

Cohorts & Biobanks

Big Data
Handling

Metadata
& Curation

Text Mining

Health Data
Cooperatives

Citizen Science

Digital Pathology Multi-organ chips

Nanosensors

Synthetic biology

Artificial
Intelligence

Lifestyle
interventions

Adaptive Therapy

Imaging

Big Data Analytics

Computer simulation,
personal avatars

Bioinformatics

Bioinformatics

Bioinformatics

Artificial
Intelligence

NGS= next generation sequenging

DNA for genomic diagnostics

Impact on Personalised Medicine

  Cancer: Disease stratification
based on driver mutations

  Rare diseases: Most patients now
receive a genetic diagnosis

  Drugs: Patient-specific prediction
of efficacy and side effects

https://www.genome.gov/sequencingcosts

1979 today

High-performance computing Genome sequencing

2006 today

Who has a computer?

  1960s: Major research institutes

  1970s: University departments

  1980s: Companies and schools

  2019: Almost everybody & always

Whose genome has been sequenced?

  1996: First bacterium (E. coli)

  2001: Human reference genome

  2007: First personal genomes

  2019: Millions personal genomes

8

Garage genomics

Oxford
nanopore

9

Data Repository: http://www.ebi.ac.uk; http://www.ncbi.nlm.nih.gov/ ;
http://genome.ucsc.edu/ www.ensembl.org

DNA is big data

10

Each base pair take a couple of bits to encode (because you have to choose
between G, A, T and C.

You have 46 chromosomes in each (autosomal) cell (3 billion base pairs, 2 meters
long, 2nm thick, folded into a 6µm ball). If you teased out those 46 strands and
placed them end to end they'd be about 2 metres long - but that's just one cell.
Every time a cell replicates it has to copy 2 meters of DNA reliably.

As there are about 3.7×1013 cells in the human body (and hence 1.7×1015
chromosomes or strands), your entire DNA would stretch about 7.4×1010 km or fifty
thousand million miles (133 Astronomical Units long) — DNA in human population
20 million light years long (the Andromeda Galaxy is 2.5 Million light years).

Lower bound on the total information content in the biosphere: 5.3 × 1031 (±3.6 ×
1031) megabases (Mb) of DNA. Taking the rate of DNA transcription as an analogy
for processing speed, they further estimated Earth's computational power: 1015
yottaNOPS (1024 Nucleotide Operations Per Seconds).

How	much	DNA	in	the	body	and	in	the	biosphere

Protein

mRNA

DNA

transcription

translation

CCTGAGCCAACTATTGATGAA
GCACTCGGTTGATAACTACTT

PEPTIDE

CCUGAGCCAACUAUUGAUGAA

11

Genetic Code

12

>gi|28302128|ref|NM_000518.4| Homo sapiens hemoglobin, beta (HBB), mRNA
ACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCATGGTGCATCTGACTCCTGA

GGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGC
AGGCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATG
CTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGGC
TCACCTGGACAACCTCAAGGGCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGAT
CCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCA
CCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCA
CTAAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACT
GGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC

>gi|4504349|ref|NP_000509.1| beta globin [Homo sapiens]

MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLG
AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVAN
ALAHKYH

sequences
in Fasta format

Healthy	Individual

13

>gi|28302128|ref|NM_000518.4| Homo sapiens hemoglobin, beta (HBB), mRNA
ACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCATGGTGCATCTGACTCCTGA

GGTGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGC
AGGCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATG
CTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGGC
TCACCTGGACAACCTCAAGGGCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGAT
CCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCA
CCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCA
CTAAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACT
GGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC

>gi|4504349|ref|NP_000509.1| beta globin [Homo sapiens]

MVHLTPVEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLG
AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVAN
ALAHKYH

Individual	with	Sickle	Cell	Anemia

14

Genes are activated or repressed by regulatory proteins which bind to gene flanking
sequences (promoter) and are coded by the same or other genes.

•  Gene and protein interactions as graphs

A

B

C

D

Logic	gates	

	Toggle	switch	(cro	and	cl	are	genes;	
Pr	and	Prm	are	binding	sites	for	the	
proteins	of	genes	cro	and	cl)	

Logic gates: The Cell as an
information processing device

proteins	binding		
regulatory	elements		

16

ABOVE: Idealized promoter for a gene involved
in making hair. Proteins that bind to specific
DNA sequences in the promoter region together
turn a gene on or off. These proteins are
themselves regulated by their own promoters
leading to a gene regulatory network with many
of the same properties as a neural network. We
use chips (right) to monitor the
activity of all the genes in different
conditions (gene expression).

The Cell is a Computer in
Soup

The transcriptional regulatory network (1,378 nodes)
follows a conventional hierarchical picture, with a few
top regulators and many workhorse proteins. The
Linux call graph (12,391 nodes), on the other hand,
possesses many regulators; the number of workhorse
routines is much lower in proportion. The regulatory
network has a broad out-degree distribution but a
narrow in-degree distribution. The situation is reversed
in the call graph, where we can find in-degree hubs,
but the out-degree distribution is rather narrow. Yan et
al. PNAS 2010, 107, 20.

Cells versus Computers

18	

Bacterium

1 micron

λ = 0.25 micron
in Pentium II

Human
chromos
ome.

1 micron

Scales	of	electronic	and	bio	devices

proteins inside
a bacterium

19	

The network level: can you spot the difference?

•  DNA,		RNA	and	proteins	can:	
•  	Organize	themselves	to	self	assemble	different	types	of	devices	

(mechanisms	such	rotors,	motors)	or	structures	with	different	
shapes	across	time	and	space	scales.	

•  Organise	other	types	of	molecules	such	as	lipids,	sugars	and	
artificial	ones.	

•  Organise	large	set	of	reactions	(such	as	metabolic	networks)	and	
Execute	different	kinetics		

•  	Self-Assemble	control	devices	

Nature	is	programmed	for	self-assemble;		
Bioinformatics	is	needed	to	identify	the	key	elements

21

Macroscale	
IKEA:	not	

self	
assembly

22

24 to 200 nanometers they’re
10 to 100 times smaller than the
average bacterium, much too
small to see with an ordinary
light microscope.

5. We absorb about 30 billion
phages into our bodies every
day. They form an integral part
of our microbial ecosystem.

microscale	IKEA:	Nature	is	
programmed	for	self	assembly

23

The	genome	contains	both	the	instructions	for	assembly	and	for	the	parts	and	it	is	
shipped	with	the	virus

•  Base-4 (ACGT)
•  DNA
•  Bases
•  Codons (triplets of

bases for each amino
acid)

•  Genetic Code (translate
codons into amino
acids)

•  Gene/Protein
•  Chromosome
•  Genome Size

•  Base-2 (101010)
•  Magnetic tape/Disk
•  Bits/Transistors
•  Bytes
•  Instruction Set

•  File, Program
•  Hard Disk
•  Disk Capacity

Cells versus Computers

25

Cells versus Computers

	A	free	book	is	this:	cell	biology	by	the	numbers	
http://book.bionumbers.org/	
	
	
	
•  Genetics	for	Computer	Scientists	
https://www.cs.helsinki.fi/group/genetics/
Genetics_for_CS_March_04.pdf	
•  Molecular	Biology	for	Computer	Scientists:	
http://tandy.cs.illinois.edu/Hunter_MolecularBiology.pdf		
Biology	and	Computers:	A	lesson	in	what	is	possible	
https://ethw.org/	
https://www.wehi.edu.au/wehi-tv/	
	 26

If	you	want	to	know	more	about	biology

27

General	references	for	course

Partly based on book: Compeau and
Pevzner Bioinformatics algorithms (chapter
3,5,7-10 chapter).

No biology in the exam questions (You need to know only the
reason of the algorithms).

also Richard Durbin, Sean R. Eddy, Anders Krogh, Graeme
Mitchison
Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids

28

Alignment	1	

Phylogeny	2	

Genome	
sequencing	

3	

Genome	
Assembly	4	Clustering	5	

Hidden	
Markov	
Models	6	

DNA	
Computing/
storage	

information	

Structure	of	the	course

•  how	to	align	two	sequences?	
•  Trees	(what	is	the	relationships	of	multiple	
sequences	and	what	has	to	do	with	species	
evolutionary	history)	

•  Genome	sequence	(how	to	analyse	a	genome)	

29

Aligning DNA and Protein Sequences

	

•  From	Sequence	Comparison	to	Biological	Insights		

•  The	Alignment	Game	and	the	Longest	Common	Subsequence		

•  Dynamic	Programming	and	Backtracking	Pointers			

•  From	Global	to	Local	Alignment	

•  Penalising	Insertions	and	Deletions	in	Sequence	Alignment		

•  Space-Efficient	Sequence	Alignment		

•  Nussinov	folding	algorithm	(RNA	2dimensional	folding)	

30

How Do We Compare Biological Sequences?

31

Summary for alignment lectures

 A T - G T T A T A
 A T C G T - C - C
 +1+1 +1+1 =4

 Alignment	of	two	sequences	is	a	two-row	matrix:		

	
1st	row:		symbols	of	the	1st	sequence	(in	order)	interspersed	by	“-”		
2nd	row:	symbols	of	the	2nd	sequence	(in	order)	interspersed	by	“-”		

matches		insertions		deletions		mismatches	

32

What Is the Sequence Alignment?

 A T - G T T A T A
 A T C G T - C - C

Matches	in	alignment	of	two	sequences	(ATGT)	form	their		
Common	Subsequence		

Longest	Common	Subsequence	Problem:	Find	a	longest	
common	subsequence	of	two	strings.	

•  Input:	Two	strings.	
•  Output:	A	longest	common	subsequence	of	these	

strings.	
33

Longest Common Subsequence

Alignment	:		2	*	k	matrix	(k	>	m,	n)	

A	 T	 --	 G	 T	 A	 T	 --	

A	 T	 C	 G	 --	 A	 --	 C	

letters	of	v	

letters	of	w	

T	

T	

A T G T T A T
A T C G T A

v		:	
w	:	

m	=	7		
n	=	7		

4	matches	 2	insertions	 2	deletions	

Given	2	DNA	sequences	v	and	w:	

34	

C

Alignment: 2 row representation

Longest	 Common	 Subsequence	 (LCS)	 –the	 simplest	 form	 of	
sequence	 alignment	 –	 allows	 only	 insertions	 and	 deletions	 (no	
mismatches).	 In	the	LCS	Problem,	we	scored	1	for	matches	and	0	
for	 indels;	 in	 real	 analysis	 we	 consider	 penalising	 indels	 and	
mismatches	with	negative	scores.	
	
• 		Given	two	sequences												v	=	v1	v2…vm	and	w	=	w1	w2…wn	

• 		The	LCS	of	v	and	w	is	a	sequence	of	positions	in		

	v: 1 < i1 < i2 < … < it < m
and	a	sequence	of	positions	in		

	w: 1 < j1 < j2 < … < jt < n
such	that	it	-th	letter	of	v	equals	to	jt-th	letter	of	w	and	t	is	
maximal.	 35	

Longest Common Subsequence

		C	A	 T	 --	 C	 T	 G	 A	 T	

--	 T	 G	 C	 T	 --	 A	 --	 C	

elements	of	v	

elements	of	w	

--	

A	
1	

2	

0	

1	

2	

2	

3	

3	

4	

3	

5	

4	

5	

5	

6	

6	

6	

7	

7	

8	

j	coords:	

i	coords:	

Matches	shown	in	red	
positions	in	v:	
positions	in	w:		

2	<	3	<	4	<	6	<	8	

1	<	3	<	5	<	6	<	7	

Every	common	subsequence	is	a	path	in	2-D	grid	

0	

0	

(0,0)à	(1,0)à	(2,1)à	(2,2)à	(3,3)à	(3,4)à	(4,5)à	(5,5)à	(6,6)à	(7,6)à	(8,7)	

36	

Longest Common Subsequence

The	Edit	distance	between	two	strings	is	the	minimum	number	of		operations	
(insertions,	deletions,	and	substitutions)	to	transform	one	string	into	the	other	

V = ATATATAT!

W = TATATATA !

Hamming	distance:																				Edit	distance:		
						d(v,	w)=8																															d(v,	w)=2		
Computing	Hamming	distance													Computing	edit	distance		
											is	a	trivial	task																													is	a	non-trivial	task	
	
																

W = TATATATA- !

Just one shift
Make it all line up

V = -ATATATAT!

Hamming	distance		
always	compares		
	i-th	letter	of	v		with	
	i-th	letter	of	w	

Edit	distance		
may	compare		
	i-th	letter	of	v		with	
	j-th	letter	of	w	

37	

Longest Common Subsequence

TGCATAT	à	ATCCGAT	in	4	steps	
	

TGCATAT à (insert	A	at	front)	
ATGCATAT à (delete	6th	T)	
ATGCATA à (substitute	G	for	5th	A)	
ATGCGTA à (substitute	C	for	3rd	G)	
ATCCGAT (Done)	

									

38	

Edit Distance: Example

Old	Alignment	
 0122345677
v= AT_GTTAT_
w= ATCGT_A_C
 0123455667

 New	Alignment	
 0122345677
v= AT_GTTAT_
w= ATCG_TA_C
 0123445667	

39	
Two similar alignments; the score is 5 for both the alignment paths.

Alignment as a Path in the Edit Graph

T	

G

C

A

T	

A

C

1	

2	

3	

4	

5	

6	

7	

0	i	

A T	 C T	 G A T	 C
0	 1	 2	 3	 4	 5	 6	 7	 8	

j	

Every	path	is	a	
common	
subsequence.	

Every	diagonal	
edge	adds	an	extra	
element	to	
common	
subsequence	

LCS	Problem:	Find	
a	path	with	
maximum	number	
of	diagonal	edges	

40	

LCS Problem as - Edit Graph

Let	vi			=			prefix	of	v	of	length	i:				v1	…	vi	
and	wj		=		prefix	of	w	of	length	j:			w1	…	wj	

The	length	of	LCS(vi,wj)	is	computed	by:	

si,j	=	MAX

si-1,j				+	0	

si,j	-1			+	0	

si-1,j	-1	+	1,				if		vi	=	wj

i,j

i-1,j

i,j -1

i-1,j -1

1
 0

0

41	

0 1 2 3 4

0

1

2

3

4

W	 A	 T	 C	 G	

A	

T	

G	

T	

V	
												

						0	1	2		2		3	4	

V	=				A	T	-		G	T	

										|		|					|	

W=				A	T	C	G	–	

							0	1	2		3	4	4	

	

Every Path in the Grid Corresponds to
an Alignment

Computing LCS

42	

The above recursive program prints out the longest common subsequence
using the information stored in b. The initial invocation that prints
the solution to the problem is PRINTLCS(b, v, n,m).

LCS Algorithm

																											si-1,	j		-	σ		
																											si,	j-1		-	σ		
																											si-1,	j-1	+	1,	if	vi=wj	

																											si-1,	j-1		-	μ,	if	vi≠wj	
	

	

Dynamic	Programming	Recurrence	for	the		

		si,	j=	max		

43

Alignment Graph

44

All genomes are littered with repeats so alignment of
large sequences is difficult

increased difficulty
with a puzzle with
many repetitions

45	

Notice three possible cases:

1.  xi aligns to yj

 x1……xi-1 xi
 y1……yj-1 yj

2. xi aligns to a gap

 x1……xi-1 xi
 y1……yj -

3.  yj aligns to a gap

 x1……xi -
 y1……yj-1 yj

 m, if xi = yj
F(i,j) = F(i-1, j-1) +

 -s, if not

F(i,j) = F(i-1, j) - d

F(i,j) = F(i, j-1) - d

F[i-1,j-1] F[i,j-1]
F[i-1,j] F[i,j]

Towards an algorithm to align biological sequences
(note I am using a DIFFERENT NOTATION!)

46	

•  How	do	we	know	which	case	is	correct?	
	
Inductive assumption:

 F(i, j-1), F(i-1, j), F(i-1, j-1) are optimal

Then,

 F(i-1, j-1) + s(xi, yj)
 F(i, j) = max F(i-1, j) – d
 F(i, j-1) – d

Where F(xi, yj) = m, if xi = yj; -s, if not	

F[i-1,j-1] F[i,j-1]

F[i-1,j] F[i,j]

Alignment

•  Global	Alignment	

	
•  Local	Alignment—better	alignment	to	find	highly	
conserved	segments	

 | || | || | | | ||| || | | | | |||| |
 --T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC

 AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

 tccCAGTTATGTCAGgggacacgagcatgcagagac
 ||||||||||||

aattgccgccgtcgttttcagCAGTTATGTCAGatc

•  The	Global	Alignment	Problem	tries	to	
find	the	longest	path	between	vertices	
(0,0)	and	(n,m)	in	the	edit	graph.	

•  The	Local	Alignment	Problem	tries	to	
find	the	longest	path	among	paths	
between	arbitrary	vertices	(i,j)	and	(i’,	
j’)	in	the	edit	graph.	

47	

Global	
alignment	

Local	
alignment	

48

local alignment to detect
regulatory sites

Global	Alignment	

Global	Alignment	Problem:	Find	the	highest-scoring	
alignment	between	two	strings	by	using	a	scoring	matrix.	
	

•  Input:	Strings	v	and	w	as	well	as	a	matrix	score.	
		
•  Output:	An	alignment	of	v	and	w	whose	alignment	

score	(as	defined	by	the	scoring	matrix	score)	is	
maximal	among	all	possible	alignments	of	v	and	w.	

49

Global Alignment

The Needleman-Wunsch Algorithm (Global alignment)

Complexity: Space: O(mn); Time: O(mn)
Filling the matrix O(mn)
Backtrace O(m+n)

d is a penalty

51	

Changes:

1.  Initialization

For all i, j,
 F(i, 0) = 0
 F(0, j) = 0

2.  Termination

 maxi F(i, N)
FOPT = max maxj F(M, j)

x1 ……………………………… xM

y n
 …

…
…

…
…

…
…

…
…

…
…

…
 y

1
Maybe it is OK to have an unlimited # of gaps in the beginning and end:

----------CTATCACCTGACCTCCAGGCCGATGCCCCTTCCGGC
GCGAGTTCATCTATCAC--GACCGC--GGTCG--------------

The Overlap Detection variant

52

Can we use a similar algorithm to align entire genomes?

Global alignment

53

Local	Alignment=	Global	Alignment	in	a	subrectangle

local alignment to detect
regulatory sites

Local	Alignment	Problem:	Find	the	highest-scoring	local	
alignment	between	two	strings.	
		
•  Input:	Strings	v	and	w	as	well	as	a	matrix	score.	
			
•  Output:	Substrings	of	v	and	w	whose	global	alignment	

(as	defined	by	the	matrix	score),	is	maximal	among	all	
global	alignments	of	all	substrings	of	v	and	w.	

	

54

Local	Alignment	Problem

55	

Idea:	Ignore	badly	aligning	regions:	Modifications	to	
Needleman-Wunsch	

e.g.		x	=	aaaacccccgggg	
	y	=	cccgggaaccaacc	

Initialization: 	F(0,0)=F(0,	j)	=	F(i,	0)	=	0 	 	 	 	
		

	 	 	 	 																						0 		
Iteration: 	F(i,	j)	=	max	 		F(i	–	1,	j)	–	d	

	 	 	 	 		F(i,	j	–	1)	–	d	
	 	 	 	 		F(i	–	1,	j	–	1)	+	s(xi,	yj)			

Termination:	
1.  If	we	want	the	best	local	alignment…	

	 	 	FOPT	=	maxi,j	F(i,	j)	
2.  If	we	want	all	local	alignments	scoring	>	t		

	 	For	all	i,	j	find	F(i,	j)	>	t,	and	trace	back	

The local alignment: Smith-Waterman algorithm
T.F. Smith, M.S.Waterman, Identification of common molecular subsequences, J Mol Biol vol 147,195-197, 1981.

David Waterman

•  Alignment	1:	score	=	22	(matches)	-	20	(indels)=2.	

•  Alignment	2:	score	=	17	(matches)	-	30	(indels)=-13.	

GCC-C-AGT--TATGT-CAGGGGGCACG--A-GCATGCAGA-
GCCGCC-GTCGT-T-TTCAG----CA-GTTATG--T-CAGAT

---G----C-----C--CAGTTATGTCAGGGGGCACGAGCATGCAGA
GCCGCCGTCGTTTTCAGCAGTTATGTCAG-----A------T-----
 local	alignment	

56

Which	Alignment	is	Better?	

the local alignment detects a
biological finding: two genes are regulated
by he same protein

•  We	previously	assigned	a	fixed	penalty	σ	to	
each	indel.	

•  However,	this	fixed	penalty	may	be	too	severe	
for	a	series	of	100	consecutive	indels.	

•  A	series	of	k	indels	often	represents	a	single	
evolutionary	event	(gap)	rather	than	k	events:	

GATCCAG GATCCAG
GA-C-AG GA--CAG

a	single	gap		
(higher	score)	

or	maybe	2	events		

two	gaps		
(lower	score)		

57

Scoring	Gaps

#matches	−	μ	·	#mismatches	−	σ	·	#indels	
 A T - G T T A T A
 A T C G T - C – C
+1+1-2+1+1-2-3-2-3=-7

 A C G T −
A +1 −µ −µ −µ -σ
C −µ +1 −µ −µ -σ
G −µ −µ +1 −µ -σ
T −µ −µ –µ +1 -σ
− -σ -σ -σ -σ

Scoring	matrix	

 A C G T −
A +1 −3 −5 −1 -3
C −4 +1 −3 −2 -3
G −9 −7 +1 −1 -3
T −3 −5 –8 +1 -4
− -4 -2 -2 -1
Even	more	general	scoring	matrix	58

Mismatches	and	Indel	Penalties	

7 -5

example:	Y	(Tyr)	often	mutates	into	F	(score	+7)	but	rarely	mutates	into	P	(score	-5)			59

Margaret Dayhoff

How	to	compare	amino	acids:	scoring	matrices

Y

σ		-	the	gap	opening	penalty		
ε		-	the	gap	extension	penalty	
σ	>	ε,	since	starting	a	gap	should	be	penalized	
more	than	extending	it.	

Affine	gap	penalty	for	a	gap	of	length	k:		σ+ε·(k-1)	

60

More	Adequate	Gap	Penalties

bottom	level	
(insertions)	

middle	level	
(matches/mismatches)	

upper	level	
(deletions)	

61

•  Thinking	on	3	levels		

σ

ε

σ

ε

0

0

loweri-1,j		-	ε																																						
middlei-1,j		-	σ																																																																																																																			

		loweri,j	=	max	{																																																																																																																			

upperi,j-1		-	ε																																						
middlei,j-1		-	σ																																																																																																																			

		upperi,j	=	max	{																																																																																																																		

loweri,j																																							
middlei-1,j-1		+	score(vi,wj)			
upperi,j	
																																																																																																																			

		middlei,j	=	max	{																																																																																																																			

How	can	we	emulate	
this	path	in	the	3-level?		

62

63

•  Modelling	Affine	Gap	Penalties	by	Long	Edges	

double gap: 2 events double gap: 1 event

64	

Initialization: 	same	
Iteration:	
	 	 	 	 				F(i-1,	j-1)	+	s(xi,	yj)	
	 	 	F(i,	j)	 	=	max 			maxk=0…i-1F(k,j)	–	γ(i-k)		
	 	 	 	 			maxk=0…j-1F(i,k)	–	γ(j-k)	

	
Termination:	 	same	
	
Running	Time:		O(N2M) 	 	(assume	N>M)	
Space:	 	O(NM)	

γ(n)	

Current model: a gap of length n incurs penalty n×d
Gaps usually occur in bunches so we use a convex gap
penalty function:
γ(n): for all n, γ(n + 1) - γ(n) ≤ γ(n) - γ(n – 1)

γ(n)	

Alignment with gaps

“discount”

A compromise: affine gaps

65	

								γ(n)	=	d	+	(n	–	1)	×	e	
	 										| 														|	
	 								gap 									gap	
	 							open 						extend	

To	compute	optimal	alignment,	at	position	i,j,	need	to	“remember”	best		
score	if	gap	is	open		and	best	score	if	gap	is	not	open	
	
F(i,	j):score	of	alignment	x1…xi	to	y1…yj		if				xi	aligns	to	yj 		
G(i,	j):score	if		xi,	or	yj,	aligns	to	a	gap	

d
e

γ(n)	

Initialization: 	F(i,	0)	=	d	+	(i	–	1)×e;				F(0,	j)	=	d	+	(j	–	1)×e	
	
Iteration:	

	 	 	 	 																																													F(i	–	1,	j	–	1)	+	s(xi,	yj)	
	 	 	F(i,	j)	=	max 		
	 	 	 	 																																													G(i	–	1,	j	–	1)	+	s(xi,	yj)	

	
	 	 	 	 																																															F(i	–	1,	j)	–	d		
	 	 	 	 																																															F(i,	j	–	1)	–	d	 	

		
	 	 	G(i,	j)	=	max		
	 	 	 	 																																															G(i,	j	–	1)	–	e	
	 	 	 	 																																															G(i	–	1,	j)	–	e	

Termination:	 	same	

66	

Assume	we	know	that	x	and	y	are	very	similar;	If	the	optimal	alignment	of	x	
and	y	has	few	gaps,	then	the	path	of	the	alignment	will	be	close	to	the	
diagonal	

Assumption:	 	#	gaps(x,	y)		<	k(N)		(say	N>M)	
	

	xi		
	|				implies			|	i	–	j	|	<	k(N)	
	yj	

	
	
	
Time,	Space:	O(N	×	k(N))		<<	O(N2)	

F[i+1,	i+k/2	+1]	F[i+1,	i+k/2]	
	

Out	of	range	
	

F[i,i+k/2]	

Note that for diagonals, i-j = constant.

Banded	DP:	a	special	case

67	

Initialization:	
	F(i,0),	F(0,j)	undefined	for	i,	j	>	k	

	
Iteration:	
	
For	i	=	1…M	
		For	j	=	max(1,	i	–	k)…min(N,	i+k)	
	

	 	 	F(i	–	1,	j	–	1)+	s(xi,	yj)	
	F(i,	j)	=	max 	F(i,	j	–	1)	–	d,	if	j	>	i	–	k(N)	
	 	 	F(i	–	1,	j)	–	d,	if	j	<	i	+	k(N)	

	
Termination: 	same	
	
Easy	to	extend	to	the	affine	gap	case	

x1 ………………………… xM

y N
 …

…
…

…
…

…
…

…
…

…
 y

1

k(N)

Banded	Dynamic	Programming

Example	global	alignment	

68

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1

C 1

A 2

T 3

G 4

T 5

A
-

match=2
mismatch=-1
gap=-1

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1 -2 -3 -4 -5 -6

C 1

A 2

T 3

G 4

T 5

ACGCTG

match=2
mismatch=-1
gap=-1

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1 -2 -3 -4 -5 -6

C 1 -1

A 2 -2

T 3 -3

G 4 -4

T 5 -5

CATGT

match=2
mismatch=-1
gap=-1

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1 -2 -3 -4 -5 -6

C 1 -1 -1

A 2 -2

T 3 -3

G 4 -4

T 5 -5

A
C

match=2
mismatch=-1
gap=-1

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1 -2 -3 -4 -5 -6

C 1 -1 -1 1

A 2 -2

T 3 -3

G 4 -4

T 5 -5

AC
-C

match=2
mismatch=-1
gap=-1

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1 -2 -3 -4 -5 -6

C 1 -1 -1 1 0

A 2 -2

T 3 -3

G 4 -4

T 5 -5

ACG
-C-

match=2
mismatch=-1
gap=-1

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1 -2 -3 -4 -5 -6

C 1 -1 -1 1 0 -1

A 2 -2

T 3 -3

G 4 -4

T 5 -5

ACGC
-C--

ACGC
---C

match=2
mismatch=-1
gap=-1

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1 -2 -3 -4 -5 -6

C 1 -1 -1 1 0 -1 -2 -3

A 2 -2 1 0 0

T 3 -3

G 4 -4

T 5 -5

ACG
-CA

match=2
mismatch=-1
gap=-1

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1 -2 -3 -4 -5 -6

C 1 -1 -1 1 0 -1 -2 -3

A 2 -2 1 0 0 -1 -2 -3

T 3 -3 0 0 -1 -1 1 0

G 4 -4 -1 -1 2 1 0 3

T 5 -5 -2 -2 1 1 3 2

match=2
mismatch=-1
gap=-1

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1 -2 -3 -4 -5 -6

C 1 -1 -1 1 0 -1 -2 -3

A 2 -2 1 0 0 -1 -2 -3

T 3 -3 0 0 -1 -1 1 0

G 4 -4 -1 -1 2 1 0 3

T 5 -5 -2 -2 1 1 3 2

match=2
mismatch=-1
gap=-1

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1

C 1 -1 1 0

A 2 1 0 -1

T 3 0 1

G 4 2 1 3

T 5 3 2

match=2
mismatch=-1
gap=-1

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1

C 1 -1 1 0

A 2 1 0 -1

T 3 0 1

G 4 2 1 3

T 5 3 2

ACGCTG-
-C-ATGT

match=2
mismatch=-1
gap=-1

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1

C 1 -1 1 0

A 2 1 0 -1

T 3 0 1

G 4 2 1 3

T 5 3 2

ACGCTG-
-CA-TGT

match=2
mismatch=-1
gap=-1

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1

C 1 -1 1 0

A 2 1 0 -1

T 3 0 1

G 4 2 1 3

T 5 3 2

-ACGCTG
CATG-T-

match=2
mismatch=-1
gap=-1

Example	local	alignment	

83

0

A
1

T
2

C
3

T
4

A
5

A
6

 0 0 0 0 0 0 0 0

T 1 0

A 2 0

A 3 0

T 4 0

A 5 0

y =	TAATA	
x =	TACTAA

y
x

match=1
mismatch=-1
gap=-1

Local Alignment Example

0

T
1

A
2

C
3

T
4

A
5

A
6

 0 0 0 0 0 0 0 0

T 1 0 1 0 0 1 0 0

A 2 0 0 2 0 0 2 1

A 3 0

T 4 0

A 5 0

y =	TAATA	
x =	TACTAA	

y
x

match=1
mismatch=-1
gap=-1

Local Alignment Example

0
T
1

A
2

C
3

T
4

A
5

A
6

 0 0 0 0 0 0 0 0

T 1 0 1 0 0 1 0 0

A 2 0 0 2 0 0 2 1

A 3 0 0 1 1 0 1 3

T 4 0 0 0 0 2 0 1

A 5 0 0 1 0 0 3 1

y =	TAATA-
x =	TACTAA

y
x

match=1
mismatch=-1
gap=-1

Local Alignment Example

0
T
1

A
2

C
3

T
4

A
5

A
6

 0 0 0 0 0 0 0 0

T 1 0 1 0 0 1 0 0

A 2 0 0 2 0 0 2 1

A 3 0 0 1 1 0 1 3

T 4 0 0 0 0 2 0 1

A 5 0 0 1 0 0 3 1

y =		---TAATA	
x =	TACTAA--

y
x

match=1
mismatch=-1
gap=-1

88

89

Computing	Suffix(i)	
•  suffix(i) is the length of the longest path from (i,m/2) to (n,m)
•  suffix(i) is the length of the longest path from (n,m) to (i,m/2)

with all edges reversed
•  Compute suffix(i) by dynamic programming in the right half

of the “reversed” matrix

store suffix(i) column

0 m/2 m

Length(i)	=	Prefix(i)	+	Suffix(i)	
•  Add prefix(i) and suffix(i) to compute length(i):

•  length(i)=prefix(i) + suffix(i)
•  You now have a middle vertex of the maximum

path (i,m/2) as maximum of length(i)

middle point found

0 m/2 m

0

i

92

93

94

A	
	
T	
	
T	
	
C	
	
A	
	
A	

						A								C								G								G								A								A	

Middle	Column	of	the	Alignment	

middle	column	
(middle=#columns/2)	

95

A	
	
T	
	
T	
	
C	
	
A	
	
A	

						A								C								G								G								A								A	

Middle	Node	of	the	Alignment	

middle	node		
(a	node	where	an	optimal	alignment	path	crosses	the	middle	column;	note	that	different	longest	paths	
may	have	different	middle	nodes,	and	a	given	longest	path	may	have	more	than	one	middle	node.)		96

Divide	and	Conquer	Approach	to	Sequence	Alignment	

AlignmentPath(source,	sink)	
						find	MiddleNode		
							

A	
	
T	
	
T	
	
C	
	
A	
	
A	

						A								C								G								G								A								A	

97

Divide	and	Conquer	Approach	to	Sequence	Alignment	

AlignmentPath(source,	sink)	
						find	MiddleNode		
						AlignmentPath(source,	MiddleNode)	
							

A	
	
T	
	
T	
	
C	
	
A	
	
A	

						A								C								G								G								A								A	

98

Divide	and	Conquer	Approach	to	Sequence	Alignment	

The	only	problem	left	is	how	to	find	this	middle	node	in	linear	space!	

AlignmentPath(source,	sink)	
						find	MiddleNode		
						AlignmentPath(source,	MiddleNode)	
						AlignmentPath(MiddleNode,	sink)	

A	
	
T	
	
T	
	
C	
	
A	
	
A	

						A								C								G								G								A								A	

99

Computing	Alignment	Score	in	Linear	Space	

	
Finding	the	longest	path	in	the	alignment	graph	
requires	storing	all	backtracking	pointers	–	O(nm)	
memory.		
	
Finding	the	length	of	the	longest	path	in	the	
alignment	graph	does	not	require	storing	any	
backtracking	pointers	–	O(n)	memory.		

100

A C G G A A

00 00 0 0

0 1 1 1 1 1

10 11 1 1

0 1 1 1 1 1

20 21 2 2

0 1 2 2 2 3

0

1

1

1

2

3

0 1 2 2 2 3 4

A

T

T

C

A

A

Recycling	the	Columns	in	the	Alignment	Graph	

	
	

101

A	
	
T	
	
T	
	
C	
	
A	
	
A	

A								C								G								G								A								A	

Can	We	Find	the	Middle	Node	without	
Constructing	the	Longest	Path?		

i-path	–	a	longest		path	among	paths	that	visit	the	i-th	node	in	the	middle	column	

4-path	that	visits	the	node	
(4,middle)		

In	the	middle	column		

102

2

4

A

T

T

C

A

A

Can	We	Find	The	Lengths	of	All	i-paths?		

A								C								G								G								A								A	

length(i):	
length	of	an	i-

path:	
	

length(0)=2	
length(4)=4			

103

2

3

3

3

4

3

1

A

T

T

C

A

A

Can	We	Find	The	Lengths	of	All	i-paths?		

A								C								G								G								A								A	

104

2

3

3

3

4

3

1

A

T

T

C

A

A

Can	We	Find	The	Lengths	of	i-paths?		

length(i)=fromSource(i)+toSink(i)	

length(i):	
length	of	an	i-path			

A								C								G								G								A								A	

105

00 00

0 1 1 1

10 11

0 1 1 1

20 21

0 1 2 2

0 1 2 2

A	
	
T	
	
T	
	
C	
	
A	
	
A	

A								C								G								G								A								A	
2 2 1

2 2 1

2 2 1

2 2 1

2 2 1

1 1 1

0

0

0

0

0

0

0 0 0

A	
	
T	
	
T	
	
C	
	
A	
	
A	

A								C								G								G								A								A	

0

fromSource(i)																	

Computing	FromSource	and	toSink			

				toSink(i)	

106

Computing FROMSOURCE(i) for all i can be done in O(n) space and O(n ·m/2) time. Computing
TOSINK(i) for all i can also be done in O(n) space and O(n ·m/2) time; this requires reversing the
direction of all edges and treating the sink as the source. Instead of reversing the edges, we
can reverse the strings v = v1 . . . vn and w = w1 . . . wm and find sn-i,m-middle in the alignment graph for
vn . . . v1 and wm . . . w1.

00 00

0 1 1 1

10 11

0 1 1 1

20 21

0 1 2 2

0 1 2 2

A	
	
T	
	
T	
	
C	
	
A	
	
A	

2 2 1

2 2 1

2 2 1

2 2 1

2 2 1

1 1 1

0

0

0

0

0

0

0 0 0

A	
	
T	
	
T	
	
C	
	
A	
	
A	

0

How	Much	Time	Did	It	Take	to	Find	the	Middle	Node	?			

area/2	 area/2	area/2+area/2=area	

A								C								G								G								A								A	 A								C								G								G								A								A	

fromSource(i)																	 				toSink(i)	

107

In total, we can compute all values LENGTH(i) = FROMSOURCE(i) + TOSINK(i) in linear
space with runtime proportional to n · m/2 + n · m/2 = n · m, which is the total area of
the alignment graph.

A	
	
C	
	
T	
	
T	
	
A	
	
A	
	
T	
	
T	

G								A								G								C								A								A								T									T	

Laughable	Progress:	O(nm)	Time	to	Find	ONE	Node!			

How	much	time	would	it	take	to	conquer	2	subproblems?		

Each	subproblem	
can	be	conquered	

in	time	
proportional	to	

its	area:		
	

area/4+area/4=	
area/2	

108

A	
	
C	
	
T	
	
T	
	
A	
	
A	
	
T	
	
T	

G								A								G								C								A								A								T									T	

Laughable	Progress:	O(nm+nm/2)	Time	to	Find	THREE	Nodes!			

How	much	time	would	it	take	to	conquer	4	subproblems?		

Each	subproblem	
can	be	conquered	

in	time	
proportional	to	

its	area:		
	

area/8+area/8+	
area/8+area/8=	

area/4	

109

A	
	
C	
	
T	
	
T	
	
A	
	
A	
	
T	
	
T	

G								A								G								C								A								A								T									T	

O(nm+nm/2+nm/4)	Time	to	Find	NEARLY	ALL	Nodes!			

How	much	time	would	it	take	to	conquer	ALL	subproblems?		

area+	
area/2	
+area/4	
+area/8	
+area/16	
+….+	
<	

2·area	

110

A

C

T

T

A

A

T

T

G A G C A A T T

The	Middle	Edge	(just	to	save	memory	a	little	bit	more)			

					Middle	Edge:	
an	edge	in	an	

optimal	
alignment	path	
starting	at	the	
middle	node	

111

The	Middle	Edge	Problem		

Middle	Edge	in	Linear	Space	Problem.	Find	a	middle	edge	
in	the	alignment	graph	in	linear	space.	
	

•  Input:	Two	strings	and	matrix	score.		
		
•  Output:	A	middle	edge	in	the	alignment	graph	of	

these	strings	(as	defined	by	the	matrix	score).	

112

A

C

T

T

A

A

T

T

113

A middle edge (shown in bold)
starts at the middle node (shown
as a black circle). The optimal
path travels inside the first
highlighted rectangle, passes
the middle edge, and travels
inside the second highlighted
rectangle afterwards.

G A G C A A T T

A

C

T

T

A

A

T

T

114

We can eliminate the remaining
parts of the alignment graph,
which takes up over half of
the area formed by the graph,
from further consideration.

Finding middle edges (shown in
bold) within previously identified
rectangles.

G A G C A A T T

LinearSpaceAlignment(top,bottom,left,right)	
			if	left	=	right	
						return	alignment	formed	by	bottom-top	edges	“↓”	
			middle	←	⌊(left+right)/2⌋		
			midNode	←	MiddleNode(top,bottom,left,right)	
			midEdge	←		MiddleEdge(top,bottom,left,right)				
			LinearSpaceAlignment(top,midNode,left,middle)	
			output	midEdge	
			if	midEdge	=	“→“	or	midEdge	=	“↘”		
						middle		←	middle+1	
			if		midEdge	=	“↓“	or	midEdge	=	“↘”	
						midNode		←	midNode+1	
			LinearSpaceAlignment(midNode,bottom,middle,right)	

Recursive	LinearSpaceAlignment	

115

Total	Time:	area+area/2+area/4+area/8+area/16+…	

•  yes:	The	Four	Russians	Technique	
•  Arlazarov,	V.;	Dinic,	E.;	Kronrod,	M.;	Faradžev,	I.	
•  The	basic	idea	is	to	precompute	parts	of	the	
computation	involved	in	filling	out	the	dynamic	
programming	table.	

•  time		O(n^2/logn)		
•  Assume	the		block-function	b(A,	B,	C,	X[i+1	..	i+t],	
Y[j+1	..	j+t])	has	been	precomputed	for	all	possible	
inputs.	

•  Article	in	Russian,	easier	to	look	at	Aho,	Alfred	V.;	
Hopcroft,	John	E.;	Ullman,	Jeffrey	D.	(1974),	The	design	
and	analysis	of	computer	algorithms,	Addison-Wesley	

117

NOT EXAMINABLE

Can	we	compute	the	edit	distance	faster	than	O(nm)?

118 https://www.sciencedirect.com/science/article/pii/S0958166916301082#fig0020

Self	Alignment

Pairing rules:
C-G
A-U
(in RNA T is replaced by U)

	dot-bracket	representation	for	a	pseudoknot	free	
structure,	as	well	as	the	extended	pseudoknot	
representation	for	a	structure	containing	a	
pseudoknot.	

Link to Image Source

RNA Secondary Structure: The Nussinov Folding Algorithm�
Nussinov, R., Pieczenik, G., Griggs, J. R. and Kleitman, D. J. (1978). Algorithms
for loop matchings, SIAM J. Appl. Math

Ruth Nussinov

usually	the	more	the	links	the	more	the	binding	energy.	Above:	
Ensemble	of	all	possible	structures	for	a	given	RNA	sequence,	
with	the	corresponding	binding	energy.	The	potential	energy	is	
negative	because	you	need	to	give	energy	to	break	the	links	
(i.e.	the	structure),	for	example	by	heating.		

Link to Image Source

121 bifurcation	i,j	pair	 j	unpaired	i	unpaired	

i	 j	
j-1	i+1	

i	
j	i+1	

j	
j-1	i	

i	 k	

j	k+1	
•  Secondary Structure :

–  Set of paired positions on interval [i,j]
–  This tells which bases are paired in the subsequence from xi to xj

•  Every optimal structure can be built by extending optimal substructures.
•  Suppose we know all optimal substructures of length less than j-i+1.

 The optimal substructure for [i,j] must be formed in one of four ways:
1.  i,j paired
2.  i unpaired
3.  j unpaired
4.  combining two substructures

 Note that each of these consists of extending or joining substructures of
length less than j-i+1.

RNA Secondary Structure
secondary	structure=topology	of	local	segments

Example: GGGAAAUCC

0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0

 G G G A A A U C C
j	

i	

G
 G

 G
 A A A U

 C
 C

0i)(i, & 01)-i(i, == γγtionInitialisa

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

U	

A	 A	

C	
A	

C	
G	
G	

G	

Starting	with	all	subsequences	of	
length	2,	to	length	L:

Where	d(i,j) = 1 if xi	and	xj
are	a	complementary	base	pair,	
and	d(i,j) =	0,	otherwise.	

γ(i,j) is	the	maximum	number	
of	base	pairs	in	segment [i,j]

122

RNA Secondary Structure: The Nussinov Folding Algorithm�
Nussinov, R., Pieczenik, G., Griggs, J. R. and Kleitman, D. J. (1978). Algorithms
for loop matchings, SIAM J. Appl. Math

final structure

 G G G A A A U C C G

G

G

A

A

A

U

C

C

i	

j	

U	

A	 A	

C	
A	

C	
G	
G	

G	

0 0

0 0 0
0 0 0

0 0 0
0 0 0

0 0 1
0 0 0

0 0 0
0 0

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

123

Nussinov Folding Algorithm:
After scores for subsequences of length 2

 G G G A A A U C C

G
 G

 G
 A A A U

 C
 C

i	

j	

U	

A	 A	

C	
A	

C	
G	
G	

G	

0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 1

0 0 1 0
0 0 0 0

0 0 0
0 0

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

124

Nussinov Folding Algorithm:
After scores for subsequences of length 3

 G G G A A A U C C

G
 G

 G
 A A A U

 C
 C

i	

j	

U	

A	 A	

C	
A	

C	
G	
G	

G	

0 0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0 1
0 0 0 1 1

0 0 1 1 1
0 0 0 0

0 0 0
0 0

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

Two	optimal	substructures	for	same	subsequence	

125

Nussinov Folding Algorithm:
After scores for subsequences of length 4

 G G G A A A U C C

G
 G

 G
 A A A U

 C
 C

i	

j	

U	

A	 A	

C	
A	

C	
G	
G	

G	

0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 1

0 0 0 0 1 1
0 0 0 1 1 1

0 0 1 1 1
0 0 0 0

0 0 0
0 0

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

126

Nussinov Folding Algorithm:
After scores for subsequences of length 5

 G G G A A A U C C

G
 G

 G
 A A A U

 C
 C

i	

j	

U	

A	 A	

C	
A	

C	
G	
G	

G	

0 0 0 0 0 0

0 0 0 0 0 0 1
0 0 0 0 0 1 2

0 0 0 0 1 1 1
0 0 0 1 1 1

0 0 1 1 1
0 0 0 0

0 0 0
0 0

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

127

Nussinov Folding Algorithm:
After scores for subsequences of length 6

Nussinov Folding Algorithm
 After scores for subsequences of length 7

 G G G A A A U C C

G
 G

 G
 A A A U

 C
 C

i	

j	

U	

A	 A	

C	
A	

C	
G	
G	

G	

0 0 0 0 0 0 1

0 0 0 0 0 0 1 2
0 0 0 0 0 1 2 2

0 0 0 0 1 1 1
0 0 0 1 1 1

0 0 1 1 1
0 0 0 0

0 0 0
0 0

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

128

Nussinov Folding Algorithm
 After scores for subsequences of length 8

 G G G A A A U C C

G
 G

 G
 A A A U

 C
 C

i	

j	

U	

A	 A	

C	
A	

C	
G	
G	

G	

0 0 0 0 0 0 1 2

0 0 0 0 0 0 1 2 3
0 0 0 0 0 1 2 2

0 0 0 0 1 1 1
0 0 0 1 1 1

0 0 1 1 1
0 0 0 0

0 0 0
0 0

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

129

Nussinov Folding Algorithm
 After scores for subsequences of length 9

 G G G A A A U C C

G
 G

 G
 A A A U

 C
 C

i	

j	

U	

A	 A	

C	
A	

C	
G	
G	

G	

0 0 0 0 0 0 1 2 3

0 0 0 0 0 0 1 2 3
0 0 0 0 0 1 2 2

0 0 0 0 1 1 1
0 0 0 1 1 1

0 0 1 1 1
0 0 0 0

0 0 0
0 0

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

130

Nussinov Folding Algorithm
 Traceback

 G G G A A A U C C

G
 G

 G
 A A A U

 C
 C

i	

j	

U	

A	 A	

C	
A	

C	
G	
G	

G	

0 0 0 0 0 0 1 2 3

0 0 0 0 0 0 1 2 3
0 0 0 0 0 1 2 2

0 0 0 0 1 1 1
0 0 0 1 1 1

0 0 1 1 1
0 0 0 0

0 0 0
0 0

131

Nussinov	algorithm	
(a	different	
example):	fill-stage	

0 0 1 2 2 2 3 4 4

0 0 1 1 1 2 2 3 3

0 0 0 0 1 1 2 2

0 0 0 1 1 2 2

0 0 0 1 2 2

0 0 1 1 1

0 0 0 0

0 0 0

0 0

G G C C A G U U C

1	 2	 3	 4	 5	 6	 7	 8	 9	

G 1	

G 2	

C 3	

C 4	

A 5	

G 6	

U 7	

U 8	

C 9	
Pink: joining of substructures 1..4 and 5..8

Green: addition of paired bases 1,7

Blue: addition of unpaired base 3 or 7

Scoring system:
δ(i,j) = 1 for all RNA Watson-Crick base-
pairs including G-U else δ(i,j) = 0.

132

Nussinov	algorithm:	
trace-back	

0 0 1 2 2 2 3 4 4

0 0 1 1 1 2 2 3 3

0 0 0 0 1 1 2 2

0 0 0 1 1 2 2

0 0 0 1 2 2

0 0 1 1 1

0 0 0 0

0 0 0

0 0

G G C C A G U U C

1	 2	 3	 4	 5	 6	 7	 8	 9	

G 1	

G 2	

C 3	

C 4	

A 5	

G 6	

U 7	

U 8	

C 9	

current record stack
 1,9
1,9 1,8
1,8 1,4 5,8
1,4 1,4 2,3 5,8
2,3 2,3 3,2 5,8
3,2 5,8
5,8 5,8 6,7
6,7 6,7 7,6
7,6

133

134

0i)(i, & 01)-i(i, == γγtionInitialisa

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

RNA Secondary Structure: The Nussinov Folding Algorithm�
Nussinov, R., Pieczenik, G., Griggs, J. R. and Kleitman, D. J. (1978). Algorithms
for loop matchings, SIAM J. Appl. Math

There are O(n2) terms to be
computed, each requiring calling
of O(n) already computed terms
for the case of bifurcation. Thus
overall complexity is O(n3) in
time and O(n2) in space.

Summary		
(note	different	notation!)	

136

137	

Ancestral Node
or ROOT of

the Tree
Internal Nodes

Branches or
 Lineages A

B

C

D

E

((A,(B,C)),(D,E)) = The above phylogeny as nested parentheses

Terminal Nodes

unrooted

rooted

time

Phylogeny

species tree by Darwin

Phylogenetic tree
applications

tree of life based on mitochondrial sequences

tracing influenza strain variations

Did	the	Florida	Dentist	infect	his	patients	with	HIV?	
DENTIST

Patient H

Patient D

Patient F

Patient C
Patient A
Patient G

Patient B
Patient E
Patient A

Local control 2
Local control 3

Local control 9

Local control 35

Local control 3

Yes:
The HIV sequences from
these patients fall within
the clade of HIV sequences
found in the dentist.

No

No

From Ou et al. (1992) and Page & Holmes (1998)

Phylogenetic tree
of HIV sequences
from the DENTIST,
his Patients, & Local
HIV-infected People:

Phylogenetic
tree

applications

EXAMPLE:	Phylogenetic-inspired	techniques	for	reverse	engineering	
and	detection	of	malware	families	

Sequence	alignment	(dbg:	with	debugging	symbols,	def:	default	settings,	spd:	
optimised	for	speed).	(a)	Before	alignment.	(b)	After	alignment	using	an	identity	
substitution	matrix.	(c)	After	alignment	using	a	substitution	matrix	 140

Trees and Phylogeny�
Outline

•  Transforming Distance Matrices into Evolutionary Trees

•  Toward an Algorithm for Distance-Based Phylogeny Construction

•  Additive Phylogeny

•  Using Least-Squares to Construct Distance-Based Phylogenies

•  Ultrametric Evolutionary Trees

•  The Neighbor-Joining Algorithm

•  Character-Based Tree Reconstruction

•  The Small Parsimony Problem

•  The Large Parsimony Problem

•  Back to the alignment: progressive alignment

141

SPECIES ALIGNMENT DISTANCE MATRIX

Chimp Human Seal Whale

Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 7 5

Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0

Constructing a Distance Matrix

Di,j = number of differing symbols between i-th and
j-th rows of a “multiple alignment”.

SPECIES ALIGNMENT DISTANCE MATRIX

Chimp Human Seal Whale

Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 7 5

Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0

Constructing a Distance Matrix

Di,j = number of differing symbols between i-th and
j-th rows of a “multiple alignment”.

SPECIES ALIGNMENT DISTANCE MATRIX

Chimp Human Seal Whale

Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 7 5

Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0

Constructing a Distance Matrix

How else could we form a distance matrix?

Di,j = number of differing symbols between i-th and
j-th rows of a multiple alignment.

cnidarians

flowering!
seed plants

non-flowering !
seed plants

sponges

bacteria

archaebacteria

protoctists

green algae

ferns

mosses

fungi

ANIMALS

PLANTS

EUKARYOTES

LIFE

flatworms

rotifers roundworms lophophorates

snakes!
& lizards

crocodiles!
& birds

ARTHROPODS

echinoderms

VERTEBRATES

mollusks segmented!
worms

chelicerates

crustaceans insects

cartilaginous!
fish

bony fish

TETRAPODS

amphibians

AMNIOTES

mammals

turtles

Leaves (degree = 1):
present-day species

Internal nodes
(degree ≥ 1):
ancestral species

Tree: Connected
graph containing no
cycles.

Trees

Present Day

Most Recent Ancestor

TIME

Rooted tree: one node is designated as the root (most
recent common ancestor)

Trees

Distance-Based Phylogeny Problem: Construct an
evolutionary tree from a distance matrix.
•  Input: A distance matrix.
•  Output: The unrooted tree “fitting” this distance

matrix.

Distance-Based Phylogeny

SPECIES ALIGNMENT DISTANCE MATRIX

Chimp Human Seal Whale

Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 7 5

Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0

Constructing a Distance Matrix

Di,j = number of differing symbols between i-th and
j-th rows of a “multiple alignment”.

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal

Human

Chimp

2

1
3

2

0

Fitting a Tree to a Matrix

Distance-Based Phylogeny Problem: Construct an
evolutionary tree from a distance matrix.
•  Input: A distance matrix.
•  Output: The unrooted tree fitting this distance

matrix.

Return to Distance-Based Phylogeny

Now is this problem well-defined?

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0

Exercise Break: Try fitting a tree to the following
matrix.

Return to Distance-Based Phylogeny

No Tree Fits a Matrix

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0

Exercise Break: Try fitting a tree to the following
matrix.

Additive matrix: distance matrix such that there
exists an unrooted tree fitting it.

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal

Human

Chimp

2

1
3

2

0

More Than One Tree Fits a Matrix

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Chimp

1

1
3

1.5

0

Seal
0.5

More Than One Tree Fits a Matrix

Human 1

Whale

Seal

Human

Chimp

2

1
3

2

0

Which Tree is “Better”?

Simple tree: tree with no nodes of degree 2.

Theorem: There is a unique simple tree fitting an
additive matrix.

Distance-Based Phylogeny Problem: Construct an
evolutionary tree from a distance matrix.
•  Input: A distance matrix.
•  Output: The simple tree fitting this distance

matrix (if this matrix is additive).

Reformulating Distance-Based Phylogeny

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal

Human

Chimp

2

1
3

2

0

An Idea for Distance-Based Phylogeny

Seal and whale are neighbors (meaning they share
the same parent).

Whale

Seal

Human

Chimp

2

1
3

2

0

An Idea for Distance-Based Phylogeny

Theorem: Every simple tree with at least two nodes
has at least one pair of neighboring leaves.

An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal
?

?

How do we compute
the unknown
distances?

j

i

m

k di, k = di, m + dk, m

dj, k = dj, m + dk, m

di, j = di, m + dj, m

Toward a Recursive Algorithm

dk,m = [(di,m + dk,m) + (dj,m + dk,m) – (di,m + dj,m)] / 2

j

i

m

k di, k = di, m + dk, m

dj, k = dj, m + dk, m

di, j = di, m + dj, m

Toward a Recursive Algorithm

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2

 di,m = Di,k – (Di,k + Dj,k – Di,j) / 2

 di,m = (Di,k + Di,j – Dj,k) / 2

dk,m = [(di,m + dk,m) + (dj,m + dk,m) – (di,m + dj,m)] / 2

∴

An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal
?

?

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2

 di,m = Di,k – (Di,k + Dj,k – Di,j) / 2

 di,m = (Di,k + Di,j – Dj,k) / 2

An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal
?

?

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2

 di,m = Di,k – (Di,k + Dj,k – Di,j) / 2

 di,m = (Di,k + Di,j – Dj,k) / 2

m

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2

 di,m = Di,k – (Di,k + Dj,k – Di,j) / 2

 dSeal,m = (DSeal,Chimp + DSeal,Whale – DWhale,Chimp) / 2

An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal

?

m

dSeal,m Chimp

Chimp

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2

 di,m = Di,k – (Di,k + Dj,k – Di,j) / 2

 dSeal,m = 2

An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal
2

0

m

Chimp

An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal
2

0

m

4

2

An Idea for Distance-Based Phylogeny

Whale

Seal

0

m

Chimp Human Seal Whale m

Chimp 0 3 6 4 4
Human 3 0 7 5 5

Seal 6 7 0 2 2
Whale 4 5 2 0 0

m 4 5 2 0 0

Chimp
4

Human 5

Human 5

Chimp
4 2

An Idea for Distance-Based Phylogeny

Whale

Seal

0

m

Chimp Human Seal Whale m

Chimp 0 3 6 4 4
Human 3 0 7 5 5

Seal 6 7 0 2 2
Whale 4 5 2 0 0

m 4 5 2 0 0

Human 5

Chimp
4 2

An Idea for Distance-Based Phylogeny

Whale

Seal

0

m

Chimp Human m

Chimp 0 3 4
Human 3 0 5

m 4 5 0

Human

Chimp
2

An Idea for Distance-Based Phylogeny

Whale

Seal

0

m

Chimp Human m

Chimp 0 3 4
Human 3 0 5

m 4 5 0

?

?

a

Human

Chimp
2

An Idea for Distance-Based Phylogeny

Whale

Seal

0

m

Chimp Human m

Chimp 0 3 4
Human 3 0 5

m 4 5 0

?

?

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2

 di,m = Di,k – (Di,k + Dj,k – Di,j) / 2

 dChimp,a = (DChimp,m + DChimp,Human – DHuman,m) / 2

a

Human

Chimp
2

An Idea for Distance-Based Phylogeny

Whale

Seal

0

m

Chimp Human m

Chimp 0 3 4
Human 3 0 5

m 4 5 0

?

1

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2

 di,m = Di,k – (Di,k + Dj,k – Di,j) / 2

 dChimp,a = 1

a

Human

Chimp
2

An Idea for Distance-Based Phylogeny

Whale

Seal

0

m

Chimp Human m

Chimp 0 3 4
Human 3 0 5

m 4 5 0

2

1

a

Human

Chimp
2

An Idea for Distance-Based Phylogeny

Whale

Seal

0

m

Chimp Human m

Chimp 0 3 4
Human 3 0 5

m 4 5 0

2

1

a
3

Human

Chimp
2

An Idea for Distance-Based Phylogeny

Whale

Seal

0

m

2

1

a
3

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Exercise Break: Apply this recursive approach to the
distance matrix below.

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

An Idea for Distance-Based Phylogeny

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

What Was Wrong With Our Algorithm?

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

What Was Wrong With Our Algorithm?

j

i k

l

11

2

4
6

7

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

j

i k

l

11

2

4
6

7

What Was Wrong With Our Algorithm?

minimum�
element is Dj,k

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

minimum�
element is Dj,k

j and k are�
not neighbors!

j

i k

l

11

2

4
6

7

What Was Wrong With Our Algorithm?

Rather than trying to find neighbors, let’s instead try
to compute the length of limbs, the edges attached
to leaves.

From Neighbors to Limbs

j

i k

l

?

?

4
?

?

j

i

m

k di, k = di, m + dk, m

dj, k = dj, m + dk, m

di, j = di, m + dj, m

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2

 di,m = Di,k – (Di,k + Dj,k – Di,j) / 2

 di,m = (Di,k + Di,j – Dj,k) / 2

dk,m = [(di,m + dk,m) + (dj,m + dk,m) – (di,m + dj,m)] / 2

∴

From Neighbors to Limbs

j

i

m

k di, k = di, m + dk, m

dj, k = dj, m + dk, m

di, j = di, m + dj, m

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2

 di,m = Di,k – (Di,k + Dj,k – Di,j) / 2

 di,m = (Di,k + Di,j – Dj,k) / 2

dk,m = [(di,m + dk,m) + (dj,m + dk,m) – (di,m + dj,m)] / 2

∴

From Neighbors to Limbs

Assumes that i and
j are neighbors...

Code Challenge: Solve the Limb Length Problem.

Computing Limb Lengths

Limb Length Problem: Compute the length of a limb
in the simple tree fitting an additive distance matrix.
•  Input: An additive distance matrix D and an

integer j.
•  Output: The length of the limb connecting leaf j

to its parent, LimbLength(j).

Limb Length Theorem: LimbLength(i) is equal to the
minimum value of (Di,k + Di,j – Dj,k)/2 over all leaves
j and k.

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Computing Limb Lengths

(Dchimp, human + Dchimp, seal – Dhuman, seal) / 2 = (3 + 6 – 7) / 2 = 1

Limb Length Theorem: LimbLength(chimp) is equal
to the minimum value of (Dchimp,k + Dchimp,j – Dj,k)/2
over all leaves j and k.

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Computing Limb Lengths

(Dchimp, human + Dchimp, seal – Dhuman, seal) / 2 = (3 + 6 – 7) / 2 = 1

(Dchimp, human + Dchimp, whale – Dhuman, whale) / 2 = (3 + 4 – 5) / 2 = 1

Limb Length Theorem: LimbLength(chimp) is equal
to the minimum value of (Dchimp,k + Dchimp,j – Dj,k)/2
over all leaves j and k.

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Computing Limb Lengths

(Dchimp, human + Dchimp, seal – Dhuman, seal) / 2 = (3 + 6 – 7) / 2 = 1

(Dchimp, human + Dchimp, whale – Dhuman, whale) / 2 = (3 + 4 – 5) / 2 = 1
(Dchimp, whale + Dchimp, seal – Dwhale, seal) / 2 = (6 + 4 – 2) / 2 = 4

Limb Length Theorem: LimbLength(chimp) is equal
to the minimum value of (Dchimp,k + Dchimp,j – Dj,k)/2
over all leaves j and k.

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Computing Limb Lengths

(Dhuman, chimp + Dchimp, seal – Dhuman, seal) / 2 = (3 + 6 – 7) / 2 = 1

(Dhuman, chimp + Dchimp, whale – Dhuman, whale) / 2 = (3 + 4 – 5) / 2 = 1
(Dwhale, chimp + Dchimp, seal – Dwhale, seal) / 2 = (6 + 4 – 2) / 2 = 4

Limb Length Theorem: LimbLength(chimp) is equal
to the minimum value of (Dchimp,k + Dchimp,j – Dj,k)/2
over all leaves j and k.

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Computing Limb Lengths

Whale

Seal

Human

Chimp

2

1
3

2

0

Limb Length Theorem: LimbLength(chimp) is equal
to the minimum value of (Dchimp,k + Dchimp,j – Dj,k)/2
over all leaves j and k.

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

D
j

i k

l

11

2

4
6

7

TREE(D)

AdditivePhylogeny In Action

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

D

AdditivePhylogeny In Action

1. Pick an arbitrary leaf j.

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

D

AdditivePhylogeny In Action

LimbLength(j) = 2

2. Compute its limb length, LimbLength(j).

i j k l

i 0 11 21 22

j 11 0 10 11

k 21 10 0 13

l 22 11 13 0

Dbald

AdditivePhylogeny In Action

j

i k

l

11
4

6

7 0

TREE(Dbald)

3. Subtract LimbLength(j) from each row and column
to produce Dbald in which j is a bald limb (length 0).

i j k l

i 0 11 21 22

j 11 0 10 11

k 21 10 0 13

l 22 11 13 0

Dtrim

AdditivePhylogeny In Action

4. Remove the j-th row and column of the matrix to
form the (n – 1) x (n – 1) matrix Dtrim.

i j k l

i 0 11 21 22

j 11 0 10 11

k 21 10 0 13

l 22 11 13 0

Dtrim

AdditivePhylogeny In Action

5. Construct Tree(Dtrim).

i

k

l

15
6

7

TREE(Dtrim)

i j k l

i 0 11 21 22

j 11 0 10 11

k 21 10 0 13

l 22 11 13 0

Dbald

AdditivePhylogeny In Action

6. Identify the point in Tree(Dtrim) where leaf j should
be attached.

j

i k

l

11
4

6

7 0

TREE(Dbald)

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

D

AdditivePhylogeny In Action

LimbLength(j) = 2

j

i k

l

11

2

4
6

7

TREE(D)

7. Attach j by an edge of length LimbLength(j) in
order to form Tree(D).

AdditivePhylogeny(D):
1.  Pick an arbitrary leaf j.
2.  Compute its limb length, LimbLength(j).
3.  Subtract LimbLength(j) from each row and column to

produce Dbald in which j is a bald limb (length 0).
4.  Remove the j-th row and column of the matrix to

form the (n – 1) x (n – 1) matrix Dtrim.
5.  Construct Tree(Dtrim).
6.  Identify the point in Tree(Dtrim) where leaf j should be

attached.
7.  Attach j by an edge of length LimbLength(j) in order

to form Tree(D).

AdditivePhylogeny

AdditivePhylogeny(D):
1.  Pick an arbitrary leaf j.
2.  Compute its limb length, LimbLength(j).
3.  Subtract LimbLength(j) from each row and column to

produce Dbald in which j is a bald limb (length 0).
4.  Remove the j-th row and column of the matrix to

form the (n – 1) x (n – 1) matrix Dtrim.
5.  Construct Tree(Dtrim).
6.  Identify the point in Tree(Dtrim) where leaf j should

be attached.
7.  Attach j by an edge of length LimbLength(j) in order

to form Tree(D).

AdditivePhylogeny

Attaching a Limb

i j k l

i 0 11 21 22

j 11 0 10 11

k 21 10 0 13

l 22 11 13 0

Dbald i

k

l

15
6

7

TREE(Dtrim)

Limb Length Theorem: the length of the limb of j is
equal to the minimum value of (Dbald

i,j + Dbald
j,k –

Dbald
i,k)/2 over all leaves i and k.

Attaching a Limb

i j k l

i 0 11 21 22

j 11 0 10 11

k 21 10 0 13

l 22 11 13 0

Dbald

(Dbald
i,j + Dbald

j,k – Dbald
i,k)/2 = 0

i

k

l

15
6

7

TREE(Dtrim)

Limb Length Theorem: the length of the limb of j is
equal to the minimum value of (Dbald

i,j + Dbald
j,k –

Dbald
i,k)/2 over all leaves i and k.

Attaching a Limb

i j k l

i 0 11 21 22

j 11 0 10 11

k 21 10 0 13

l 22 11 13 0

Dbald

(Dbald
i,j + Dbald

j,k – Dbald
i,k)/2 = 0

Dbald
i,j + Dbald

j,k = Dbald
i,k

i

k

l

15
6

7

TREE(Dtrim)

Attaching a Limb

i j k l

i 0 11 21 22

j 11 0 10 11

k 21 10 0 13

l 22 11 13 0

Dbald
j

i k

l

11
4

6

7 0

TREE(Dbald)

The attachment point for j is found on the path between
leaves i and k at distance Dbald

i,j from i.

Dbald

i,j + Dbald
j,k = Dbald

i,k

AdditivePhylogeny

Code Challenge: Implement AdditivePhylogeny.

AdditivePhylogeny(D):
1.  Pick an arbitrary leaf j.
2.  Compute its limb length, LimbLength(j).
3.  Subtract LimbLength(j) from each row and column to

produce Dbald in which j is a bald limb (length 0).
4.  Remove the j-th row and column of the matrix to

form the (n – 1) x (n – 1) matrix Dtrim.
5.  Construct Tree(Dtrim).
6.  Identify the point in Tree(Dtrim) where leaf j should be

attached.
7.  Attach j by an edge of length LimbLength(j) in order

to form Tree(D).

j

i k

l

T
1.5

1.5

1

1

1.5

Discrepancy(T, D) = Σ1≤ i < j ≤ n (di,j(T) – Di,j)2

 = 12 + 12 = 2

Sum of Squared Errors

D d

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0

i j k l

i 0 3 4 4

j 3 0 4 4

k 4 4 0 2

l 4 4 2 0

j

i k

l

T
?

?

?

?

?

D d

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0

i j k l

i 0 ? ? ?

j ? 0 ? ?

k ? ? 0 ?

l ? ? ? 0

Exercise Break: Assign lengths to edges in T in order
to minimize Discrepancy(T, D).

Sum of Squared Errors

Least-Squares Distance-Based Phylogeny Problem:
Given a distance matrix, find the tree that minimizes
the sum of squared errors.
•  Input: An n x n distance matrix D.
•  Output: A weighted tree T with n leaves

minimizing Discrepancy(T, D) over all weighted
trees with n leaves.

Least-Squares Phylogeny

Unfortunately, this problem is NP-Complete...

Ultrametric tree: distance
from root to any leaf is the
same (i.e., age of root).

Baboon Orangutan Gorilla Chimpanzee Bonobo Human Squirrel�
Monkey

23
33

10

10

6

1

2 2
6

edge weights: correspond
to difference in ages on the
nodes the edge connects.

Ultrametric Trees

33

23

13

7

6

2

Rooted binary tree: an
unrooted binary tree with
a root (of degree 2) on
one of its edges.

Ultrametric tree: distance
from root to any leaf is the
same (i.e., age of root).

Baboon Orangutan Gorilla Chimpanzee Bonobo Human Squirrel�
Monkey

Ultrametric Trees

23
33

10

10

6

1

2 2
6

33

23

13

7

6

2

UPGMA: A Clustering Heuristic

1. Form a cluster for each present-day species, each
containing a single leaf.

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0
i j k l 0 0 0 0

UPGMA: A Clustering Heuristic

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0

2. Find the two closest clusters C1 and C2 according
to the average distance�
 Davg(C1, C2) = Σi in C1, j in C2 Di,j / |C1| � |C2|�
where |C| denotes the number of elements in C.

i j k l 0 0 0 0

i j k l

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0
0 0 0 0

3. Merge C1 and C2 into a single cluster C.

UPGMA: A Clustering Heuristic

{ k, l }

i j k l

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0
0 0 0 0

4. Form a new node for C and connect to C1 and C2
by an edge. Set age of C as Davg(C1, C2)/2.

UPGMA: A Clustering Heuristic

{ k, l }
1

1 1

i j k l 0 0 0 0

1

1 1

i j { k, l }

i 0 3 3.5

j 3 0 4.5

{ k, l } 3.5 4.5 0

{ k, l }

UPGMA: A Clustering Heuristic

5. Update the distance matrix by computing the
average distance between each pair of clusters.

1.5

1.5 1.5

i j k l 0 0 0 0

1

1 1

i j { k, l }

i 0 3 3.5

j 3 0 4.5

{ k, l } 3.5 4.5 0

{ i, j }

UPGMA: A Clustering Heuristic

6. Iterate until a single cluster contains all species.

1.5

1.5 1.5

i j k l 0 0 0 0

1

1 1

{ i, j }
{i, j} { k, l }

{i, j} 0 4

{ k, l } 4 0

UPGMA: A Clustering Heuristic

6. Iterate until a single cluster contains all species.

2

1

0.5

1.5

1.5 1.5

i j k l 0 0 0 0

1

1 1

{i, j} { k, l }

{i, j} 0 4

{ k, l } 4 0

UPGMA: A Clustering Heuristic

6. Iterate until a single cluster contains all species.

2

1

0.5

1.5

1.5 1.5

i j k l 0 0 0 0

1

1 1

UPGMA: A Clustering Heuristic

6. Iterate until a single cluster contains all species.

UPGMA: A Clustering Heuristic

UPGMA(D):
1.  Form a cluster for each present-day species, each

containing a single leaf.
2.  Find the two closest clusters C1 and C2 according to the

average distance�
 Davg(C1, C2) = Σi in C1, j in C2 Di,j / |C1| � |C2|�
where |C| denotes the number of elements in C

3.  Merge C1 and C2 into a single cluster C.
4.  Form a new node for C and connect to C1 and C2 by an

edge. Set age of C as Davg(C1, C2)/2.
5.  Update the distance matrix by computing the average

distance between each pair of clusters.
6.  Iterate steps 2-5 until a single cluster contains all species.

i j k l

1

1 1

1.5

1.5 1.5

2

1

0.5

0 0 0 0

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0

UPGMA Doesn’t “Fit” a Tree to a Matrix

i j k l

1

1 1

1.5

1.5 1.5

2

1

0.5

0 0 0 0

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0

UPGMA Doesn’t “Fit” a Tree to a Matrix

•  AdditivePhylogeny:
– good: produces the tree fitting an additive matrix
– bad: fails completely on a non-additive matrix

•  UPGMA:
– good: produces a tree for any matrix
– bad: tree doesn’t necessarily fit an additive matrix

•  ?????:
– good: produces the tree fitting an additive matrix
– good: provides heuristic for a non-additive matrix

In Summary...

Neighbor-Joining Theorem

Given an n x n distance matrix D, its neighbor-joining
matrix is the matrix D* defined as�
�
�
where TotalDistanceD(i) is the sum of distances from i
to all other leaves.

D

TotalDistanceD

56

38

46

48

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

i j k l

i 0 -68 -60 -60

j -68 0 -60 -60

k -60 -60 0 -68

l -60 -60 -68 0

D*

D*i,j = (n – 2)�Di,j – TotalDistanceD(i) – TotalDistanceD(j)

Neighbor-Joining Theorem

D

TotalDistanceD

56

38

46

48

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

i j k l

i 0 -68 -60 -60

j -68 0 -60 -60

k -60 -60 0 -68

l -60 -60 -68 0

D*

Neighbor-Joining Theorem: If D is additive, then the
smallest element of D* corresponds to neighboring
leaves in Tree(D).

Neighbor-Joining in Action

D*

TotalDistanceD

56

38

46

48

i j k l

i 0 -68 -60 -60

j -68 0 -60 -60

k -60 -60 0 -68

l -60 -60 -68 0

1. Construct neighbor-joining matrix D* from D.

Neighbor-Joining in Action

D*

TotalDistanceD

56

38

46

48

i j k l

i 0 -68 -60 -60

j -68 0 -60 -60

k -60 -60 0 -68

l -60 -60 -68 0

2. Find a minimum element D*i,j of D*.

Neighbor-Joining in Action

D*

TotalDistanceD

56

38

46

48

i j k l

i 0 -68 -60 -60

j -68 0 -60 -60

k -60 -60 0 -68

l -60 -60 -68 0

2. Find a minimum element D*i,j of D*.

Neighbor-Joining in Action

D*

TotalDistanceD

56

38

46

48

i j k l

i 0 -68 -60 -60

j -68 0 -60 -60

k -60 -60 0 -68

l -60 -60 -68 0

3. Compute Δi,j = (TotalDistanceD(i) –
TotalDistanceD(j)) / (n – 2).

Δi,j = (56 – 38) / (4 – 2)
 = 9

Neighbor-Joining in Action

TotalDistanceD

56

38

46

48

4. Set LimbLength(i) equal to ½(Di,j + Δi,j) and
LimbLength(j) equal to ½(Di,j – Δj,i).

Δi,j = (56 – 38) / (4 – 2)
 = 9

D

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

LimbLength(i) = ½(13 + 9) = 11
LimbLength(i) = ½(13 – 9) = 2

Neighbor-Joining in Action

5. Form a matrix D’ by removing i-th and j-th row/
column from D and adding an m-th row/column
such that for any k, Dk,m = (Di,k + Dj,k – Di,j) / 2.

m k l

m 0 10 11

k 10 0 13

l 11 13 0

D’

TotalDistanceD

21

23

24

j

i

m

k di, k = di, m + dk, m

dj, k = dj, m + dk, m

di, j = di, m + dj, m

Flashback: Computation of dk,m

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2

dk,m = [(di,m + dk,m) + (dj,m + dk,m) – (di,m + dj,m)] / 2

Neighbor-Joining in Action

6. Apply NeighborJoining to D’ to obtain Tree(D’).

m k l

m 0 10 11

k 10 0 13

l 11 13 0

D’

j

i

m

k

4
6

7
l

Tree(D’)

j

i k

l

11

2

4
6

7

Neighbor-Joining in Action

7. Reattach limbs of i and j to obtain Tree(D).

m k l

m 0 10 11

k 10 0 13

l 11 13 0

D’

Tree(D)

LimbLength(i) = ½(13 + 9) = 11
LimbLength(i) = ½(13 – 9) = 2

j

i k

l

11

2

4
6

7

Neighbor-Joining in Action

7. Reattach limbs of i and j to obtain Tree(D).

m k l

m 0 10 11

k 10 0 13

l 11 13 0

D’

Tree(D)

NeighborJoining(D):
1.  Construct neighbor-joining matrix D* from D.
2.  Find a minimum element D*i,j of D*.
3.  Compute Δi,j = (TotalDistanceD(i) – TotalDistanceD(j)) / (n

– 2).
4.  Set LimbLength(i) equal to ½(Di,j + Δi,j) and LimbLength(j)

equal to ½(Di,j – Δj,i).
5.  Form a matrix D’ by removing i-th and j-th row/column

from D and adding an m-th row/column such that for any
k, Dk,m = (Dk,i + Dk,j – Di,j) / 2.

6.  Apply NeighborJoining to D’ to obtain Tree(D’).
7.  Reattach limbs of i and j to obtain Tree(D).

Neighbor-Joining

Code Challenge: Implement NeighborJoining.

Neighbor-Joining

Exercise Break, check the following: Neighbor
joining on a set of r taxa requires r-3 iterations.
At each step one has to build and search a D*
matrix. Initially the D* matrix is size r2, then the
next step it is (r -1)2, etc. This leads to a time
complexity of O(r 3).

Neighbor-Joining

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0

Exercise Break: Find the tree returned by
NeighborJoining on the following non-additive
matrix. How does the result compare with the tree
produced by UPGMA?

D

2

1

0.5

1.5

1.5 1.5

i j k l 0 0 0 0

1

1 1

UPGMA�
tree

238

Example (different notation)

We lost information when we converted a multiple
alignment to a distance matrix...

Weakness of Distance-Based Methods

SPECIES ALIGNMENT DISTANCE MATRIX

Chimp Human Seal Whale

Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 7 5

Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0

Distance-based algorithms for evolutionary tree
reconstruction say nothing about ancestral states at
internal nodes.

An Alignment As a Character Table

n species

m characters

SPECIES ALIGNMENT

Chimp ACGTAGGCCT
Human ATGTAAGACT

Seal TCGAGAGCAC
Whale TCGAAAGCAT

Toward a Computational Problem

Chimp ACGTAGGCCT
Human ATGTAAGACT

Seal TCGAGAGCAC
Whale TCGAAAGCAT

n species

m characters

ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

?????????? ??????????

??????????

Chimp Human Seal Whale

Toward a Computational Problem

Chimp ACGTAGGCCT
Human ATGTAAGACT

Seal TCGAGAGCAC
Whale TCGAAAGCAT

ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

ACGTAAGCCT TCGAAAGCAT

ACGAAAGCCT

Chimp Human Seal Whale

Toward a Computational Problem

ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

ACGTAAGCCT TCGAAAGCAT

ACGAAAGCCT

Chimp Human Seal Whale

Toward a Computational Problem

2 1

2

0 2

1

Parsimony score: sum of Hamming distances along
each edge.

ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

ACGTAAGCCT TCGAAAGCAT

ACGAAAGCCT

Chimp Human Seal Whale

Toward a Computational Problem

2 1

2

0 2

1

Parsimony score: sum of Hamming distances along
each edge.

Parsimony Score: 8

Small Parsimony Problem: Find the most
parsimonious labeling of the internal nodes of a
rooted tree.
•  Input: A rooted binary tree with each leaf labeled

by a string of length m.
•  Output: A labeling of all other nodes of the tree

by strings of length m that minimizes the tree’s
parsimony score.

Toward a Computational Problem

Small Parsimony Problem: Find the most
parsimonious labeling of the internal nodes of a
rooted tree.
•  Input: A rooted binary tree with each leaf labeled

by a string of length m.
•  Output: A labeling of all other nodes of the tree

by strings of length m that minimizes the tree’s
parsimony score.

Toward a Computational Problem

Is there any way we can simplify this problem
statement?

Small Parsimony Problem: Find the most
parsimonious labeling of the internal nodes of a
rooted tree.
•  Input: A rooted binary tree with each leaf labeled

by a single symbol.
•  Output: A labeling of all other nodes of the tree

by single symbols that minimizes the tree’s
parsimony score.

Toward a Computational Problem

ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

ACGTAAGCCT TCGAAAGCAT

ACGAAAGCCT

Chimp Human Seal Whale

Toward a Computational Problem

v

A Dynamic Programming Algorithm

Let Tv denote the subtree of T�
whose root is v.

Tv

Define sk(v) as the minimum
parsimony score of Tv over
all labelings of Tv, assuming
that v is labeled by k.

The minimum parsimony score for the tree is equal to
the minimum value of sk(root) over all symbols k.

Exercise Break: Prove the following recurrence
relation:�

sk(v) = minall symbols i {si(Daughter(v)) + δi,k} + minall symbols i {si(Son(v)) + δj,k}	

A Dynamic Programming Algorithm

For symbols i and j, define
•  δi,j = 0 if i = j
•  δi,j = 1 otherwise.

v

Tv

A! C G T!

� 0 � �

A! C G T!

� 0 � �

A! C G T!

0 � � �

A! C G T!

� 0 � �

A! C G T!

� � 0 �

A! C G T!

� � 0 �

A! C G T!

� 0 � �

A! C G T!

� � � 0

C! C! A! C! G! G! T! C!

A Dynamic Programming Algorithm

sk(v) = minall symbols i {si(Daughter(v)) + δi,k} + minall symbols i {si(Son(v)) + δj,k}

A! C G T!

2 0 2 2

A! C G T!

1 1 2 2

A! C G T!

2 2 0 2

A! C G T!

2 1 2 1

A! C G T!

� 0 � �

A! C G T!

� 0 � �

A! C G T!

0 � � �

A! C G T!

� 0 � �

A! C G T!

� � 0 �

A! C G T!

� � 0 �

A! C G T!

� 0 � �

A! C G T!

� � � 0

C! C! A! C! G! G! T! C!

A Dynamic Programming Algorithm

sk(v) = minall symbols i {si(Daughter(v)) + δi,k} + minall symbols i {si(Son(v)) + δj,k}

A! C G T!

2 1 2 1

A! C G T!

2 2 0 2

A! C G T!

1 1 2 2

A! C G T!

2 0 2 2

A! C G T!

2 1 3 3

A! C G T!

3 2 2 2

A! C G T!

� 0 � �

A! C G T!

� 0 � �

A! C G T!

0 � � �

A! C G T!

� 0 � �

A! C G T!

� � 0 �

A! C G T!

� � 0 �

A! C G T!

� 0 � �

A! C G T!

� � � 0

C! C! A! C! G! G! T! C!

A Dynamic Programming Algorithm

sk(v) = minall symbols i {si(Daughter(v)) + δi,k} + minall symbols i {si(Son(v)) + δj,k}

A! C G T!

� 0 � �

A! C G T!

� 0 � �

A! C G T!

0 � � �

A! C G T!

� 0 � �

A! C G T!

� � 0 �

A! C G T!

� � 0 �

A! C G T!

� 0 � �

A! C G T!

� � � 0

A! C G T!

2 0 2 2

A! C G T!

1 1 2 2

A! C G T!

2 2 0 2

A! C G T!

2 1 3 3

A! C G T!

3 2 2 2

A! C G T!

5 3 4 4

A! C G T!

2 1 2 1

C!

C! C! A! C! G! G! T! C!

A Dynamic Programming Algorithm

sk(v) = minall symbols i {si(Daughter(v)) + δi,k} + minall symbols i {si(Son(v)) + δj,k}

A! C G T!

� 0 � �

A! C G T!

� 0 � �

A! C G T!

0 � � �

A! C G T!

� 0 � �

A! C G T!

� � 0 �

A! C G T!

� � 0 �

A! C G T!

� 0 � �

A! C G T!

� � � 0

A! C G T!

2 0 2 2

A! C G T!

1 1 2 2

A! C G T!

2 2 0 2

A! C G T!

2 1 3 3

A! C G T!

3 2 2 2

A! C G T!

5 3 4 4

A! C G T!

2 1 2 1

C!

C! C! A! C! G! G! T! C!

A Dynamic Programming Algorithm

Exercise Break: “Backtrack” to fill in the remaining
nodes of the tree.

A Dynamic Programming Algorithm

A! C G T!

� 0 � �

A! C G T!

� 0 � �

A! C G T!

0 � � �

A! C G T!

� 0 � �

A! C G T!

� � 0 �

A! C G T!

� � 0 �

A! C G T!

� 0 � �

A! C G T!

� � � 0

A! C G T!

2 0 2 2

A! C G T!

1 1 2 2

A! C G T!

2 2 0 2

A! C G T!

2 1 3 3

A! C G T!

3 2 2 2

A! C G T!

5 3 4 4

A! C G T!

2 1 2 1

C!

C! C! A! C! G! G! T! C!

C! C!

G! C!C!C!

Code Challenge: Solve the Small Parsimony
Problem.

Parsimony

Exercise Break, check the following: Complexity: if
we want to calculate the overall length (cost) of a
tree with m species, n characters, and k states, the
Parsimony algorithm is of complexity O(mnk2).

David Sankoff

Parsimony

Exercise Break, check the following: Complexity: if
we want to calculate the overall length (cost) of a
tree with m species, n characters, and k states, the
Parsimony algorithm is of complexity O(mnk2).

COMMENT: if each mutation costs the same then a
simplified, earlier version of this algorithm from Walter
Fitch gives a run time complexity of O(mnk). If Each
mutation a↔b costs differently you have a weighted
edit distance (particularly for amino acid sequences) then
your complexity is likely to be O(mnk2)

260

T

CT

T

C T A

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∪

≠∩∩
=

otherwiseRR
RRifRR

R
kj

kjkj
i

φ

G T

AGT
GT

T

Simple example

using this scoring
matrix

simple case Sankoff
equivalent to
computing this

261

T

CT

T

C T A

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∪

≠∩∩
=

otherwiseRR
RRifRR

R
kj

kjkj
i

φ

G T

AGT
GT

T

T

CT

T

C T AG T

AGT
GT

T

Complexity: O(mnk)

score = 3

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈

∈
=

otherwiseRstatearbitrary
Rsifs

s
j

jii
j

Bottom-UP phase

Top-down phase

7 -5

example:	Y	(Tyr)	often	mutates	into	F	(score	+7)	but	rarely	mutates	into	P	(score	-5)			262

Margaret Dayhoff

How	to	compare	amino	acids:	scoring	matrices

Y

263

Pick states for each internal node

•  Select minimal cost character for root (s minimizing Rroot(s))

•  Do pre-order (from root to leaves) traversal of tree:
- For internal node j, with parent i, select state that produced
 minimal cost at i (use pointers kept in 1st stage)

Top-down	phase	

C T AG T T

Complexity: O(mnk2)

{ }
{ }

+
+

+
=

),'()'(min
),'()'(min

)(
'

'

ssSsR
ssSsR

sR
ks

js
i

Sankoff’s	Algorithm

simple versus more
general case

Why is
interesting to
know internal
node’s
composition?

Small Parsimony in an Unrooted Tree Problem: Find
the most parsimonious labeling of the internal nodes
of an unrooted tree.
•  Input: An unrooted binary tree with each leaf

labeled by a string of length m.
•  Output: A position of the root and a labeling of

all other nodes of the tree by strings of length m
that minimizes the tree’s parsimony score.

Code Challenge: Solve this problem.

Small Parsimony for Unrooted Trees

ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

ACGTAAGCCT TCGAAAGCAT

ACGAAAGCCT

Chimp Human Seal Whale

2 1

2

0 2

1

Finding the Most Parsimonious Tree

Parsimony Score: 8

ACGTAGGCCT ATGTAAGACTTCGAGAGCAC TCGAAAGCAT

4 2

0

2 3

0

Chimp Human Seal Whale

ACGTAAGCAT ACGTAAGCAT

ACGTAAGCAT

Parsimony Score: 11

Finding the Most Parsimonious Tree

ACGTAGGCCT ATGTAAGACT TCGAGAGCACTCGAAAGCAT

3 1

2

5 2

1

Chimp Human Seal Whale

ACGTAAGCCT ACGTAAGCCT

ACGTAAGCCT

Parsimony Score: 14

Finding the Most Parsimonious Tree

Large Parsimony Problem: Given a set of strings,
find a tree (with leaves labeled by all these strings)
having minimum parsimony score.
•  Input: A collection of strings of equal length.
•  Output: A rooted binary tree T that minimizes

the parsimony score among all possible rooted
binary trees with leaves labeled by these strings.

Finding the Most Parsimonious Tree

Large Parsimony Problem: Given a set of strings,
find a tree (with leaves labeled by all these strings)
having minimum parsimony score.
•  Input: A collection of strings of equal length.
•  Output: A rooted binary tree T that minimizes

the parsimony score among all possible rooted
binary trees with leaves labeled by these strings.

Finding the Most Parsimonious Tree

Unfortunately, this problem is NP-Complete...

A Greedy Heuristic for Large Parsimony

Note that removing an internal edge, an edge
connecting two internal nodes (along with the
nodes), produces four subtrees (W, X, Y, Z).

Z

Y W

X

w

x

a b

y

z

A Greedy Heuristic for Large Parsimony

Z

Y W

X

w

x

a b

y

z

Note that removing an internal edge, an edge
connecting two internal nodes (along with the
nodes), produces four subtrees (W, X, Y, Z).

A Greedy Heuristic for Large Parsimony

Z

Y W

X

w

x

y

z

Note that removing an internal edge, an edge
connecting two internal nodes (along with the
nodes), produces four subtrees (W, X, Y, Z).

A Greedy Heuristic for Large Parsimony

Z

Y W

X Z

X W

Y

X

Y W

Z

w

x

a b

y

z

w

z

a b

y

x

w

y

a b

x

z

Rearranging these subtrees is called a nearest
neighbor interchange.

Nearest Neighbors of a Tree Problem: Given an
edge in a binary tree, generate the two neighbors of
this tree.
•  Input: An internal edge in a binary tree.
•  Output: The two nearest neighbors of this tree

(for the given internal edge).

Code Challenge: Solve this problem.

A Greedy Heuristic for Large Parsimony

Code Challenge: Implement the nearest-neighbor
interchange heuristic.

A Greedy Heuristic for Large Parsimony

Nearest Neighbor Interchange Heuristic:
1.  Set current tree equal to arbitrary binary rooted

tree structure.
2.  Go through all internal edges and perform all

possible nearest neighbor interchanges.
3.  Solve Small Parsimony Problem on each tree.
4.  If any tree has parsimony score improving over

optimal tree, set it equal to the current tree.
Otherwise, return current tree.

•  If	there	are	m	sequences,	each	with	n	nucleotides,	a	phylogenetic	tree	can	
be	reconstructed	using	some	tree	building	methods.		

•  From	each	sequence,	n	nucleotides	are	randomly	chosen	with	
replacements,	giving	rise	to	m	rows	of	n	columns	each.	These	now	
constitute	a	new	set	of	sequences.		

•  A	tree	is	then	reconstructed	with	these	new	sequences	using	the	same	
tree	building	method	as	before.		

•  Next	the	topology	of	this	tree	is	compared	to	that	of	the	original	tree.	
Each	interior	branch	of	the	original	tree	that	is	different	from	the	
bootstrap	tree	is	given	a	score	of	0;	all	other	interior	branches	are	given	
the	value	1.		

•  This	procedure	of	resampling	the	sites	and	tree	reconstruction	is	repeated	
several	hundred	times,	and	the	percentage	of	times	each	interior	branch	is	
given	a	value	of	1	is	noted.	This	is	known	as	the	bootstrap	value.	As	a	
general	rule,	if	the	bootstrap	value	for	a	given	interior	branch	is	95%	or	
higher,	then	the	topology	at	that	branch	is	considered	"correct".	

278

Tree validation: the bootstrap algorithm

279

Tree validation: the bootstrap algorithm

EXAMPLE:	Phylogenetic-inspired	techniques	for	reverse	engineering	
and	detection	of	malware	families	

Sequence	alignment	(dbg:	with	debugging	symbols,	def:	default	settings,	spd:	
optimised	for	speed).	(a)	Before	alignment.	(b)	After	alignment	using	an	identity	
substitution	matrix.	(c)	After	alignment	using	a	substitution	matrix	 280

Phylogenetic tree
applications in

computer science

 Distance algorithm in computer science
A) A sequence logo for the FakeAV-DO function “ F1 ”. Positions
with large characters indicate invariant parts of the function;
positions with small characters vary due to code metamorphism

B) A neighbour joining tree of FakeAV-DO set of procedures F1.

C) Neighbor joining tree of FakeAV-DO set of procedures F2
from
the same samples of B.

(W.M. Khoo and P. Lio’ Unity in diversity: Phylogenetic-inspired
techniques for reverse engineering and detection of malware families.
2011 First SysSec Workshop)

A
B

C

BROWSER SNAPSHOT

Human

Chimp

Baboon
Cat

Dog

Pig
Cow

Rat

Mouse
Chicken
Zebrafish

Fugu

Tetraodon

Data from Eric Green at NGHRI, alignments by Webb Miller

More species increases power to detect conserved
sequence elements: the phylogeny becomes a weight

•  Alignment	of	2	sequences	is	a	2-row	matrix.	
•  Alignment	of	3	sequences	is	a	3-row	matrix	
	
	 									A T - G C G -
 A - C G T - A
 A T C A C - A
	
•  Our	scoring	function	should	score	alignments	with	
conserved	columns	higher.	

283

Generalizing Pairwise to Multiple Alignment

A A T -- C

A -- T G C

-- A T G C

Alignments	=	Paths	in	3-D	

•  Alignment	of	ATGC,	AATC,	and	ATGC	

0 1 1 2 3 4 #symbols	up	to	a	given	position		

0 1 2 3 3 4

284

A A T -- C

A -- T G C

-- A T G C

Alignments	=	Paths	in	3-D	

•  Alignment	of	ATGC,	AATC,	and	ATGC	

0 1 1 2 3 4

0 1 2 3 3 4

0 0 1 2 3 4

(0,0,0)→(1,1,0)→(1,2,1)	→(2,3,2)	→(3,3,3)	→(4,4,4)	

285

(i-1,j-1,k-1)	

(i,j-1,k-1)	

(i,j-1,k)	

(i-1,j-1,k)	 (i-1,j,k)	

(i,j,k)	

(i-1,j,k-1)

(i,j,k-1)	2-D	

2-D	Alignment	Cell	versus	3-D	Alignment	Cell		

286

•  δ(x, y, z) is	an	entry	in	the	3-D	scoring	matrix.	

Multiple	Alignment:	Dynamic	Programming	

()
()
()
()
()
()
()⎪

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−−+

−−+

−−+

−+

−+

−+

+

=

−

−

−

−−

−−

−−

−−−

kkji

jkji

ikji

kjkji

kikji

jikji

kjikji

kji

us
ws

vs
uws
uvs

wvs
uwvs

s

,,

,,

,,

,,

,,

,,

,,

max

1,,

,1,

,,1

1,1,

1,,1

,1,1

1,1,1

,,

δ

δ

δ

δ

δ

δ

δ

287

Multiple	Alignment:	Running	Time	

•  For	3	sequences	of	length	n,	the	run	time	is	
proportional	to	7n3	

•  For	a	k-way	alignment,	build	a	k-dimensional	
Manhattan	graph	with	
– nk	nodes	
– most	nodes	have	2k	–	1	incoming	edges.			
– Runtime:	O(2knk)	

288

Multiple	Alignment	Induces	Pairwise	Alignments	

Every	multiple	alignment	induces	pairwise	alignments:			
	 	 	 A C - G C G G - C
 A C - G C - G A G
 G C C G C - G A G

	
	 	ACGCGG-C AC-GCGG-C AC-GCGAG
 ACGC-GAC GCCGC-GAG GCCGCGAG

289

Idea:	Construct	Multiple	from	Pairwise	Alignments	

Given	a	set	of	arbitrary	pairwise	alignments,	can	
we	construct	a	multiple	alignment	that	induces	
them?	

AAAATTTT---- ----AAAATTTT TTTTGGGG----
----TTTTGGGG GGGGAAAA---- ----GGGGAAAA

290

Progressive alignment
Progressive alignment methods are heuristic in nature.
They produce multiple alignments from a number of
pairwise alignments. Perhaps the most widely used
algorithm of this type is the software CLUSTAL (https://
www.ebi.ac.uk/Tools/msa/clustalo/)

Progressive Alignment

Clustalw:
1.  Given N sequences, align each sequence against

each other.
2.  Use the score of the pairwise alignments to

compute a distance matrix.
3.  Build a guide tree (tree shows the best order of

progressive alignment).
4.  Progressive Alignment guided by the tree.

Progressive Alignment

Not all the pairwise alignments build well into a
multiple sequence alignment (compare the
alignments on the left and right)

Progressive Alignment
The progressive alignment builds a final alignment by
merging sub-alignments (bottom to top) with a guide tree

295
from wikipedia

D.G. Higgins, J.D. Thompson, and T.J. Gibson. Using CLUSTAL for
multiple sequence alignments. Methods in Enzymology, 266:383402,
1996.

296 Source:	By	Aaron	E.	Darling,	István	Miklós,	Mark	A.	Ragan	-	Figure	1	from	Darling	AE,	Miklós	I,	Ragan	MA	(2008).		
"Dynamics	of	Genome	Rearrangement	in	Bacterial	Populations".	PLOS	Genetics.	DOI:10.1371/journal.pgen.1000128.,	CC	BY	2.5,	https://commons.wikimedia.org/w/index.php?curid=30550950		

Example of complexity in alignment:
bacterial genomes

•  What	Is	Genome	Sequencing:		Exploding	Newspapers	
analogy	

•  The	String	Reconstruction	Problem	
•  String	Reconstruction	as	a	Hamiltonian	Path	Problem	
•  String	Reconstruction	as	an	Eulerian	Path	Problem		
•  De	Bruijn	Graphs	
•  Euler’s	Theorem		
•  Assembling	Read-Pairs	
•  De	Bruijn	Graphs	Face	Harsh	Realities	of	Assembly		

297

Genome Sequencing

•  2010:	Nicholas	Volker	became	the	first	human	
being	to	be	saved	by	genome	sequencing.	
– Doctors	could	not	diagnose	his	condition;	he	went	
through	dozens	of	surgeries.		

– Sequencing	revealed	a	rare	mutation	in	a	XIAP	gene	
linked	to	a	defect	in	his	immune	system.	

– This	led	doctors	to	use	immunotherapy,	which	saved	the	
child.	

		Why	Do	We	Sequence	Personal	Genomes?		

•  Different	people	have	slightly	different	genomes:	
on	average,	roughly	1	mutation	in	1000	
nucleotides.		

298

The Newspaper Problem

299

The Newspaper Problem as an
Overlapping Puzzle

300

The Newspaper Problem as an
Overlapping Puzzle

301

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC
CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

		Multiple	Copies	of	a	Genome	(Millions	of	them)	

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC
CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

		Breaking	the	Genomes	at	Random	Positions	

302

CTGATGA TGGACTACGCTAC TACTGCTAG CTGTATTACG ATCAGCTACCACA TCGTAGCTACG ATGCATTAGCAA GCTATCGGA TCAGCTACCA CATCGTAGC
CTGATGATG GACTACGCT ACTACTGCTA GCTGTATTACG ATCAGCTACC ACATCGTAGCT ACGATGCATTA GCAAGCTATC GGATCAGCTAC CACATCGTAGC

CTGATGATGG ACTACGCTAC TACTGCTAGCT GTATTACGATC AGCTACCAC ATCGTAGCTACG ATGCATTAGCA AGCTATCGG A TCAGCTACCA CATCGTAGC

CTGATGATGGACT ACGCTACTACT GCTAGCTGTAT TACGATCAGC TACCACATCGT AGCTACGATGCA TTAGCAAGCT ATCGGATCA GCTACCACATC GTAGC

		Generating	“Reads”	

CTGATGA TGGACTACGCTAC TACTGCTAG CTGTATTACG ATCAGCTACCACA TCGTAGCTACG ATGCATTAGCAA GCTATCGGA TCAGCTACCA CATCGTAGC
CTGATGATG GACTACGCT ACTACTGCTA GCTGTATTACG ATCAGCTACC ACATCGTAGCT ACGATGCATTA GCAAGCTATC GGATCAGCTAC CACATCGTAGC

CTGATGATGG ACTACGCTAC TACTGCTAGCT GTATTACGATC AGCTACCAC ATCGTAGCTACG ATGCATTAGCA AGCTATCGG A TCAGCTACCA CATCGTAGC

CTGATGATGGACT ACGCTACTACT GCTAGCTGTAT TACGATCAGC TACCACATCGT AGCTACGATGCA TTAGCAAGCT ATCGGATCA GCTACCACATC GTAGC

		“Burning”	Some	Reads	

303

CTG
TAT

TAC
G

ATGCATTAGCAA
GCTATCGGA

CAT
CGT

AGC

GACTACGCT

ACTACTGCTA

GCTGTATTACG

ACATCGTAGCT CTGATGATGG

ATCGTAGCTACG

ATGCATTAGCA

CTGATGATGGACT

GCTAGCTGTAT

TACCACATCGT

GCTACCACATC

	No	Idea	What	Position	Every	Read	Comes	From	

304

Multiple (unsequenced) genome copies

Reads

Assembled genome
…GGCATGCGTCAGAAACTATCATAGCTAGATCGTACGTAGCC…

Read	generation	

Genome	assembly	

		From	Experimental	to	Computational	Challenges		

305

•  Modern	sequencing	machines	cannot	read	an	
entire	genome	one	nucleotide	at	a	time	from	
beginning	to	end	(like	we	read	a	book)	

•  They	can	only	shred	the	genome	and	generate	
short		reads.	

•  The	genome	assembly	is	not	the	same	as	a	jigsaw	
puzzle:	we	must	use	overlapping	reads	to	
reconstruct	the	genome,	a		giant	overlap	puzzle!	

		What Makes Genome Sequencing Difficult?		

Genome	Sequencing	Problem.	Reconstruct	a	genome	from	reads.		
•  Input.	A	collection	of	strings	Reads.		
•  Output.	A	string	Genome	reconstructed	from	Reads.		

306

Composition3(TAATGCCATGGGATGTT)=

	What	Is	k-mer	Composition?	

 TAA
 AAT
 ATG
 TGC
 GCC
 CCA
 CAT
 ATG
 TGG
 GGG
 GGA
 GAT
 ATG
 TGT
 GTT

307

Composition3(TAATGCCATGGGATGTT)=
TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT
 =
AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT

e.g.,	lexicographic	order	(like	in	a	dictionary)	

	k-mer	Composition	

308

String	Reconstruction	Problem.	Reconstruct	a	string	from	
its	k-mer	composition.		
		
•  Input.	A	collection	of	k-mers.		
		
•  Output.	A	Genome	such	that	Compositionk(Genome)	is	
equal	to	the	collection	of	k-mers.		

		Reconstructing	a	String	from	its	Composition	

309

ATG ATG CAT CCA GAT GCC GGA GGG GTT TGC TGG TGT

TAA	
AAT

ATG

		A	Naive	String	Reconstruction	Approach	

ATG ATG CAT CCA GAT GCC GGA GGG TGC TGG

TAA	
AAT
ATG
TGT
GTT 310

TAA	 AAT	 ATG	 TGC	 GCC	 CCA	 CAT	 ATG	 TGG	 GGG	 GGA	 GAT	 ATG	 TGT	 GTT	

Composition3(TAATGCCATGGGATGTT)=

Representing	a	Genome	as	a	Path			

Can	we	construct	this	genome	path	without	knowing	the	genome	TAATGCCATGGGATGTT,	only	
from	its	composition?		

Yes.	We	simply	need	to	connect	k-mer1	with	k-mer2	if								suffix(k-mer1)=prefix(k-mer2).		
E.g.	TAA	→	AAT	

311

TAATGCCATGGGATGTT	

TAA	 AAT	 ATG	 TGC	 GCC	 CCA	 CAT	 ATG	 TGG	 GGG	 GGA	 GAT	 ATG	 TGT	 GTT	

A	Path	Turns	into	a	Graph			

Yes.	We	simply	need	to	connect	k-mer1	with	k-mer2	if								suffix(k-mer1)=prefix(k-mer2).		
E.g.	TAA	→	AAT	

312

TAATGCCATGGGATGTT	

TAA	 AAT	 ATG	 TGC	 GCC	 CCA	 CAT	 ATG	 TGG	 GGG	 GGA	 GAT	 ATG	 TGT	 GTT	

Can	we	still	find	the	genome	path	in	this	graph?		

A	Path	Turns	into	a	Graph			

313

Where	Is	the	Genomic	Path?			

TAA	ATG	 TGC	GCC	CCA	CAT	ATG	 TGG	GGG	GGA	GAT	ATG	 TGT	GTT	AAT	

Nodes	are	arranged	from	left	to	right	in	lexicographic	order.			What	are	we	trying	to	find	in	this	graph?				

A	Hamiltonian	path:	a	path	that	visits	each	node	in	a	graph	
exactly	once.	

	 TA
A	

T G C C A T G G G A T G T T

314

Does	This	Graph	Have	a	Hamiltonian	Path?					

Icosian	game	(1857)	

Hamiltonian	Path	Problem.	Find	a	Hamiltonian	path	in	a	graph.		
Input.	A	graph.			
Output.	A	path	visiting	every	node	in	the	graph	exactly	once.		

William	
Hamilton	

Undirected	graph	

1 2
3 4 6

7
8

9

10

11

12 13

14

15

16 17

18
19

20

5

315

TAA	ATG	 TGC	GCC	CCA	CAT	ATG	 TGG	GGG	GGA	GAT	ATG	 TGT	GTT	AAT	

TAA	ATG	 TGC	GCC	CCA	CAT	ATG	 TGG	GGG	GGA	GAT	ATG	 TGT	GTT	AAT	

TA
A	

T G C C A T G G G A T G T T

TA
A	

T G A T G G G A T G T T C C

316

TAA	 AAT	 ATG	 TGC	 GCC	 CCA	 CAT	 ATG	 TGG	 GGG	 GGA	 GAT	 ATG	 TGT	 GTT	

 TAATGCCATGGGATGTT

TAA	 AAT	 ATG	 TGC	 GCC	 CCA	 CAT	 ATG	 TGG	 GGG	 GGA	 GAT	 ATG	 TGT	 GTT	

A	Slightly	Different	Path				

3-mers as nodes

3-mers as edges

TAA	

How	do	we	label	the	starting	and	ending	nodes	of	an	edge?		

TA	 AA	prefix	of	TAA	 suffix	of	TAA	

317

TAA	 AAT	 ATG	 TGC	 GCC	 CCA	 CAT	 ATG	 TGG	 GGG	 GGA	 GAT	 ATG	 TGT	 GTT	
TA	 CA	AA	 AT	 TG	 GC	 CC	 AT	 TG	 GG	 GG	 GA	 AT	 TG	 GT	 TT	

 TAATGCCATGGGATGTT

TAA	 AAT	 ATG	 TGC	 GCC	 CCA	 CAT	 ATG	 TGG	 GGG	 GGA	 GAT	 ATG	 TGT	 GTT	

Labeling	Nodes	in	the	New	Path			

3-mers as nodes

3-mers as edges and 2-mers as nodes

318

TAA	 AAT	 ATG	 TGC	 GCC	 CCA	 CAT	 ATG	 TGG	 GGG	 GGA	 GAT	 ATG	 TGT	 GTT	
TA	 CA	AA	 AT	 TG	 GC	 CC	 AT	 TG	 GG	 GG	 GA	 AT	 TG	 GT	 TT	

Labeling	Nodes	in	the	New	Path			

3-mers as edges and 2-mers as nodes

319

TAA	 AAT	
ATG	

TGG	 GGG	 GGA	 GAT	 ATG	 TGT	 GTT	
TA	 AA	 AT	 TG	 GG	 GG	 GA	 AT	 TG	 GT	 TT	

TGC	

GCC	CCA	

CAT	
CA	

TG	

GC	

CC	

ATG	AT	

Gluing	Identically	Labeled	Nodes				
TAA	 AAT	 ATG	 TGC	 GCC	 CCA	 CAT	 ATG	 TGG	 GGG	 GGA	 GAT	 ATG	 TGT	 GTT	

TA	 CA	AA	 AT	 TG	 GC	 CC	 AT	 TG	 GG	 GG	 GA	 AT	 TG	 GT	 TT	

320

TAA	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	
GGA	

GAT	

ATG	
TGT	 GTT	

TA	

CA	

AA	

TG	

AT	

TG	

GG	

GG	

GA	

TG	 GT	 TT	

TAATGCCATGGGATGTT	

GC	

CC	

ATG	

AT	

AT	

AAT	

Gluing	Identically	Labeled	Nodes				

321

TAA	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	
GGA	

GAT	

ATG	
TGT	 GTT	

TA	

CA	

AA	

TG	

AT	

TG	

GG	

GG	

GA	

TG	 GT	 TT	

TAATGCCATGGGATGTT	

GC	

CC	

ATG	

AT	

AT	

AAT	

Gluing	Identically	Labeled	Nodes				

322

TAA	 AAT	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	
GGA	

GAT	

ATG	 TGT	 GTT	
TA	

CA	

AA	

TG	

AT	

TG	

GG	

GG	

GA	

TG	 GT	 TT	

TAATGCCATGGGATGTT	

GC	

CC	

ATG	

Gluing	Identically	Labeled	Nodes				

323

TAA	 AAT	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	
GGA	

GAT	

ATG	 TGT	 GTT	
TA	

CA	

AA	

TG	

AT	

TG	

GG	

GG	

GA	

TG	 GT	 TT	

TAATGCCATGGGATGTT	

GC	

CC	

ATG	

Gluing	Identically	Labeled	Nodes				

324

TAA	 AAT	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	GGA	

GAT	

ATG	 TGT	 GTT	
TA	

CA	

AA	 AT	

GG	GA	

TG	 GT	 TT	

GC	

CC	

ATG	

De	Bruijn	Graph	of	TAATGCCATGGGATGTT				

Where	is	the	Genome		
hiding	in	this	graph?	

325

What	are	we	trying	to	
find	in	this	graph?				

TAA	 AAT	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	GGA	

GAT	

ATG	 TGT	 GTT	
TA	

CA	

AA	 AT	

GG	GA	

TG	 GT	 TT	

GC	

CC	

ATG	

It	Was	Always	There!		

An	Eulerian	path	in	a	
graph	is	a	path	that	
visits	each	edge	exactly	
once.	

TA
A	

T G C C A T G G G A T G T T

326

Eulerian	Path	Problem					
Eulerian	Path	Problem.	Find	an	Eulerian	path	in	a	graph.		
	
•  Input.	A	graph.			

•  Output.	A	path	visiting	every	edge	in	the	graph	exactly	once.		

327

Eulerian	Versus	Hamiltonian	Paths					
Eulerian	Path	Problem.	Find	an	Eulerian	path	in	a	graph.		
	
•  Input.	A	graph.				
	
•  Output.	A	path	visiting	every	edge	in	the	graph	exactly	once.		

Hamiltonian	Path	Problem.	Find	a	Hamiltonian	path	in	a	graph.		
	
•  Input.	A	graph.			

•  Output.	A	path	visiting	every	node	in	the	graph	exactly	once.		

Find a difference!

328

What	Problem	Would	You	Prefer	to	Solve?		

Hamiltonian Path Problem Eulerian Path Problem

While	Euler	solved	the	Eulerian	Path	Problem	
(even	for	a	city	with	a	million	bridges),	nobody	
has	developed	a	fast	algorithm	for	the	
Hamiltonian	Path	Problem	yet.					

329

NP-Complete	Problems	
•  The	Hamiltonian	Path	Problem	belongs	to	a	
collection	containing	thousands	of	
computational	problems	for	which	no	fast	
algorithms	are	known.	

That	would	be	an	excellent	argument,	but	the	
question	of	whether	or	not	NP-Complete	
problems	can	be	solved	efficiently	is	one	of	
seven	Millennium	Problems	in	mathematics.			

NP-Complete	problems	are	all	equivalent:	find	an	
efficient	solution	to	one,	and	you	have	an	
efficient	solution	to	them	all.	 330

Eulerian	Path	Problem					
Eulerian	Path	Problem.	Find	an	Eulerian	path	in	a	graph.		
	
•  Input.	A	graph.			

•  Output.	A	path	visiting	every	edge	in	the	graph	exactly	once.		

We	constructed	the	de	Bruijn	
graph	from	Genome,	but	in	
reality,	Genome	is	unknown!		

331

What	We	Have	Done:	From	Genome	to	de	Bruijn	Graph					

TAA	 AAT	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	GGA	

GAT	

ATG	 TGT	 GTT	
TA	

CA	

AA	 AT	

GG	GA	

TG	 GT	 TT	

GC	

CC	

ATG	

 TAATGCCATGGGATGTT

332

What	We	Want:	From	Reads	(k-mers)	to	Genome					
 TAATGCCATGGGATGTT

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT

333

What	We	will	Show:	From	Reads	to	de	Bruijn	Graph	to	Genome					

TAA	 AAT	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	GGA	

GAT	

ATG	 TGT	 GTT	
TA	

CA	

AA	 AT	

GG	GA	

TG	 GT	 TT	

GC	

CC	

ATG	

 TAATGCCATGGGATGTT

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT

334

Constructing	de	Bruijn	Graph	when	Genome	Is	Known	

TAA	 AAT	 ATG	 TGC	 GCC	 CCA	 CAT	 ATG	 TGG	 GGG	 GGA	 GAT	 ATG	 TGT	 GTT	
TA	 CA	AA	 AT	 TG	 GC	 CC	 AT	 TG	 GG	 GG	 GA	 AT	 TG	 GT	 TT	

TAATGCCATGGGATGTT

335

TAA	

AAT	

ATG	

TGC	

GCC	

CCA	

CAT	

ATG	

TGG	

GGG	

GGA	

GAT	

ATG	

TGT	

GTT	

Constructing	de	Bruijn	when	Genome	Is	Unknown	

Composition3(TAATGCCATGGGATGTT)

336

TAA	

AAT	

ATG	

TGC	

GCC	

CCA	

CAT	

ATG	

TGG	

GGG	

GGA	

GAT	

ATG	

TGT	

GTT	

Representing	Composition	as	a	Graph	Consisting	of	Isolated	Edges	

Composition3(TAATGCCATGGGATGTT)

337

TAA	
TA	 AA	

AAT	
AA	 AT	

ATG	
AT	 TG	

TGC	
TG	 GC	

GCC	
GC	 CC	

CCA	
CA	CC	

CAT	
CA	 AT	

ATG	
AT	 TG	

TGG	
TG	 GG	

GGG	
GG	 GG	

GGA	
GG	 GA	

GAT	
GA	 AT	

ATG	
AT	 TG	

TGT	
TG	 GT	

GTT	
GT	 TT	

Constructing	de	Bruijn	Graph	from	k-mer	Composition	

Composition3(TAATGCCATGGGATGTT)

338

TAA	
TA	 AA	

AA	
AT	

ATG	
AT	 TG	

TGC	
TG	 GC	

GCC	
GC	 CC	

CCA	
CA	CC	

CAT	
CA	 AT	

ATG	
AT	 TG	

TGG	
TG	 GG	

GGG	
GG	 GG	

GGA	
GG	 GA	

GAT	
GA	 AT	

ATG	
AT	 TG	

TGT	
TG	 GT	

GTT	
GT	 TT	

Gluing	Identically	Labeled	Nodes	

339

TAA	
TA	 AA	

AAT	 ATG	
AT	 TG	

TGC	 GCC	
GC	 CC	

CCA	 CAT	
CA	 AT	

TGG	
TG	 GG	

GGG	 GGA	
GG	 GA	

GAT	 ATG	
AT	 TG	

TGT	
GT	

GTT	
GT	 TT	

ATG	

340

TAA	
TA	 AA	

AAT	 ATG	
AT	 TG	

TGC	 GCC	
GC	 CC	

CCA	 CAT	
CA	 AT	

TGG	
TG	 GG	

GGG	 GGA	
GG	 GA	

GAT	 ATG	
AT	 TG	

TGT	 GTT	
GT	 TT	

ATG	

We	Are	Not	Done	with	Gluing	Yet	

341

TAA	 AAT	
ATG	

TGG	 GGG	 GGA	 GAT	 ATG	 TGT	 GTT	
TA	 AA	 AT	 TG	 GG	 GG	 GA	 AT	 TG	 GT	 TT	

TGC	

GCC	CCA	

CAT	
CA	

TG	

GC	

CC	

ATG	AT	

Gluing	Identically	Labeled	Nodes				
TAA	 AAT	 ATG	 TGC	 GCC	 CCA	 CAT	 ATG	 TGG	 GGG	 GGA	 GAT	 ATG	 TGT	 GTT	

TA	 CA	AA	 AT	 TG	 GC	 CC	 AT	 TG	 GG	 GG	 GA	 AT	 TG	 GT	 TT	

342

TAA	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	
GGA	

GAT	

ATG	
TGT	 GTT	

TA	

CA	

AA	

TG	

AT	

TG	

GG	

GG	

GA	

TG	 GT	 TT	

TAATGCCATGGGATGTT	

GC	

CC	

ATG	

AT	

AT	

AAT	

Gluing	Identically	Labeled	Nodes				

343

TAA	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	
GGA	

GAT	

ATG	
TGT	 GTT	

TA	

CA	

AA	

TG	

AT	

TG	

GG	

GG	

GA	

TG	 GT	 TT	

TAATGCCATGGGATGTT	

GC	

CC	

ATG	

AT	

AT	

AAT	

344

TAA	 AAT	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	
GGA	

GAT	

ATG	 TGT	 GTT	
TA	

CA	

AA	 AT	

GG	

GG	

GA	

TG	 GT	 TT	

TAATGCCATGGGATGTT	

GC	

CC	

ATG	

Gluing	Identically	Labeled	Nodes				

345

TAA	 AAT	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	GGA	

GAT	

ATG	 TGT	 GTT	
TA	

CA	

AA	 AT	

GG	GA	

TG	 GT	 TT	

GC	

CC	

ATG	

The	Same	de	Bruijn	Graph:	
DeBruin(Genome)=DeBruin(Genome	Composition)	

			

346

 DeBruijn(k-mers)
 form a node for each (k-1)-mer from k-mers
 for each k-mer in k-mers
 connect its prefix node with its suffix node by an edge

Constructing	de	Bruijn	Graph		

De	Bruijn	graph	of	a	collection	of	k-mers:	
– Represent	every	k-mer	as	an	edge	between	its	prefix	
and	suffix	

– Glue	ALL	nodes	with	identical	labels.	

347

From	Hamilton											to	Euler												to	de	Bruijn													

	
Universal	String	Problem	(Nicolaas	de	Bruijn,	1946).	Find	a	circular	string	containing	each	binary	k-mer	
exactly	once.			

000		001		010		011		100		101		110		111	

 0 0

0

1

1 1

0

1

348

From	Hamilton											to	Euler												to	de	Bruijn													

	
Universal	String	Problem	(Nicolaas	de	Bruijn,	1946).	Find	a	circular	string	containing	each	binary	k-mer	
exactly	once.			

000		001		010		011		100		101		110		111	
000	

00	 00	
001	

00	 01	
010	

01	 10	
011	

01	 11	
100	

10	 00	
101	

10	 01	
110	

11	 10	
111	

11	 11	

00	 01	

10	 11	

349

From	Hamilton											to	Euler												to	de	Bruijn													

00	 01	

10	 11	

 0 0

0

1

1 1

0

1

350

De	Bruijn	Graph	for	4-Universal	String	

Does	it	have	an	Eulerian	cycle?	If	yes,	how	can	we	find	it?	

351

Eulerian	CYCLE	Problem					
Eulerian	CYCLE	Problem.	Find	an	Eulerian	cycle	in	a	graph.		
	
•  Input.	A	graph.			

•  Output.	A	cycle	visiting	every	edge	in	the	graph	exactly	once.		

352

A	Graph	is	Eulerian	if	It	Contains	an	Eulerian	
Cycle.	
	

Is	this	graph	Eulerian?			
	

353

A	Graph	is	Eulerian	if	It	Contains	an	Eulerian	
Cycle.	
	

Is	this	graph	Eulerian?			
	 1	in,	2	out	

A	graph	is	balanced	if	indegree	=	outdegree	for	each	node		

354

•  Every	Eulerian	graph	is	balanced	
•  Every	balanced*	graph	is	Eulerian	

Euler’s	Theorem		

(*)	and	strongly	connected,	of	course!	 355

Recruiting	an	Ant	to	Prove	Euler’s	Theorem		

Let	an	ant	randomly	walk	through	the	graph.	
The	ant	cannot	use	the	same	edge	twice!		

356

If	Ant	Was	a	Genius…		

“Yay! Now
can I go
home
please?”

357

A	Less	Intelligent	Ant	Would	Randomly	Choose	a	
Node	and	Start	Walking…	

Can	it	get	stuck?	In	what	node?		

358

The	Ant	Has	Completed	a	Cycle																BUT	has	not	
Proven	Euler’s	theorem	yet…	

The	constructed	cycle	is	not	Eulerian.	Can	we	enlarge	it?		
	

359

Let’s	Start	at	a	Different	Node	in	the	Green	Cycle	

Let’s	start	at	a	node	with	still	unexplored	edges.		
	

“Why	should	I	start	at	a	different	node?	
Backtracking?	I’m	not	evolved	to	walk	
backwards!	And	what	difference	does	it	
make???”	

360

1

2

3
“Why	do	I	have	to	walk	along	the	
same	cycle	again???	Can	I	see	
something	new?”		

An	Ant	Traversing	Previously	Constructed	Cycle		
Starting	at	a	node	that	has	an	unused	edge,	traverse	the	already	
constructed	(green	cycle)	and	return	back	to	the	starting	node.	

361

1 3

2

4

I	Returned	Back	BUT…	I	Can	Continue	Walking!		

After	completing	the	cycle,	start	random	exploration	of	still	
untraversed	edges	in	the	graph.

Starting	at	a	node	that	has	an	unused	edge,	traverse	the	already	
constructed	(green	cycle)	and	return	back	to	the	starting	node.	

362

1

2

3

4

5

6 7

8

Stuck	Again!			

No	Eulerian	cycle	yet…	can	we	enlarge	the	green-blue	cycle?		
	
The	ant	should	walk	along	the	constructed	cycle	starting	at	
yet	another	node.	Which	one?			

363

1

2

3

4

5

6

7 8

I	Returned	Back	BUT…	I	Can	Continue	Walking!		

“Hmm,	maybe	these	
instructions	were	not	
that	stupid…”		

364

I	Proved	Euler’s	Theorem!		
	

4

5

2

3

7 8

1

6

9

10
11

EulerianCycle(BalancedGraph)	
			form	a	Cycle	by	randomly	walking	in	BalancedGraph	(avoiding	already	visited	edges)	
						while	Cycle	is	not	Eulerian						
									select	a	node	newStart		in	Cycle	with	still	unexplored	outgoing	edges				
									form	a	Cycle’	by	traversing	Cycle	from	newStart	and	randomly	walking	afterwards			
									Cycle	←	Cycle’		
			return	Cycle		

000

001

010

011

100

101

110

1111001

1100

0000 1111

1010

0101

0011

0110

11010100

0010 1011

0111

11101000

0001

365

From	Reads	to	de	Bruijn	Graph	to	Genome					

TAA	 AAT	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	GGA	

GAT	

ATG	 TGT	 GTT	
TA	

CA	

AA	 AT	

GG	GA	

TG	 GT	 TT	

GC	

CC	

ATG	

 TAATGCCATGGGATGTT

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT

366

TAA	 AAT	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	GGA	

GAT	

ATG	 TGT	 GTT	
TA	

CA	

AA	 AT	

GG	GA	

TG	 GT	 TT	

GC	

CC	

ATG	

Multiple	Eulerian	Paths	

TAA	 AAT	

TGC	

GCC	CCA	

CAT	

ATG	

TGG	

GGG	GGA	

GAT	

ATG	 TGT	 GTT	
TA	

CA	

AA	 AT	

GG	GA	

TG	 GT	 TT	

GC	

CC	

ATG	

TA
A	

T G C C A T G G G A T G T T TA
A	

T G A T G G G A T G T T C C

367

Breaking	Genome	into	Contigs	

TA
A	

T G C C A T G G G A T G T T

TAA	 AAT	
TA	 AA	 AT	

TGT	 GTT	
TG	 GT	 TT	

TGC	

GCC	CCA	

CA	

AT	 TG	

GC	

CC	

TGG	

GGA	

AT	

GG	GA	

TAAT	

TGCCAT	

GGGAT	

TGTT	

ATG	

AT	 TG	

ATG	

ATG	AT	 TG	

ATG	

AT	 TG	

TGG	

GG	

TG	

GGG	
GG	

GGG	

TGG	

368

DNA	Sequencing	with	Read-pairs	

Randomly	cut	genomes	into	large	equally	
sized	fragments	of	size	InsertLength	
		

Multiple		identical	copies	of	genome	

Generate	read-pairs:		
two	reads	from	the	
ends	of	each	fragment		
(separated	by	a	fixed	
distance)	200	bp	 200	bp	

InsertLength	 369

From	k-mers	to	Paired	k-mers	

Genome

Read	1	 Read	2	

...A	T	C	A	G	A	T	T	A	C	G	T	T	C	C	G	A	G	…	

A	paired	k-mer	is	a	pair	of	k-mers	at	a	fixed	distance	d	apart	in	Genome.					
E.g.		TCA	and	TCC	are	at	distance	d=11	apart.		

Distance	d=11	

Disclaimers:		
1.	In	reality,	Read1	and	Read2	are	typically	sampled	from	different	strands:			
																																					(→ ……. ←		rather	than		→ ……. →)	
2.	In	reality,	the	distance	d	between	reads	is	measured	with	errors.		

370

TAA GCC
 AAT CCA
 ATG CAT
 TGC ATG
 GCC TGG
 CCA GGG
 CAT GGA
 ATG GAT
 TGG ATG
 GGG TGT
 GGA GTT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

What	is	PairedComposition(TAATGCCATGGGATGTT)?

Representing	a	paired	3-mer TAA GCC as	a	2-line	expression:	 TAA
GCC

Show first line first
And then show all the lines

371

TAA GCC
 AAT CCA
 ATG CAT
 TGC ATG
 GCC TGG
 CCA GGG
 CAT GGA
 ATG GAT
 TGG ATG
 GGG TGT
 GGA GTT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

												PairedComposition(TAATGCCATGGGATGTT)	

Representing	PairedComposition	in	lexicographic	order

Show first line first
And then show all the lines

TAA
GCC

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

AAT
CCA

372

String	Reconstruction	from	Read-Pairs	Problem	

String	Reconstruction	from	Read-Pairs	Problem.	Reconstruct	
a	string	from	its	paired	k-mers.		
•  Input.	A	collection	of	paired	k-mers.		
•  Output.	A	string	Text	such	that	PairedComposition(Text)	is	

equal	to	the	collection	of	paired	k-mers.			

How	Would	de	Bruijn	Assemble	Paired	k-mers?		

373

TAA GCC
 AAT CCA
 ATG CAT
 TGC ATG
 GCC TGG
 CCA GGG
 CAT GGA
 ATG GAT
 TGG ATG
 GGG TGT
 GGA GTT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

																								Representing	Genome	TAATGCCATGGGATGTT as	a	Path	

											paired	prefix	of										→																							← paired	suffix	of						

CCA
GGG

CC
GG CA

GG CCA
GGG CCA

GGG

374

TA
GC AA

CC
AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

TG
AT GG

TG
GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

Labeling	Nodes	by	Paired	Prefixes	and	Suffixes

											paired	prefix	of										→																							← paired	suffix	of						

CCA
GGG

CC
GG CA

GG CCA
GGG CCA

GGG

375

TA
GC AA

CC
AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

TG
AT GG

TG
GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

Glue	nodes	with	identical	labels

TA
GC AA

CC
AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

TG
AT GG

TG
GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

376

TA
GC AA

CC
AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

TG
AT GG

TG
GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

TA
GC AA

CC
AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

GG
TG

GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

Paired	de	Bruijn	Graph	from	the	Genome	

Glue	nodes	with	identical	labels

377

Constructing	Paired	de	Bruijn	Graph

TA
GC AA

CC

TAA
GCC

AA
CC

AT
CA

AAT
CCA

AT
CA

TG
AT

ATG
CAT

TG
AT

GC
TG

TGC
ATG

GC
TG

CC
GG

GCC
TGG

CC
GG

CA
GG

CCA
GGG

CA
GG

AT
GA

CAT
GGA

AT
GA

TG
AT

ATG
GAT

TG
AT GG

TG

TGG
ATG

GG
TG

GG
GT

GGG
TGT

GG
GT

GA
TT

GGA
GTT

											paired	prefix	of										→																							← paired	suffix	of						

CCA
GGG

CC
GG CA

GG CCA
GGG CCA

GGG

378

Constructing	Paired	de	Bruijn	Graph

TA
GC AA

CC

TAA
GCC

AA
CC

AT
CA

AAT
CCA

AT
CA

TG
AT

ATG
CAT

TG
AT

GC
TG

TGC
ATG

GC
TG

CC
GG

GCC
TGG

CC
GG

CA
GG

CCA
GGG

CA
GG

AT
GA

CAT
GGA

AT
GA

TG
AT

ATG
GAT

TG
AT GG

TG

TGG
ATG

GG
TG

GG
GT

GGG
TGT

GG
GT

GA
TT

GGA
GTT

•  Paired	de	Bruijn	graph	for	a	collection	of	paired	k-mers:	
– Represent	every	paired	k-mer	as	an	edge	between	its	
paired	prefix	and	paired	suffix.		

– Glue	ALL	nodes	with	identical	labels.	
	

379

Constructing	Paired	de	Bruijn	Graph

TA
GC AA

CC

TAA
GCC

AT
CA

AAT
CCA

AT
CA

TG
AT

ATG
CAT

TG
AT

GC
TG

TGC
ATG

GC
TG

CC
GG

GCC
TGG

CC
GG

CA
GG

CCA
GGG

CA
GG

AT
GA

CAT
GGA

AT
GA

TG
AT

ATG
GAT

TG
AT GG

TG

TGG
ATG

GG
TG

GG
GT

GGG
TGT

GG
GT

GA
TT

GGA
GTT

We	Are	Not	Done	with	Gluing	Yet

TA
GC AA

CC
AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

TG
AT GG

TG
GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

380

Constructing	Paired	de	Bruijn	Graph

TA
GC AA

CC
AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

GG
TG

GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

Paired	de	Bruijn	Graph	from	read-pairs	

•  Paired	de	Bruijn	graph	for	a	collection	of	paired	k-mers:	
– Represent	every	paired	k-mer	as	an	edge	between	its	
paired	prefix	and	paired	suffix.		

– Glue	ALL	nodes	with	identical	labels.	
	 381

TA
GC AA

CC
AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

GG
TG

GG
GT

GA
TT

Which	Graph	Represents	a	Better	Assembly?	

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

Unique	genome	reconstruction		
	

	TAATGCCATGGGATGTT

Multiple	genome	reconstructions		
		
 TAATGCCATGGGATGTT

 TAATGGGATGCCATGTT

GGA	

Paired	de	Bruijn	Graph	 De	Bruijn	Graph	

382

Some	Ridiculously	Unrealistic	Assumptions	

•  Perfect	coverage	of	genome	by	reads	(every	k-mer	
from	the	genome	is	represented	by	a	read)	

•  Reads	are	error-free.	

•  Multiplicities	of	k-mers	are	known	

•  Distances	between	reads	within	read-pairs	are	
exact.		

	

383

Some	Ridiculously	Unrealistic	Assumptions	

•  Imperfect	coverage	of	genome	by	reads	(every	k-
mer	from	the	genome	is	represented	by	a	read)	

•  Reads	are	error-prone.	

•  Multiplicities	of	k-mers	are	unknown.	

•  Distances	between	reads	within	read-pairs	are	
inexact.		

•  Etc.,	etc.,	etc.	

	
384

1st	Unrealistic	Assumption:	Perfect	Coverage	
	
	atgccgtatggacaacgact

atgccgtatg
 gccgtatgga
 gtatggacaa
 gacaacgact

250-nucleotide	reads	generated	by	Illumina	
technology	capture	only	a	small	fraction	of	250-
mers	from	the	genome,	thus	violating	the	key	
assumption	of	the	de	Bruijn	graphs.		

	

385

Breaking	Reads	into	Shorter	k-mers	

atgccgtatggacaacgact atgccgtatggacaacgact
atgccgtatg atgcc
 gccgtatgga tgccg
 gtatggacaa gccgt
 gacaacgact ccgta
 cgtat
 gtatg
 tatgg
 atgga
 tggac
 ggaca
 gacaa
 acaac
 caacg
 aacga
 acgac
 cgact

386

atgccgtatggacaacgact atgccgtatggacaacgact
atgccgtatg atgcc
 gccgtatgga tgccg
 gtatggacaa gccgt
 gacaacgact ccgta
 cgtaCggaca cgtat
 gtatg
 tatgg
 atgga
 tggac
 ggaca
 gacaa
 acaac
 caacg
 aacga
 acgac
 cgact
 cgtaC
 gtaCg
 taCgg
 aCgga
 Cggac

2nd		Unrealistic	Assumption:	Error-free	Reads	
	

Erroneous	read	
(change	of	t	into	C)	

387

De	Bruijn	Graph	of	ATGGCGTGCAATG…		
Constructed	from	Error-Free	Reads	

.
CGTA GTAT TATG ATGG TGGA GGAC GACA TGCC GCCG CCGT ATGC

ATGCC TGCCG GCCGT CCGTA CGTAT GTATG TATGG ATGGA TGGAC GGACA

Errors	in	Reads	Lead	to	Bubbles	in	the	
De	Bruijn	Graph	

CGCA GCAT CATG CCGC

GCCGC

CCGCA CGCAT GCATG

CATG Bubble!

CGTA GTAT TATG ATGG TGGA GGAC GACA TGCC GCCG CCGT ATGC

ATGCC TGCCG GCCGT CCGTA CGTAT GTATG TATGG ATGGA TGGAC GGACA

388

Bubble	Explosion	

389

A single error in a read results in a bubble of length k in a de Bruijn graph constructed from
k-mers. Multiple errors in various reads may form longer bubbles, but since the error rate in
reads is rather small (less than 1% per nucleotide in Illumina reads), most bubbles are
small.

De	Bruin	Graph	of	N.	meningitidis		
Genome	AFTER	Removing	Bubbles		

Red	edges	represent	repeats	
390

391

Example	and	RECAP	

392

Example	and	RECAP	

393

Example	and	RECAP	

394

The de Bruijn graph for k = 4 and
a 2-character alphabet composed
of the digits 0 and 1.
This graph has an Eulerian cycle
since each node has indegree
and outdegree equal to 2.
Following the blue numbered
edges in order 1, 2, ..., 16 gives
an Eulerian cycle 0000, 0001,
0011, 0110, 1100, 1001, 0010,
0101, 1011, 0111, 1111, 1110,
1101, 1010, 0100, 1000,
which spells the cyclic superstring
0000110010111101
.

Example	and	RECAP	

395

Example	and	RECAP	

396

Example	and	RECAP	

397

Example	and	RECAP	

De	Bruijn	Graph		

398

Example	and	RECAP	

399

Example	and	RECAP	

400

Example	and	RECAP	

De	Bruijn	Graph		

401

Example	and	RECAP	

De	Bruijn	Graph		

402

Example	and	RECAP	

403

Example	and	RECAP	

404

References: https://ocw.mit.edu/courses/biology/7-91j-foundations-of-computational-and-systems-
biology-spring-2014/lecture-slides/MIT7_91JS14_Lecture6.pdf
http://nbviewer.jupyter.org/github/BenLangmead/comp-genomics-class/blob/master/notebooks/
CG_deBruijn.ipynb

Example	and	RECAP	

405

Example	and	RECAP	

406

Example	and	RECAP	

407

Example	and	RECAP	

408

Example	and	RECAP	

409

Example	and	RECAP	

•  Clustering as an optimization problem
•  The Lloyd algorithm for k-means clustering
•  From Hard to Soft Clustering
•  From Coin Flipping to k-means Clustering
•  Expectation Maximization
•  Soft k-means Clustering
•  Hierarchical Clustering
•  Markov Clustering Algorithm
•  Stochastic Neighbor Embedding
 410

Clustering Algorithms

	
							

-6h -4h -2h 0 +2h +4h +6h
 diauxic shift

Measuring	3	Genes	at	7	Checkpoints	

Measure expression of various yeast genes at 7 checkpoints:

YLR258W 1.1 1.4 1.4 3.7 4.0 10.0 5.9
YPL012W 1.1 0.8 0.9 0.4 0.3 0.1 0.1
YPR055W 1.1 1.1 1.1 1.1 1.1 1.1 1.1

eij = expression level of
gene i at checkpoint j

-12	
-8	
-4	
0	
4	
8	

-12
-8
-4
0
4
8

-12	
-8	
-4	
0	
4	
8	10

5
2
1

0.5
0.2
0.1

10
5
2
1

0.5
0.2
0.1

10
5
2
1

0.5
0.2
0.1 411

412

Switching	to	Logarithms	of	Expression	Levels	

-4
-2
0
2
4

-4
-2
0
2
4

-4
-2
0
2
4

YLR258W 1.1 1.4 1.4 3.7 4.0 10.0 5.9
YPL012W 1.1 0.8 0.9 0.4 0.3 0.1 0.1
YPR055W 1.1 1.1 1.1 1.1 1.1 1.1 1.1

YLR258W 0.1 0.4 0.5 1.9 2.0 3.3 2.6
YPL012W 0.1 -0.3 -0.2 -1.2 -1.6 -3.0 -3.1
YPR055W 0.2 0.2 0.2 0.1 0.1 0.1 0.1

taking logarithms (base-2)

-12	
-8	
-4	
0	
4	
8	

-12
-8
-4
0
4
8

-12	
-8	
-4	
0	
4	
8	10

5
2
1

0.5
0.2
0.1

10
5
2
1

0.5
0.2
0.1

10
5
2
1

0.5
0.2
0.1

413

C H A P T E R 1

Gene Expression Vector µ s2

YLR361C 0.14 0.03 -0.06 0.07 -0.01 -0.06 -0.01 0.01 0.00
YMR290C 0.12 -0.23 -0.24 -1.16 -1.40 -2.67 -3.00 -1.24 1.29
YNR065C -0.10 -0.14 -0.03 -0.06 -0.07 -0.14 -0.04 -0.08 0.00
YGR043C -0.43 -0.73 -0.06 -0.11 -0.16 3.47 2.64 0.66 2.40
YLR258W 0.11 0.43 0.45 1.89 2.00 3.32 2.56 1.54 1.29
YPL012W 0.09 -0.28 -0.15 -1.18 -1.59 -2.96 -3.08 -1.30 1.47
YNL141W -0.16 -0.04 -0.07 -1.26 -1.20 -2.82 -3.13 -1.24 1.43
YJL028W -0.28 -0.23 -0.19 -0.19 -0.32 -0.18 -0.18 -0.22 0.00
YKL026C -0.19 -0.15 0.03 0.27 0.54 3.64 2.74 0.99 2.06
YPR055W 0.15 0.15 0.17 0.09 0.07 0.09 0.07 0.11 0.00

-4

-3

-2

-1

0

1

2

3

4

FIGURE 1.4 The rows of the matrix from Figure 1.3 partitioned into three clusters.
Green genes exhibit increased expression, red genes exhibit decreased expression, and
blue genes exhibit flat behavior and are unlikely to be associated with the diauxic shift.
The element with the largest absolute value in each expression vector is shown in bold,
and the mean µ and variance s2 of each expression vector is shown in the rightmost
two columns. (Bottom) The rows of the matrix visualized as plots.

The Good Clustering Principle

To identify groups of genes with similar expression, we will think of an expression
vector of length m as a point in m-dimensional space; genes with similar expression
profiles will therefore correspond to nearby points. Ideally, clusters should satisfy the
following common-sense principle, which is illustrated in Figure 1.5.

Good Clustering Principle: Every pair of points from the same cluster should be closer to

each other than any pair of points from different clusters.

We have therefore embedded gene expression analysis within the algorithmic problem
of partitioning a collection of n points in m-dimensional space into k clusters, which

10

Gene	Expression	Matrix			

gene expression
vector

-4

-3

-2

-1

0

1

2

3

4

414

Gene	Expression	Matrix			

Goal: partition all yeast genes into clusters so that:
•  genes in the same cluster have similar behavior
•  genes in different clusters have different behavior

1997: Joseph deRisi
measured expression
of 6,400 yeast genes
at 7 checkpoints
before and after the
diauxic shift.

C H A P T E R 1

Gene Expression Vector µ s2

YLR361C 0.14 0.03 -0.06 0.07 -0.01 -0.06 -0.01 0.01 0.00
YMR290C 0.12 -0.23 -0.24 -1.16 -1.40 -2.67 -3.00 -1.24 1.29
YNR065C -0.10 -0.14 -0.03 -0.06 -0.07 -0.14 -0.04 -0.08 0.00
YGR043C -0.43 -0.73 -0.06 -0.11 -0.16 3.47 2.64 0.66 2.40
YLR258W 0.11 0.43 0.45 1.89 2.00 3.32 2.56 1.54 1.29
YPL012W 0.09 -0.28 -0.15 -1.18 -1.59 -2.96 -3.08 -1.30 1.47
YNL141W -0.16 -0.04 -0.07 -1.26 -1.20 -2.82 -3.13 -1.24 1.43
YJL028W -0.28 -0.23 -0.19 -0.19 -0.32 -0.18 -0.18 -0.22 0.00
YKL026C -0.19 -0.15 0.03 0.27 0.54 3.64 2.74 0.99 2.06
YPR055W 0.15 0.15 0.17 0.09 0.07 0.09 0.07 0.11 0.00

-4

-3

-2

-1

0

1

2

3

4

FIGURE 1.4 The rows of the matrix from Figure 1.3 partitioned into three clusters.
Green genes exhibit increased expression, red genes exhibit decreased expression, and
blue genes exhibit flat behavior and are unlikely to be associated with the diauxic shift.
The element with the largest absolute value in each expression vector is shown in bold,
and the mean µ and variance s2 of each expression vector is shown in the rightmost
two columns. (Bottom) The rows of the matrix visualized as plots.

The Good Clustering Principle

To identify groups of genes with similar expression, we will think of an expression
vector of length m as a point in m-dimensional space; genes with similar expression
profiles will therefore correspond to nearby points. Ideally, clusters should satisfy the
following common-sense principle, which is illustrated in Figure 1.5.

Good Clustering Principle: Every pair of points from the same cluster should be closer to

each other than any pair of points from different clusters.

We have therefore embedded gene expression analysis within the algorithmic problem
of partitioning a collection of n points in m-dimensional space into k clusters, which

10

6,400 x 7 gene
expression matrix

415

n	x	m																													
gene	expression	

matrix	

Genes	as	Points	in	Multidimensional	Space	

n points in
m-dimensional

space

C H A P T E R 1

Gene Expression Vector µ s2

YLR361C 0.14 0.03 -0.06 0.07 -0.01 -0.06 -0.01 0.01 0.00
YMR290C 0.12 -0.23 -0.24 -1.16 -1.40 -2.67 -3.00 -1.24 1.29
YNR065C -0.10 -0.14 -0.03 -0.06 -0.07 -0.14 -0.04 -0.08 0.00
YGR043C -0.43 -0.73 -0.06 -0.11 -0.16 3.47 2.64 0.66 2.40
YLR258W 0.11 0.43 0.45 1.89 2.00 3.32 2.56 1.54 1.29
YPL012W 0.09 -0.28 -0.15 -1.18 -1.59 -2.96 -3.08 -1.30 1.47
YNL141W -0.16 -0.04 -0.07 -1.26 -1.20 -2.82 -3.13 -1.24 1.43
YJL028W -0.28 -0.23 -0.19 -0.19 -0.32 -0.18 -0.18 -0.22 0.00
YKL026C -0.19 -0.15 0.03 0.27 0.54 3.64 2.74 0.99 2.06
YPR055W 0.15 0.15 0.17 0.09 0.07 0.09 0.07 0.11 0.00

-4

-3

-2

-1

0

1

2

3

4

FIGURE 1.4 The rows of the matrix from Figure 1.3 partitioned into three clusters.
Green genes exhibit increased expression, red genes exhibit decreased expression, and
blue genes exhibit flat behavior and are unlikely to be associated with the diauxic shift.
The element with the largest absolute value in each expression vector is shown in bold,
and the mean µ and variance s2 of each expression vector is shown in the rightmost
two columns. (Bottom) The rows of the matrix visualized as plots.

The Good Clustering Principle

To identify groups of genes with similar expression, we will think of an expression
vector of length m as a point in m-dimensional space; genes with similar expression
profiles will therefore correspond to nearby points. Ideally, clusters should satisfy the
following common-sense principle, which is illustrated in Figure 1.5.

Good Clustering Principle: Every pair of points from the same cluster should be closer to

each other than any pair of points from different clusters.

We have therefore embedded gene expression analysis within the algorithmic problem
of partitioning a collection of n points in m-dimensional space into k clusters, which

10

(1, 6)

(10, 3) (1, 3)

(5, 6)

(8, 7)

(7, 1)

(3, 4)

(5, 2)

416

Gene	Expression	and	Cancer	Diagnostics	

MammaPrint: a test that evaluates the likelihood of
breast cancer recurrence based on the expression
of just 70 genes.

But how did scientists discover these 70 human genes?
417

Toward	a	Computational	Problem	

 Good Clustering Principle: Elements within the

same cluster are closer to each other than
elements in different clusters.

418

Toward	a	Computational	Problem	

•  distance between elements in the same cluster < ∆
•  distance between elements in different clusters > ∆

419

Clustering	Problem	

Clustering Problem: Partition a set of expression
vectors into clusters.
•  Input: A collection of n vectors and an integer k.
•  Output: Partition of n vectors into k disjoint

clusters satisfying the Good Clustering Principle.

Any partition into
two clusters does not
satisfy the Good
Clustering Principle!

420

What is the “best” partition into three clusters?

421

Clustering	as	Finding	Centers	

Equivalent goal: find a set of k points Centers that
will serve as the “centers” of the k clusters in Data.

Goal: partition a set Data into k clusters.

422

Clustering	as	Finding	Centers	

Equivalent goal: find a set of k points Centers that
will serve as the “centers” of the k clusters in Data
and will minimize some notion of distance from
Centers to Data .

Goal: partition a set Data into k clusters.

What is the “distance” from Centers to Data?

423

Distance	from	a	Single	DataPoint	to	Centers	

d(DataPoint,	Centers)	=	minall	points	x	from	Centers	d(DataPoint,	x)	

The distance from DataPoint in Data to Centers is
the distance from DataPoint to the closest center:

424

Distance	from	Data	to	Centers	

 MaxDistance(Data, Centers) =
max all points DataPoint from Data d(DataPoint, Centers)

425

k-Center	Clustering	Problem	

k-Center Clustering Problem. Given a set of points
Data, find k centers minimizing MaxDistance(Data,
Centers).
•  Input: A set of points Data and an integer k.
•  Output: A set of k points Centers that minimizes

MaxDistance(DataPoints, Centers) over all
possible choices of Centers.

426

k-Center Clustering Problem. Given a set of points
Data, find k centers minimizing MaxDistance(Data,
Centers).
•  Input: A set of points Data and an integer k.
•  Output: A set of k points Centers that minimizes

MaxDistance(DataPoints, Centers) over all
possible choices of Centers.

k-Center	Clustering	Problem	

An even better
set of centers!

427

k-Center	Clustering	Heuristic	

FarthestFirstTraversal(Data, k)
 Centers ← the set consisting of a single DataPoint from Data
 while Centers have fewer than k points
 DataPoint ← a point in Data maximizing d(DataPoint, Centers)

 among all data points
 add DataPoint to Centers

428

k-Center	Clustering	Heuristic	

FarthestFirstTraversal(Data, k)
 Centers ← the set consisting of a single DataPoint from Data
 while Centers have fewer than k points
 DataPoint ← a point in Data maximizing d(DataPoint, Centers)

 among all data points
 add DataPoint to Centers

429

What	Is	Wrong	with	FarthestFirstTraversal?	

FarthestFirstTraversal selects Centers that minimize
MaxDistance(Data, Centers).

human eye FarthestFirstTraversal

But biologists are interested in typical rather than
maximum deviations, since maximum deviations may
represent outliers (experimental errors).

430

The	maximal	distance	between	Data	
and	Centers:				

		MaxDistance(Data,	Centers)=			
max	DataPoint	from	Data	d(DataPoint,	Centers)	

The squared error distortion
between Data and Centers: 									

 Distortion(Data, Centers) =

∑ DataPoint from Data d(DataPoint, Centers)2/n

Modifying	the	Objective	Function	

A single data point contributes
to MaxDistance

All data points contribute to
Distortion

431

NP-Hard for k > 1

k-Means	Clustering	Problem	
k-Center Clustering Problem:
 Input: A set of points Data and an�
 integer k.
 Output: A set of k points Centers�
 that minimizes

MaxDistance(DataPoints,Centers)

over all choices of Centers.

k-Means Clustering Problem:
 Input: A set of points Data and an�
 integer k.
 Output: A set of k points Centers�
 that minimizes

Distortion(Data,Centers)

over all choices of Centers.

432

k-Means	Clustering	for	k	=	1	

 2 4 6

5

3

1

i-th coordinate of the center of
gravity = the average of the i-th
coordinates of datapoints:

((2+4+6)/3, (3+1+5)/3) = (4, 3)

Center of Gravity Theorem: The center of gravity of
points Data is the only point solving the 1-Means
Clustering Problem.

The center of gravity of points Data is
 ∑all points DataPoint in Data DataPoint / #points in Data

433

Select k arbitrary data points as Centers

The Lloyd Algorithm in Action

The Lloyd Algorithm in Action

Clusters

Centers

assign each data point to its nearest center

The Lloyd Algorithm in Action

new centers ç clusters’ centers of gravity

Clusters

Centers

The Lloyd Algorithm in Action

assign each data point to its nearest center

Clusters

Centers

again!

The Lloyd Algorithm in Action

new centers ç clusters’ centers of gravity

Clusters

Centers

again!

The Lloyd Algorithm in Action

Clusters

Centers

again!

assign each data point to its nearest center

The	Lloyd	Algorithm	

Select k arbitrary data points as Centers and then
iteratively performs the following two steps:

•  Centers to Clusters: Assign each data point to the

cluster corresponding to its nearest center (ties
are broken arbitrarily).

•  Clusters to Centers: After the assignment of data
points to k clusters, compute new centers as
clusters’ center of gravity.

The Lloyd algorithm terminates when the centers
stop moving (convergence).

440

Must	the	Lloyd	Algorithm	Converge?		

•  If	a	data	point	is	assigned	to	a	new	center	
during	the	Centers	to	Clusters	step:	
–  the	squared	error	distortion	is	reduced	
because	this	center	must	be	closer	to	
the	point	than	the	previous	center	was.	

	
	

•  If	a	center	is	moved	during	the	Clusters	to	
Centers	step:	
–  the	squared	error	distortion	is	reduced	
since	the	center	of	gravity	is	the	only	
point	minimizing	the	distortion	(the	
Center	of	Gravity	Theorem).				

441

RECAP	

442

Clustering	Yeast	Genes		

−4
−2

0
2

4

−4
−2

0
2

4

−4
−2

0
2

4

−4
−2

0
2

4

−4
−2

0
2

4

−4
−2

0
2

4

Cluster 1

Cluster 4 Cluster 5 Cluster 6

Cluster 3 Cluster 2

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

443

Soft	vs.	Hard	Clustering	

•  The Lloyd algorithm assigns the midpoint either to
the red or to the blue cluster.
•  “hard” assignment of data points to clusters.

•  Can we color the midpoint half-red and half-blue?
•  “soft” assignment of data points to clusters.

Midpoint:	A	point	approximately	
halfway	between	two	clusters.	

444

Soft	vs.	Hard	Clustering	

•  The Lloyd algorithm assigns the midpoint either to
the red or to the blue cluster.
•  “hard” assignment of data points to clusters.

•  Can we color the midpoint half-red and half-blue?
•  “soft” assignment of data points to clusters.

445

Soft	vs.	Hard	Clustering	

																							

Soft choices: points are assigned
“red” and “blue” responsibilities
rblue and rred (rblue + rred =1)

(0.98, 0.02)

(0.48, 0.52)

(0.01, 0.99)

Hard choices: points are
colored red or blue depending
on their cluster membership.

446

•  We flip a loaded coin with an unknown biasθ
(probability that the coin lands on heads).

•  The coin lands on heads i out of n times.
•  For each bias, we can compute the probability of the

resulting sequence of flips.

Probability of generating the given sequence of flips is

Pr(sequence|θ) = θi * (1-θ)n-i

This expression is maximized at θ= i/n (most likely bias)

Flipping	One	Biased	Coins		

447

 Data
HTTTHTTHTH 0.4
HHHHTHHHHH 0.9
HTHHHHHTHH 0.8
HTTTTTHHTT 0.3
THHHTHHHTH 0.7

Goal: estimate the probabilitiesθA andθB

Flipping	Two	Biased	Coins		
A B

448

								If	We	Knew	Which	Coin																															
Was	Used	in	Each	Sequence…		

 Data HiddenVector
HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

Goal: estimate Parameters = (θA ,θB)
when HiddenVector is given

449

θB = fraction of heads generated in all flips with coin B =
(9+8+7) / (10+10+10) = (0.9+0.8+0.7) / (1+1+1) = 0.80

 Data HiddenVector
HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

									If	We	Knew	Which	Coin																															
Was	Used	in	Each	Sequence…		

θA = fraction of heads generated in all flips with coin A =
(4+3) / (10+10) = (0.4+0.3) / 2 = 0.35

450

 1 * HiddenVector

 Data HiddenVector Parameters=(θA, θB)
HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0 (0.35, 0.80)
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

Parameters	as	a	Dot-Product	

*
*
*
*
*

(0.4*1+0.9*0+0.8*0+0.3*1+0.7*0)/ (1+0+0+1+0) = 0.35

 ∑all data points i Datai*HiddenVectori / ∑all data points iHiddenVectori= 0.35

 Data * HiddenVector /

 1 refers to a vector (1,1, … ,1) consisting of all 1s

(1,1,…, 1)*HiddenVector =0.35

θA = fraction of heads generated in all flips with coin A =
= (4+3) / (10+10) = (0.4+0.3) / 2 = 0.35

451

θB = fraction of heads generated in all flips with coin B�
= (9+8+7) / (10+10+10) = (0.9+0.8+0.7) /(1+1+1) = 0.80

 Data HiddenVector Parameters=(θA, θB)
HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0 (0.35, 0.80)
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

Parameters	as	a	Dot-Product		

*
*
*
*
*

 (0.5*0+0.9*1+0.8*1+0.4*0+0.7*1) / (0+1+1+0+1) = 0.80

∑all points i Datai * (1- HiddenVectori) / ∑ all points i (1- HiddenVectori)=

 Data * (1-HiddenVector) / 1 * (1 - HiddenVector) 452

θA = fraction of heads generated in all flips with coin A�
 = (0.4+0.3)/2=0.35
 = Data * HiddenVector / 1 * HiddenVector

 Data HiddenVector Parameters=(θA, θB)
HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0 (0.35, 0.80)
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

Parameters	as	a	Dot-Product	

*
*
*
*
*

θB = fraction of heads generated in all flips with coin B�
 = (0.9+0.8+0.7)/3=0.80
 = Data * (1-HiddenVector) / 1 * (1 - HiddenVector)

453

Data,	HiddenVector,	Parameters		

Parameters HiddenVector

 Data HiddenVector Parameters=(θA, θB)
 0.4 1
 0.9 0
 0.8 0 (0.35, 0.80)
 0.3 1
 0.7 0

454

Data,	HiddenVector,	Parameters	

 Data HiddenVector Parameters=(θA, θB)
 0.4 ?
 0.9 ?
 0.8 ? (0.35, 0.80)
 0.3 ?
 0.7 ?

Parameters HiddenVector
?

455

 Data HiddenVector Parameters=(θA, θB)
 0.4 ?
 0.9 ?
 0.8 ? (0.35, 0.80)
 0.3 ?
 0.7 ?

Pr(1st sequence|θA)=θA
4 (1-θA)6 = 0.354 • 0.656 ≈ 0.00113 >

Pr(1st sequence|θB)= θB
4(1-θB)6 = 0.804 • 0.206 ≈ 0.00003

From	Data	&	Parameters	to	HiddenVector		

Which coin is more likely to generate the
1st sequence (with 4 H)?

456

 Data HiddenVector Parameters=(θA, θB)
 0.4
 0.9 ?
 0.8 ? (0.35, 0.80)
 0.3 ?
 0.7 ?

Pr(1st sequence|θA)=θA
4 (1-θA)6 = 0.354 • 0.656 ≈ 0.00113 >

Pr(1st sequence|θB)= θB
4(1-θB)6 = 0.804 • 0.206 ≈ 0.00003

From	Data	&	Parameters	to	HiddenVector		

1

Which coin is more likely to generate the
1st sequence (with 4 H)?

457

 Data HiddenVector Parameters=(θA, θB)
 0.4
 0.9 ?
 0.8 ? (0.35, 0.80)
 0.3 ?
 0.7 ?

From	Data	&	Parameters	to	HiddenVector		

Pr(2nd sequence|θA)= θA
9 (1-θA)1=0.359•0.651 ≈ 0.00005 <

 Pr(2nd sequence|θB)= θB
9 (1-θB)1 =0.809 •0.201 ≈ 0.02684

Which coin is more likely to generate the
2nd sequence (with 9 H)?

1

458

 Data HiddenVector Parameters=(θA, θB)
 0.4
 0.9
 0.8 ? (0.35, 0.80)
 0.3 ?
 0.7 ?

From	Data	&	Parameters	to	HiddenVector		

0

Pr(2nd sequence|θA)= θA
9 (1-θA)1=0.359•0.651 ≈ 0.00005 <

Pr(2nd sequence|θB)= θB
9 (1-θB)1 =0.809 •0.201 ≈ 0.02684

Which coin is more likely to generate the
2nd sequence (with 9 H)?

1

459

HiddenVector	Reconstructed!			

 Data HiddenVector Parameters=(θA, θB)
 0.4 1
 0.9 0
 0.8 0 (0.35, 0.80)
 0.3 1
 0.7 0

460

Reconstructing	HiddenVector	and	Parameters	

Data

Parameters HiddenVector

461

Reconstructing	HiddenVector	and	Parameters	

Data

Parameters’ HiddenVector

462

Reconstructing	HiddenVector	and	Parameters	

Data

Parameters’ HiddenVector

463

Reconstructing	HiddenVector	and	Parameters	

Data

Parameters’ HiddenVector’

Iterate!

464

From	Coin	Flipping	to	k-means	Clustering:		
Where	Are	Data,	HiddenVector,	and	Parameters?	

Data: data points Data = (Data1,…,Datan)

Parameters: Centers = (Center1,…,Centerk)

HiddenVector: assignments of data points to k centers
(n-dimensional vector with coordinates varying from 1 to k).

1

2

3

1 2

1

3
3

3

2

1

465

Coin	Flipping	and	Soft	Clustering	

•  Coin flipping: how would you select between coins A and B if
Pr(sequence|θA) = Pr(sequence|θB)?

•  k-means clustering: what cluster would you assign a data point it
to if it is a midpoint of centers C1 and C2?

Soft assignments: assigning C1 and C2 “responsibility” ≈0.5 for
a midpoint. 466

 Data HiddenVector Parameters = (θA,θB)
 0.4 ?
 0.9 ?
 0.8 ? (0.60, 0.82)
 0.3 ?
 0.7 ?

Pr(1st sequence|θA)=θA
5 (1-θA)5 = 0.604 • 0.406 ≈ 0.000531 >

Pr(1st sequence|θB)= θB
5(1-θB)5 = 0.824 • 0.186 ≈ 0.000015

From	Data	&	Parameters	to	HiddenVector		

Which coin is more likely to have generated the first
sequence (with 4 H)?

467

 Data HiddenVector Parameters = (θA,θB)
 0.4
 0.9 ?
 0.8 ? (0.60, 0.82)
 0.3 ?
 0.7 ?

Pr(1st sequence|θA)=θA
5 (1-θA)5 = 0.604 • 0.406 ≈ 0.000531 >

Pr(1st sequence|θB)= θB
5(1-θB)5 = 0.824 • 0.186 ≈ 0.000015

Memory	Flash:	
From	Data	&	Parameters	to	HiddenVector		

1

Which coin is more likely to have generated the first
sequence (with 4 H)?

468

 Data HiddenMatrix Parameters = (θA,θB)
 0.4
 0.9 ?
 0.8 ? (0.60, 0.82)
 0.3 ?
 0.7 ?

 Pr(1st sequence|θA) ≈ 0.000531 >
 Pr(1st sequence|θB) ≈ 0.000015

From	Data	&	Parameters	to	HiddenMatrix		

0.000531 / (0.000531 + 0.000015) ≈ 0.97
0.000015 / (0.000531 + 0.000015) ≈ 0.03

What are the responsibilities of coins for this sequence?

0.97 0.03

469

 Data HiddenMatrix Parameters = (θA, θB)
 0.4
 0.9
 0.8 ? (0.60, 0.82)
 0.3 ?
 0.7 ?

From	Data	&	Parameters	to	HiddenMatrix		

0.0040 / (0.0040 + 0.0302) = 0.12
0.0342 / (0.0040 + 0.0342) = 0.88

What are the responsibilities of coins for the 2nd sequence?

 Pr(2nd sequence|θA) ≈ 0.0040 <
 Pr(2nd sequence|θB) ≈ 0.0302

0.97 0.03
0.12 0.88

470

 Data HiddenMatrix Parameters = (θA,θB)
 0.4
 0.9
 0.8 0.29 0.71 (0.60, 0.82)
 0.3 0.99 0.01
 0.7 0.55 0.45

HiddenMatrix	Reconstructed!		

0.97 0.03
0.12 0.88

471

Expectation	Maximization	Algorithm	

Data

Parameters HiddenMatrix

472

E-step	

Data

Parameters HiddenMatrix

473

M-step	

Data

Parameters’ HiddenVector

???

474

 Data HiddenVector Parameters=(θA, θB)
HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0 ???
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

*
*
*
*
*

Memory	Flash:	Dot	Product	

 θA = Data * HiddenVector / 1 * HiddenVector

 θB = Data * (1-HiddenVector) / 1 * (1-HiddenVector)

475

HiddenVector = (1 0 0 1 0)

 θA = Data * HiddenVector / 1 * HiddenVector

 θB = Data * (1-HiddenVector) / 1 * (1-HiddenVector)

 Data HiddenVector Parameters=(θA,θB)
HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

		From	Data	&	HiddenMatrix	to	Parameters	

What is HiddenMatrix corresponding to this HiddenVector?
476

HiddenVector = (1 0 0 1 0)

Hidden Matrix =

1 0 0 1 0
0 1 1 0 1

 θA = Data * HiddenVector / 1 * HiddenVector

 θB = Data * (1-HiddenVector) / 1 * (1-HiddenVector)

 Data HiddenVector Parameters=(θA,θB)
HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

		From	Data	&	HiddenMatrix	to	Parameters	

 θB = Data * 2nd row of HiddenMatrix / 1*2nd row of HiddenMatrix

 θA = Data * 1st row of HiddenMatrix / 1*1st row of HiddenMatrix

= HiddenVector
= 1 - HiddenVector 477

HiddenVector = (1 0 0 1 0)

Hidden Matrix =

.97 .03 .29 .99 .55

.03 .97 .71 .01 .45

 θA = Data * HiddenVector / 1 * HiddenVector

 θB = Data * (1-HiddenVector) / 1 * (1-HiddenVector)

 Data HiddenMatrix Parameters=(θA,θB)
HTTTHTTHTH 0.4 0.97 0.03
HHHHTHHHHH 0.9 0.12 0.88
HTHHHHHTHH 0.8 0.29 0.71
HTTTTTHHTT 0.3 0.99 0.01
THHHTHHHTH 0.7 0.55 0.45

		From	Data	&	HiddenMatrix	to	Parameters	

 θB = Data * 2nd row of HiddenMatrix / 1*2nd row of HiddenMatrix

 θA = Data * 1st row of HiddenMatrix / 1*1st row of HiddenMatrix

478

Data: data points Data = {Data1, … ,Datan}
Parameters: Centers = {Center1, … ,Centerk}
HiddenVector: assignments of data points to centers

1 2 1 3 2 1 3 3 HiddenVector

1

2

3

1 2

1

3
3

3

2

1

A

 A B C D E F G
H

C
F

B
E

D
G

H

1 0 1 0 0 1 0 0

0 1 0 0 1 0 0 0

0 0 0 1 0 0 1 1

HiddenMatrix
1
2
3

From	HiddenVector	to	HiddenMatrix	

479

0 1 0 0 1 0 0

1 0 0 1 0 0 0

0 0 1 0 0 1 1

From	HiddenVector	to	HiddenMatrix	
Data: data points Data = {Data1, … ,Datan}
Parameters: Centers = {Center1, … ,Centerk}
HiddenMatrixi,j: responsibility of center i for data point j

HiddenMatrix
1
2
3

0.7

0.2

0.1

 A B C D E F G
H

1

2

3

1 2

1

3
3

3

2

1

A

C
F

B
E

D
G

H

480

0.70 0.15 0.73 0.40 0.15 0.80 0.05 0.05

0.20 0.80 0.17 0.20 0.80 0.10 0.05 0.20

0.10 0.05 0.10 0.40 0.05 0.10 0.90 0.75

From	HiddenVector	to	HiddenMatrix	
Data: data points Data = {Data1, … ,Datan}
Parameters: Centers = {Center1, … ,Centerk}
HiddenMatrixi,j: responsibility of center i for data point j

 A B C D E F G
H

1

2

3

1 2

1

3
3

3

2

1

A

C
F

B
E

D
G

H

HiddenMatrix
1
2
3

481

Responsibilities	and	the	Law	of	Gravitation		

HiddenMatrixij: =
Forcei,j / ∑all centers j Forcei,j

stars

planets

responsibility of star i for a planet j is proportional to the
pull (Newtonian law of gravitation):

Forcei,j=1/distance(Dataj, Centeri)2

0.70 0.15 0.73 0.40 0.15 0.80 0.05 0.05

0.20 0.80 0.17 0.20 0.80 0.10 0.05 0.20

0.10 0.05 0.10 0.40 0.05 0.10 0.90 0.75

482

Responsibilities	and	Statistical	Mechanics		

centers

data points

responsibility of center i for a data point j is proportional to

Forcei,j = e-β·distance(Dataj, Centeri)

where β is a stiffness parameter.

HiddenMatrixij: =
Forcei,j / ∑all centers j Forcei,j

0.70 0.15 0.73 0.40 0.15 0.80 0.05 0.05

0.20 0.80 0.17 0.20 0.80 0.10 0.05 0.20

0.10 0.05 0.10 0.40 0.05 0.10 0.90 0.75

483

How	Does	Stiffness	Affect	Clustering?		

Hard k-means�
clustering

Soft k-means�
clustering�

(stiffness β=1)

Soft k-means�
clustering�

(stiffness β= 0.3)

484

Stratification	of	Clusters	

Clusters	often	have	subclusters,	which	have	
subsubclusters,	and	so	on.	

485

Stratification	of	Clusters	

Clusters	often	have	subclusters,	which	have	sub-
subclusters,	and	so	on.	

486

																								

From	Data	to	a	Tree	

To	capture	stratification,	the	hierarchical	clustering	
algorithm	organizes	n	data	points	into	a	tree.	

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

g1

g6

g7

g3

g5 g8

g9 g10

g4

g2

487

g1

g6

g7

g3

g5 g8

g9 g10

g4

g2

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

																								

From	a	Tree	to	a	Partition	into	4	Clusters	

To	capture	stratification,	the	hierarchical	clustering	
algorithm	organizes	n	data	points	into	a	tree.	

Line
crossing
the tree

at 4 points

488

g1

g6

g7

g3

g5 g8

g9 g10

g4

g2

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

																								

From	a	Tree	to	a	Partition	into	6	Clusters	

To	capture	stratification,	the	hierarchical	clustering	
algorithm	first	organizes	n	data	points	into	a	tree.	

Line
crossing
the tree

at 6 points

6 Clusters
489

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

g1 0.0 8.1 9.2 7.7 9.3 2.3 5.1 10.2 6.1 7.0

g2 8.1 0.0 12.0 0.9 12.0 9.5 10.1 12.8 2.0 1.0

g3 9.2 12.0 0.0 11.2 0.7 11.1 8.1 1.1 10.5 11.5

g4 7.7 0.9 11.2 0.0 11.2 9.2 9.5 12.0 1.6 1.1

g5 9.3 12.0 0.7 11.2 0.0 11.2 8.5 1.0 10.6 11.6

g6 2.3 9.5 11.1 9.2 11.2 0.0 5.6 12.1 7.7 8.5

g7 5.1 10.1 8.1 9.5 8.5 5.6 0.0 9.1 8.3 9.3

g8 10.2 12.8 1.1 12.0 1.0 12.1 9.1 0.0 11.4 12.4

g9 6.1 2.0 10.5 1.6 10.6 7.7 8.3 11.4 0.0 1.1

g10 7.0 1.0 11.5 1.1 11.6 8.5 9.3 12.4 1.1 0.0

Constructing	the	Tree	

																								

																				

																				

g1

g6

g7

g3

g5 g8

g9 g10

g4

g2

Hierarchical clustering starts from a transformation of n x m
expression matrix into n x n similarity matrix or distance matrix.

Distance Matrix

490

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

g1 0.0 8.1 9.2 7.7 9.3 2.3 5.1 10.2 6.1 7.0

g2 8.1 0.0 12.0 0.9 12.0 9.5 10.1 12.8 2.0 1.0

g3 9.2 12.0 0.0 11.2 0.7 11.1 8.1 1.1 10.5 11.5

g4 7.7 0.9 11.2 0.0 11.2 9.2 9.5 12.0 1.6 1.1

g5 9.3 12.0 0.7 11.2 0.0 11.2 8.5 1.0 10.6 11.6

g6 2.3 9.5 11.1 9.2 11.2 0.0 5.6 12.1 7.7 8.5

g7 5.1 10.1 8.1 9.5 8.5 5.6 0.0 9.1 8.3 9.3

g8 10.2 12.8 1.1 12.0 1.0 12.1 9.1 0.0 11.4 12.4

g9 6.1 2.0 10.5 1.6 10.6 7.7 8.3 11.4 0.0 1.1

g10 7.0 1.0 11.5 1.1 11.6 8.5 9.3 12.4 1.1 0.0

Constructing	the	Tree	

																								

																				

																				

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

{g3, g5}

Identify the two closest clusters and merge them.

491

g1 g2 g3, g5 g4 g6 g7 g8 g9 g10

g1 0.0 8.1 9.2 7.7 2.3 5.1 10.2 6.1 7.0

g2 8.1 0.0 12.0 0.9 9.5 10.1 12.8 2.0 1.0

g3, g5 9.2 12.0 0.0 11.2 11.1 8.1 1.0 10.5 11.5

g4 7.7 0.9 11.2 0.0 9.2 9.5 12.0 1.6 1.1

g6 2.3 9.5 11.1 9.2 0.0 5.6 12.1 7.7 8.5

g7 5.1 10.1 8.1 9.5 5.6 0.0 9.1 8.3 9.3

g8 10.2 12.8 1.0 12.0 12.1 9.1 0.0 11.4 12.4

g9 6.1 2.0 10.5 1.6 7.7 8.3 11.4 0.0 1.1

g10 7.0 1.0 11.5 1.1 8.5 9.3 12.4 1.1 0.0

Constructing	the	Tree	

																								

																				

																				

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

{g3, g5}

Recompute the distance between two clusters as
average distance between elements in the cluster.

492

g1 g2 g3, g5 g4 g6 g7 g8 g9 g10

g1 0.0 8.1 9.2 7.7 2.3 5.1 10.2 6.1 7.0

g2 8.1 0.0 12.0 0.9 9.5 10.1 12.8 2.0 1.0

g3, g5 9.2 12.0 0.0 11.2 11.1 8.1 1.0 10.5 11.5

g4 7.7 0.9 11.2 0.0 9.2 9.5 12.0 1.6 1.1

g6 2.3 9.5 11.1 9.2 0.0 5.6 12.1 7.7 8.5

g7 5.1 10.1 8.1 9.5 5.6 0.0 9.1 8.3 9.3

g8 10.2 12.8 1.0 12.0 12.1 9.1 0.0 11.4 12.4

g9 6.1 2.0 10.5 1.6 7.7 8.3 11.4 0.0 1.1

g10 7.0 1.0 11.5 1.1 8.5 9.3 12.4 1.1 0.0

Constructing	the	Tree	

																								

																				

																				

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

{g3, g5}

{g2, g4}

Identify the two closest clusters and merge them.

493

g1 g2, g4 g3, g5 g6 g7 g8 g9 g10

g1 0.0 7.7 9.2 2.3 5.1 10.2 6.1 7.0

g2, g4 7.7 0.0 11.2 9.2 9.5 12.0 1.6 1.0

g3, g5 9.2 11.2 0.0 11.1 8.1 1.0 10.5 11.5

g6 2.3 9.2 11.1 0.0 5.6 12.1 7.7 8.5

g7 5.1 9.5 8.1 5.6 0.0 9.1 8.3 9.3

g8 10.2 12.0 1.0 12.1 9.1 0.0 11.4 12.4

g9 6.1 1.6 10.5 7.7 8.3 11.4 0.0 1.1

g10 7.0 1.0 11.5 8.5 9.3 12.4 1.1 0.0

Constructing	the	Tree	

																								

																				

																				

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

{g3, g5}

{g2, g4}

Recompute the distance between two clusters (as
average distance between elements in the cluster).

494

g1 g2, g4 g3, g5 g6 g7 g8 g9 g10

g1 0.0 7.7 9.2 2.3 5.1 10.2 6.1 7.0

g2, g4 7.7 0.0 11.2 9.2 9.5 12.0 1.6 1.0

g3, g5 9.2 11.2 0.0 11.1 8.1 1.0 10.5 11.5

g6 2.3 9.2 11.1 0.0 5.6 12.1 7.7 8.5

g7 5.1 9.5 8.1 5.6 0.0 9.1 8.3 9.3

g8 10.2 12.0 1.0 12.1 9.1 0.0 11.4 12.4

g9 6.1 1.6 10.5 7.7 8.3 11.4 0.0 1.1

g10 7.0 1.0 11.5 8.5 9.3 12.4 1.1 0.0

Constructing	the	Tree	

																								

																				

																				

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

{g2, g4}

{g3, g5, g8}

Identify the two closest clusters and merge them.

495

Constructing	the	Tree	

																								

																				

																				

Iterate until all elements form a single cluster (root).

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9 496

Constructing	a	Tree	from	a	Distance	Matrix	D			
HierarchicalClustering (D, n)
 Clusters ← n single-element clusters labeled 1 to n
 T ← a graph with the n isolated nodes labeled 1 to n
 while there is more than one cluster
 find the two closest clusters Ci and Cj
 merge Ci and Cj into a new cluster Cnew with |Ci| + |Cj| elements
 add a new node labeled by cluster Cnew to T
 connect node Cnew to Ci and Cj by directed edges
 remove the rows and columns of D corresponding to Ci and Cj
 remove Ci and Cj from Clusters
 add a row and column to D for the cluster Cnew by computing�
 D(Cnew ,C) for each cluster C in Clusters
 add Cnew to Clusters
 assign root in T as a node with no incoming edges
 return T

497

Different	Distance	Functions	Result	in	Different	
Trees	

Average distance between elements of two clusters:

Davg(C1, C2) = (∑ all points i and j in clusters C1 and C2, respectively Di,j)/ (|C1|*|C2|)

Minimum distance between elements of two clusters:

Dmin(C1, C2) = min all points i and j in clusters C1 and C2, respectively Di,j

498

Clusters	Constructed	by	HierarchicalClustering	

−4
−2

0
2

4

−4
−2

0
2

4

−4
−2

0
2

4

−4
−2

0
2

4

−4
−2

0
2

4

−4
−2

0
2

4

Cluster 1

Cluster 4 Cluster 5 Cluster 6

Cluster 3 Cluster 2

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

Surge	in	expression	
at	final	checkpoint	

499

Markov	Clustering	Algorithm	
Unlike most clustering algorithms, the MCL (micans.org/
mcl) does not require the number of expected clusters to be
specified beforehand. The basic idea underlying the
algorithm is that dense clusters correspond to regions with a
larger number of paths.

You can find the code at micans.org/mcl

500

Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of
protein families. Nucleic Acids Res. 2002 30:1575-84.

Markov	Clustering	Algorithm	
We take a random walk on the graph described by the
similarity matrix, but after each step we weaken the links
between distant nodes and strengthen the links between
nearby nodes.
A random walk has a higher probability to stay inside the
cluster than to leave it soon. The crucial point lies in
boosting this effect by an iterative alternation of expansion
and inflation steps. An inflation parameter is responsible
for both strengthening and weakening of current, i.e.
Strengthens strong currents, and weakens already weak
currents. An expansion parameter, r, controls the extent of
this strengthening / weakening. In the end, this influences
the granularity of clusters.

501

Markov	Clustering	Algorithm	

Matrix representation

502

Markov	Clustering	Algorithm	

503

Markov	Clustering	Algorithm	

504

The number of steps to converge is not proven, but
experimentally shown to be 10 to 100 steps, and
mostly consist of sparse matrices after the first few
steps.

The expansion step of MCL has time complexity O(n3).

The inflation has complexity O(n2). However, the

matrices are generally very sparse, or at least the vast

majority of the entries are near zero. Pruning in MCL

involves setting near-zero matrix entries to zero, and

can allow sparse matrix operations to improve the speed

of the algorithm vastly.

Markov	Clustering	Algorithm	

505

Markov	Clustering	Algorithm	

506

A	popular	method	for	exploring	high-dimensional	data	is	
something	called	t-SNE,	introduced	by	van	der	Maaten	and	
Hinton	in	2008.	The	technique	has	become	widespread	in	the	
field	of	machine	learning,	since	it	has	an	almost	magical	ability	
to	create	compelling	two-dimensonal	“maps”	from	data	with	
hundreds	or	even	thousands	of	dimensions.		
	
The goal is to take a set of points in a high-dimensional
space and find a faithful representation of those points in
a lower-dimensional space, typically the 2D plane. The
algorithm is non-linear and adapts to the underlying data,
performing different transformations on different regions.
Those differences can be a major source of confusion.

Stochastic Neighbor Embedding : key points

A	second	feature	of	t-SNE	is	a	tuneable	parameter,	
“perplexity,”	which	says	(loosely)	how	to	balance	
attention	between	local	and	global	aspects	of	your	
data.	The	parameter	is,	in	a	sense,	a	guess	about	the	
number	of	close	neighbors	each	point	has.		The	
original	paper	says,	“The	performance	of	SNE	is	fairly	
robust	to	changes	in	the	perplexity,	and	typical	
values	are	between	5	and	50.”	But	the	story	is	more	
nuanced	than	that.	Getting	the	most	from	t-SNE	may	
mean	analyzing	multiple	plots	with	different	
perplexities.

Stochastic Neighbor Embedding : key points

Stochastic Neighbor Embedding : key points

First convert each high-dimensional similarity into
the probability that one data point will pick the other
data point as its neighbor. To evaluate a map:

– Use the pairwise distances in the low-dimensional
map to define the probability that a map point will pick
another map point as its neighbor.

– Compute the Kullback-Leibler divergence between the
probabilities in the high-dimensional and low-
dimensional spaces.

– Each point in high-Dimension has a conditional
probability of picking each other point as its neighbor.

– The distribution over neighbors is based on the high-
Dimension pairwise distances.

Stochastic Neighbor Embedding : key points

i

j k

high dim
ension space i

j

k

low
 dim

ension space

Evaluate this representation by seeing how well the low-Dimension probabilities
model the high-Dimension ones.

Stochastic Neighbor Embedding

Stochastic	Neighbor	Embedding	(SNE)	is	the	process	
of	constructing	conditional	probabilities	representing	
the	similarity	between	high	dimensional	data	points	
using	their	Euclidean	distances.	The	conditional	
probability	pj|i	for	points	xj	and	xi	is	defined	by	the	
equation	

512

Stochastic Neighbor Embedding

Similarity	is	ultimately	the	probability	that	xi	would	define	x	j	
as	a	neighbor,	in	which	a	neighborhood	is	defined	by	a	
Gaussian	probability	density	centered	at	xi.	where	σi	is	the	
variance	of	the	xi-centered	distribution.		
	
A	large	pj|i	is	indicative	of	close,	or	similar,	data	points,	and	a	
very	small	pj|i	means	that	x	j	is	not	likely	a	neighbor	of	xi.	
	
Instead	of	using	a	Gaussian	distribution,	t-SNE	assumes	the	
closely-related	Student-t	distribution	to	compute	the	
pairwise	conditional	probabilities	in	a	low-dimensional	space	
more	efficiently.		

513

Stochastic Neighbor Embedding

The	t-SNE	algorithm	improves	upon	the	original	SNE	
algorithm	by	implementing	a	cost	function	with	a	
simpler	gradient	that	uses	the	Kullback-Leibler	
divergence	(DKL)	between	the	high-dimensional	joint	
probability	distribution	P	and	a	low-dimensional	
Student-t	based	joint	probability	distribution	Q	
(Equation	2)	.	The	gradient	is	explicitly	defined	in	
Equation	3.	

514

equation 2

equation 3

Stochastic Neighbor Embedding

With	higher-dimensional	data,	one	runs	the	risk	of	
overcrowding	the	projection	such	that	dissimilarities	
between	points	cannot	be	faithfully	plotted	due	to	a	
lack	of	space	in	the	two-dimensional	map	to	reduce	
the	high-dimensional	data.		
	
The	use	of	the	heavy-tailed	Student-t	distribution	
mitigates	this	issue	because	it	converts	the	moderate	
distances	that,	when	mapped	to	a	two-dimensional	
plane	tend	to	be	too	close	to	xi,	to	probabilities	that	
map	the	points	an	appropriately	greater	distance	
away.		
	 515

Stochastic Neighbor Embedding

516

1)	

2)	

3)	

Stochastic Neighbor Embedding

References	on	t-SNE		
•  t-SNE	main	paper:	,	L.J.P.	van	der	Maaten	and	G.E.	Hinton.	Visualizing	

High-Dimensional	Data	Using	t-SNE.	Journal	of	Machine	Learning	Research	
9(Nov):2579-2605,	2008			

•  useful	video:	https://lvdmaaten.github.io/tsne/)https://youtu.be/
RJVL80Gg3lA?list=UUtXKDgv1AVoG88PLl8nGXmw)	

.	
•  	how	to	use:	https://distill.pub/2016/misread-tsne/	

517

518

Burrows	–	Wheeler	Transform	

Burrows (left), Wheeler (right)
both at the Computer Laboratory

Burrows	Wheeler	Transform	
Three	steps:	1)	Form	a	N*N	matrix	by	cyclically	rotating	(left)	the	
given	text	to	form	the	rows	of	the	matrix.	Here	we	use	’$’	as	a	
sentinel	(lexicographically	greatest	character	in	the	alphabet	and	
occurs	exactly	once	in	the	text	but	it	is	not	a	must).	2)	Sort	the	matrix	
according	to	the	alphabetic	order.	Note	that	the	cycle	and	the	sort	
procedures	of	the	Burrows-Wheeler	induces	a	partial	clustering	of	
similar	characters	providing	the	means	for	compression.	3)	The	last	
column	of	the	matrix	is	BWT(T)	(we	need	also	the	row	number	where	
the	original	string	ends	up).	

519

BWT	

Property	that	makes	BWT(T)	reversible	is	LF	Mapping:	
the	ith	occurrence	of	a	character	in	Last	column	is	
same	text	occurrence	as	the	ith	occurrence	in	the	
First	column	(i.e.	the	sorting	strategy	preserves	the	
relative	order	in	both	last	column	and	first	column).	

520

BWT	

521

Burrows-Wheeler	Transform	(BWT)	

acaacg$

$acaacg

aacg$ac

acaacg$

acg$aca

caacg$a

cg$acaa

g$acaac

gc$aaac

Burrows-Wheeler Matrix (BWM)

BWT

Burrows-Wheeler	Matrix	

$acaacg

aacg$ac

acaacg$

acg$aca

caacg$a

cg$acaa

g$acaac

Burrows-Wheeler	Matrix	

$acaacg

aacg$ac

acaacg$

acg$aca

caacg$a

cg$acaa

g$acaac

See the suffix array?

3
1
4
2
5
6

Key	observation	

1$acaacg1

2aacg$ac1

1acaacg$1

3acg$aca2

1caacg$a1

2cg$acaa3

1g$acaac2

a1c1a2a3c2g1$1

“last first (LF) mapping”

The i-th occurrence of character X in the
last column corresponds to
the same text character as the i-th
occurrence of X in the first column.

Burrow	Wheeler	Transform	

526

•  Why	do	we	map	reads?	
•  Using	the	Trie	
•  From	a	Trie	to	a	Suffix	Tree	
•  String	Compression	and	the	Burrows-Wheeler	Transform	

•  Inverting	Burrows-Wheeler	
•  Using	Burrows-Wheeler	for	Pattern	Matching	
•  Finding	the	Matched	Patterns	
•  Setting	Up	Checkpoints	
•  Inexact	Matching	

527

Genome Assembly

Toward	a	Computational	Problem	

•  Reference	genome:	database	genome	used	
for	comparison.	

•  Question:	How	can	we	assemble	individual	
genomes	efficiently	using	the	reference?	

CTGATGATGGACTACGCTACTACTGCTAGCTGTAT Individual

CTGAGGATGGACTACGCTACTACTGATAGCTGTTT Reference

528

Why	Not	Use	Assembly?	

Multiple copies of
a genome

AGAATATCASequence the
reads

Shatter the
genome into
reads

Assemble the
genome with
overlapping reads

...TGAGAATATCA...

 AGAATATCA
 GAGAATATC
TGAGAATAT

GAGAATATCTGAGAATAT

529

Why	Not	Use	Assembly?	

•  Constructing	a	de	Bruijn	graph	
takes	a	lot	of	memory.	

•  Hope:	a	machine	in	a	clinic	
that	would	collect	and	
map	reads	in	10	minutes.	

•  Idea:	use	existing	structure	of	reference	
genome	to	help	us	sequence	a	patient’s	
genome.	

TAA# AAT#

TGC#

GCC#CCA#

CAT#

ATG#

TGG#

GGG#
GGA#

GAT#

ATG#
TA#

CA#

AA# AT#

GG#GA#

TG#

GC#

CC#

ATG#
TGT# GTT#

GT# TT#

530

Read	Mapping	

•  Read	mapping:	determine	where	each	read	
has	high	similarity	to	the	reference	genome.	

CTGAGGATGGACTACGCTACTACTGATAGCTGTTT  
 GAGGA CCACG TGA-A

Reference
Reads

531

Why	Not	Use	Alignment?	

•  Fitting	alignment:	align	each	read	Pattern	to	
the	best	substring	of	Genome.	

•  Has	runtime	O(|Pattern|	*	|Genome|)	for	
each	Pattern.	

•  Has	runtime	O(|Patterns|	*	|Genome|)	for	a	
collection	of	Patterns.	

532

Exact	Pattern	Matching	

•  Focus	on	a	simple	question:	where	do	the	
reads	match	the	reference	genome	exactly?	

•  Single	Pattern	Matching	Problem:	
–  Input:	A	string	Pattern	and	a	string	Genome.	
– Output:	All	positions	in	Genome	where	Pattern	
appears	as	a	substring.	

533

Exact	Pattern	Matching	

•  Focus	on	a	simple	question:	where	do	the	
reads	match	the	reference	genome	exactly?	

•  Multiple	Pattern	Matching	Problem:	
–  Input:	A	collection	of	strings	Patterns	and	a	string	
Genome.	

– Output:	All	positions	in	Genome	where	a	string	
from	Patterns	appears	as	a	substring.	

534

A	Brute	Force	Approach	

•  We	can	simply	iterate	a	brute	force	approach	
method,	sliding	each	Pattern	down	Genome.	

•  Note:	we	use	words	instead	of	DNA	strings	for	
convenience.	

panamabananas
 nana Pattern

Genome

535

Brute	Force	Is	Too	Slow	

•  The	runtime	of	the	brute	force	approach	is	too	
high!	
– Single	Pattern:							O(|Genome|	*	|Pattern|)	
– Multiple	Patterns:	O(|Genome|	*	|Patterns|)	
– |Patterns|	=	combined	length	of	Patterns	

536

Processing	Patterns	into	a	Trie	

•  Idea:	combine	reads	into	a	graph.	Each	
substring	of	the	genome	can	match	at	most	
one	read.		So	each	read	will	correspond	to	a	
unique	path	through	this	graph.	

•  The	resulting	graph	is	called	a	trie.	

537

a

n

d

b

a

n

a

n

a

n

a

a

b

n

n

e

t

a

n

a

a

d

p n

a

n

s

a

n

a

Root Patterns

banana
pan
and
nab
antenna
bandana
ananas
nana

538

Using	the	Trie	for	Pattern	Matching	

•  TrieMatching:	Slide	the	trie	down	the	
genome.	

•  At	each	position,	walk	down	the	trie	and	see	if	
we	can	reach	a	leaf	by	matching	symbols.	

•  Analogy:	bus	stops	

539

p a n a m a b a n a n a s
Root

a

n

d

b

a

n

a

n

a

n

a

a

b

n

n

e

t

a

n

a

a

d

p n

a

n

s

a

n

a

540

Success!	

•  Runtime	of	Brute	Force:	
– Total:	O(|Genome|*|Patterns|)	

•  Runtime	of	Trie	Matching:		
– Trie	Construction:	O(|Patterns|)	
– Pattern	Matching:	O(|Genome|	*	|
LongestPattern|)	

541

Memory	Analysis	of	TrieMatching	

•  Son	completely	forgot	
about	memory!	

•  Our	trie:	30	edges,	
|Patterns|	=	39	

•  Worst	case:	#	edges	
=	O(|Patterns|)	

Root

a

n

d

b

a

n

a

n

a

n

a

a

b

n

n

e

t

a

n

a

a

d

p n

a

n

s

a

n

a

542

Preprocessing	the	Genome	

•  What	if	instead	we	create	a	data	structure	
from	the	genome	itself?	

•  Split	Genome	into	all	its	suffixes.		(Show	
matching	“banana”	by	finding	the	suffix	
“bananas”.)	

•  How	can	we	combine	these	suffixes	into	a	
data	structure?	

•  Let’s	use	a	trie!	

543

Root

n

a

a

n

a

b

s

m

n

a

a

p

$

a

n

a

a

n

a

s

a

$

m

a

a

n

b

n

a

a

n

a

s

$

m

a

a

n

b

n

a

a

n

a

s

$

a

b

m

n

a

a

n

a

s

$

a

b

m

n

a

a

n

a

s

$

n

a

a

n

a

s

$

b

a

s

$

n n

a

s

$

$

s

$

s

$

s
s

$

b

544

The	Suffix	Trie	and	Pattern	Matching	

•  For	each	Pattern,	see	if	Pattern	can	be	spelled	
out	from	the	root	downward	in	the	suffix	trie.	

545

Root

n

a

a

n

a

b

s

m

n

a

a

p

$

a

n

a

a

n

a

s

a

$

m

a

a

n

b

n

a

a

n

a

s

$

m

a

a

n

b

n

a

a

n

a

s

$

a

b

m

n

a

a

n

a

s

$

a

b

m

n

a

a

n

a

s

$

n

a

a

n

a

s

$

b

a

s

$

n n

a

s

$

$

s

$

s

$

s
s

$

b

5

3

1

7

9

6

11

2

8

10

0

12

4

p a n a m a b a n a n a s
$

546

Memory	Trouble	Once	Again	

•  Worst	case:	the	suffix	trie	
holds	O(|Suffixes|)	nodes.	

	
	
•  For	a	Genome	of	length	n,	
|Suffixes|	=	n(n	–	1)/2	=	O(n2)	

panamabananas$
anamabananas$
namabananas$
amabananas$
mabananas$
abananas$
bananas$
ananas$
nanas$
anas$
nas$
as$
s$
$

Suffixes

547

Compressing	the	Trie	

•  This	doesn’t	mean	that	our	idea	was	bad!	

•  To	reduce	memory,	we	can	compress	each	
“nonbranching	path”	of	the	tree	into	an	edge.	

548

Root

n

a

a

n

a

b

s

m

n

a

a

p

$

a

n

a

a

n

a

s

a

$

m

a

a

n

b

n

a

a

n

a

s

$

m

a

a

n

b

n

a

a

n

a

s

$

a

b

m

n

a

a

n

a

s

$

a

b

m

n

a

a

n

a

s

$

n

a

a

n

a

s

$

b

a

s

$

n n

a

s

$

$

s

$

s

$

s
s

$

b

549

•  This	data	structure	is	called	a	suffix	tree.	
	
•  For	any	Genome,	#	nodes	<	2|Genome|.	

– #	leaves	=	|Genome|;	
– #	internal	nodes	<	|Genome|	–	1		

Root a

na

nas$

s$
s$

nas$

5
3

1 7 9

6

11

2 8 10

4 0

12

550

Runtime	and	Memory	Analysis	

•  Runtime:	
– O(|Genome|2)	to	construct	the	suffix	tree.	
– O(|Genome|	+	|Patterns|)	to	find	pattern	matches.	

	
•  Memory:	

– O(|Genome|2)	to	construct	the	suffix	tree.	
– O(|Genome|)	to	store	the	suffix	tree.	

551

Runtime	and	Memory	Analysis	

•  Runtime:	
– O(|Genome|)	to	construct	the	suffix	tree	directly.	
– O(|Genome|	+	|Patterns|)	to	find	pattern	matches.	
– Total:	O(|Genome|	+	|Patterns|)	

•  Memory:	
– O(|Genome|)	to	construct	the	suffix	tree	directly.	
– O(|Genome|)	to	store	the	suffix	tree.	
– Total:	O(|Genome|	+	|Patterns|)	

552

We	are	Not	Finished	Yet	

•  I	am	happy	with	the	suffix	tree,	but	I	am	not	
completely	satisfied.	
•  Runtime:	O(|Genome|	+	|Patterns|)	
•  Memory:	O(|Genome|)	

	
•  However,	big-O	notation	ignores	constants!	

•  The	best	known	suffix	tree	implementations	
require	~	20	times	the	length	of	|Genome|.	

•  Can	we	reduce	this	constant	factor?	
553

Genome	Compression	

•  Idea:	decrease	the	amount	of	memory	
required	to	hold	Genome.	

•  This	indicates	that	we	need	methods	of	
compressing	a	large	genome,	which	is	
seemingly	a	separate	problem.	

554

Idea	#1:	Run-Length	Encoding	

•  Run-length	encoding:	compresses	a	run	of	n	
identical	symbols.	

•  Problem:	Genomes	don’t	have	lots	of	runs…	

GGGGGGGGGGCCCCCCCCCCCAAAAAAATTTTTTTTTTTTTTTCCCCCG

10G11C7A15T5C1G

Genome

Run-length encoding

555

Converting	Repeats	to	Runs	

•  …but	they	do	have	lots	of	repeats!	

Genome

Genome*

CompressedGenome*

Run-length encoding

Convert repeats to runs How do we do this step?

556

The	Burrows-Wheeler	Transform	

p a n a m a b a n a n a s $
$ p a n a m a b a n a n a s
s $ p a n a m a b a n a n a

Form all cyclic rotations of
“panamabananas$”

p a

n

a

m

a

b
a

n

a

n

a

s

$

557

 Burrows, Michael and Wheeler, David J. (1994), A block sorting lossless data compression
algorithm, Technical Report 124, Digital Equipment Corporation
Li, H and Durbin, R (2009) Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 25:1754-60.

The	Burrows-Wheeler	Transform	

p a n a m a b a n a n a s $
$ p a n a m a b a n a n a s
s $ p a n a m a b a n a n a
a s $ p a n a m a b a n a n
n a s $ p a n a m a b a n a
a n a s $ p a n a m a b a n
n a n a s $ p a n a m a b a
a n a n a s $ p a n a m a b
b a n a n a s $ p a n a m a
a b a n a n a s $ p a n a m
m a b a n a n a s $ p a n a
a m a b a n a n a s $ p a n
n a m a b a n a n a s $ p a
a n a m a b a n a n a s $ p

Form all cyclic rotations of
“panamabananas$”

p a

n

a

m

a

b
a

n

a

n

a

s

$

558

The	Burrows-Wheeler	Transform	

p a n a m a b a n a n a s $
$ p a n a m a b a n a n a s
s $ p a n a m a b a n a n a
a s $ p a n a m a b a n a n
n a s $ p a n a m a b a n a
a n a s $ p a n a m a b a n
n a n a s $ p a n a m a b a
a n a n a s $ p a n a m a b
b a n a n a s $ p a n a m a
a b a n a n a s $ p a n a m
m a b a n a n a s $ p a n a
a m a b a n a n a s $ p a n
n a m a b a n a n a s $ p a
a n a m a b a n a n a s $ p

Form all cyclic rotations of
“panamabananas$”

Sort the strings
lexicographically
($ comes first)

$ p a n a m a b a n a n a s
a b a n a n a s $ p a n a m
a m a b a n a n a s $ p a n
a n a m a b a n a n a s $ p
a n a n a s $ p a n a m a b
a n a s $ p a n a m a b a n
a s $ p a n a m a b a n a n
b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a

559

The	Burrows-Wheeler	Transform	

p a n a m a b a n a n a s $
$ p a n a m a b a n a n a s
s $ p a n a m a b a n a n a
a s $ p a n a m a b a n a n
n a s $ p a n a m a b a n a
a n a s $ p a n a m a b a n
n a n a s $ p a n a m a b a
a n a n a s $ p a n a m a b
b a n a n a s $ p a n a m a
a b a n a n a s $ p a n a m
m a b a n a n a s $ p a n a
a m a b a n a n a s $ p a n
n a m a b a n a n a s $ p a
a n a m a b a n a n a s $ p

Form all cyclic rotations of
“panamabananas$”

Burrows-Wheeler
Transform:

Last column =
smnpbnnaaaaa$a

$ p a n a m a b a n a n a s
a b a n a n a s $ p a n a m
a m a b a n a n a s $ p a n
a n a m a b a n a n a s $ p
a n a n a s $ p a n a m a b
a n a s $ p a n a m a b a n
a s $ p a n a m a b a n a n
b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a

560

BWT:	Converting	Repeats	to	Runs	

Genome

BWT(Genome)

Compression(BWT(Genome))

Run-length encoding

Convert repeats to runs Burrows-Wheeler Transform!

561

How	Can	We	Decompress?	

Genome

BWT(Genome)

Compression(BWT(Genome))

Run-length encoding

Burrows-Wheeler Transform

EASY

IS IT POSSIBLE?

562

Reconstructing		banana

•  We	now	know	2-mer	composition	of	the	
circular	string	banana$

•  Sorting	gives	us	the	first	2	columns	of	the	
matrix.	

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

a$
na
na
ba
$b
an
an

$b
a$
an  
an  
ba  
na  
na

Sort 2-mers

563

Reconstructing		banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

•  We	now	know	3-mer	composition	of	the	
circular	string	banana$

•  Sorting	gives	us	the	first	3	columns	of	the	
matrix.

a$b
na$
nan
ban
$ba
ana
ana

3-mers Sort

$ba
a$b
ana  
ana  
ban  
na$  
nan

564

Reconstructing		banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

•  We	now	know	4-mer	composition	of	the	
circular	string	banana$

•  Sorting	gives	us	the	first	4	columns	of	the	
matrix.

a$ba
na$b
nana
bana
$ban
ana$
anan

4-mers Sort

$ban
a$bb
anaa  
anaa  
bann  
na$b  
nana

565

Reconstructing		banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

•  We	now	know	5-mer	composition	of	the	
circular	string	banana$

•  Sorting	gives	us	the	first	5	columns	of	the	
matrix.

a$ban
na$ba
nana$
banan
$bana
ana$b
anana

5-mers Sort

$bana
a$bbn
anaab  
anaaa  
bannn  
na$ba  
nana$

566

Reconstructing		banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

a$bana
na$ban
nana$b
banana
$banan
ana$ba
anana$

6-mers Sort

$banan
a$bbna
anaaba  
anaaa$  
bannna  
na$ban  
nana$b

•  We	now	know	6-mer	composition	of	the	
circular	string	banana$

•  Sorting	gives	us	the	first	6	columns	of	the	
matrix.

567

Reconstructing		banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

a$bana
na$ban
nana$b
banana
$banan
ana$ba
anana$

6-mers Sort

$banan
a$bbna
anaaba  
anaaa$  
bannna  
na$ban  
nana$b

•  We	now	know	6-mer	composition	of	the	
circular	string	banana$

•  Sorting	gives	us	the	first	6	columns	of	the	
matrix.

568

Reconstructing		banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

•  We	now	know	the	entire	matrix!	

•  Taking	all	elements	in	the	first	row	(after	$)	
produces	banana.	

569

More	Memory	Issues	

•  Reconstructing	Genome	from	BWT(Genome)	
required	us	to	store	|Genome|	copies	of		
|Genome|.	

•  Can	we	invert	BWT	with	less	space?	

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

570

A	Strange	Observation	

p a

n

a

m

a

b
a

n

a

n

a

s

$$pa n a m a b a n a n a s
a b a n a n a s $ p a n a m
a m a b a n a n a s $ p a n
a n a m a b a n a n a s $ p
a n a n a s $ p a n a m a b
a n a s $ p a n a m a b a n
a s $ p a n a m a b a n a n
b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a

571

A	Strange	Observation	

p a

n

a

m

a

b
a

n

a

n

a

s

$$pa n a m a b a n a n a s
a b a n a n a s $ p a n a m
a m a b a n a n a s $ p a n
a n a m a b a n a n a s $ p
a n a n a s $ p a n a m a b
a n a s $ p a n a m a b a n
a s $ p a n a m a b a n a n
b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a

572

Is	It	True	in	General?	

$ p a n a m a b a n a n a s
1 a b a n a n a s $ p a n a m
2 a m a b a n a n a s $ p a n
3 a n a m a b a n a n a s $ p
4 a n a n a s $ p a n a m a b
5 a n a s $ p a n a m a b a n
6 a s $ p a n a m a b a n a n

b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a

b a n a n a s $ p a n a m
m a b a n a n a s $ p a n
n a m a b a n a n a s $ p
n a n a s $ p a n a m a b
n a s $ p a n a m a b a n
s $ p a n a m a b a n a n

These strings are sorted

Chop off a

573

Is	It	True	in	General?	

$ p a n a m a b a n a n a s
1 a b a n a n a s $ p a n a m
2 a m a b a n a n a s $ p a n
3 a n a m a b a n a n a s $ p
4 a n a n a s $ p a n a m a b
5 a n a s $ p a n a m a b a n
6 a s $ p a n a m a b a n a n

b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a

These strings are sorted

b a n a n a s $ p a n a m
m a b a n a n a s $ p a n
n a m a b a n a n a s $ p
n a n a s $ p a n a m a b
n a s $ p a n a m a b a n
s $ p a n a m a b a n a n

Still
sorted

Chop off a

574

Is	It	True	in	General?	

$ p a n a m a b a n a n a s
1 a b a n a n a s $ p a n a m
2 a m a b a n a n a s $ p a n
3 a n a m a b a n a n a s $ p
4 a n a n a s $ p a n a m a b
5 a n a s $ p a n a m a b a n
6 a s $ p a n a m a b a n a n

b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a

These strings are sorted

b a n a n a s $ p a n a m
m a b a n a n a s $ p a n
n a m a b a n a n a s $ p
n a n a s $ p a n a m a b
n a s $ p a n a m a b a n
s $ p a n a m a b a n a n

Chop off a

Still
sorted

b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
s $ p a n a m a b a n a n a

Add a
to end

Still
sorted

Ordering
doesn’t
change!

1
2
3
4
5

6

575

Is	It	True	in	General?	

•  First-Last	Property:	The	k-th	
occurrence	of	symbol	in	
FirstColumn	and	the	k-th	
occurrence	of	symbol	in	
LastColumn	correspond	to	
the	same	position	of	symbol	
in	Genome.		

$1panamabananas1
a1bananas$panam1
a2mabananas$pan1
a3namabananas$p1  
a4nanas$panamab1
a5nas$panamaban2
a6s$panamabanan3
b1ananas$panama1
m1abananas$pana2
n1amabananas$pa3
n2anas$panamaba4
n3as$panamabana5
p1anamabananas$1
s1$panamabanana6
 576

More	Efficient	BWT	Decompression	

p a

n

a

m

a

b
a

n

a

n

a

s

$$ 1 p a n a m a b a n a n a s 1
a 1 b a n a n a s $ p a n a m 1
a 2 m a b a n a n a s $ p a n 1
a 3 n a m a b a n a n a s $ p 1
a 4 n a n a s $ p a n a m a b 1

a 5 n a s $ p a n a m a b a n 2
a 6 s $ p a n a m a b a n a n 3
b 1 a n a n a s $ p a n a m a 1
m 1 a b a n a n a s $ p a n a 2
n 1 a m a b a n a n a s $ p a 3
n 2 a n a s $ p a n a m a b a 4

n 3 a s $ p a n a m a b a n a 5
p 1 a n a m a b a n a n a s $ 1
s 1 $ p a n a m a b a n a n a 6

577

More	Efficient	BWT	Decompression	

p a

n

a

m

a

b
a

n

n

a

s

$$ 1 p a n a m a b a n a n a s 1
a 1 b a n a n a s $ p a n a m 1
a 2 m a b a n a n a s $ p a n 1
a 3 n a m a b a n a n a s $ p 1
a 4 n a n a s $ p a n a m a b 1

a 5 n a s $ p a n a m a b a n 2
a 6 s $ p a n a m a b a n a n 3
b 1 a n a n a s $ p a n a m a 1
m 1 a b a n a n a s $ p a n a 2
n 1 a m a b a n a n a s $ p a 3
n 2 a n a s $ p a n a m a b a 4

n 3 a s $ p a n a m a b a n a 5
p 1 a n a m a b a n a n a s $ 1
s 1 $ p a n a m a b a n a n a 6

a

578

More	Efficient	BWT	Decompression	

p a

n

a

m

a

b
a

n

n

a

s

$$ 1 p a n a m a b a n a n a s 1
a 1 b a n a n a s $ p a n a m 1
a 2 m a b a n a n a s $ p a n 1
a 3 n a m a b a n a n a s $ p 1
a 4 n a n a s $ p a n a m a b 1

a 5 n a s $ p a n a m a b a n 2
a 6 s $ p a n a m a b a n a n 3
b 1 a n a n a s $ p a n a m a 1
m 1 a b a n a n a s $ p a n a 2
n 1 a m a b a n a n a s $ p a 3
n 2 a n a s $ p a n a m a b a 4

n 3 a s $ p a n a m a b a n a 5
p 1 a n a m a b a n a n a s $ 1
s 1 $ p a n a m a b a n a n a 6

a

•  Memory:	2|Genome|	=	O(|Genome|).	
579

Recalling	Our	Goal 		

•  Suffix	Tree	Pattern	Matching:	
– Runtime:	O(|Genome|	+	|Patterns|)	
– Memory:	O(|Genome|)	
– Problem:	suffix	tree	takes	20	x	|Genome|	space	

•  Can	we	use	BWT(Genome)	as	our	data	
structure	instead?	

580

Finding	Pattern	Matches	Using	BWT	

•  Searching	for	ana	in	panamabananas
$1 p a n a m a b a n a n a s 1
a 1 b a n a n a s $ p a n a m 1
a 2 m a b a n a n a s $ p a n 1
a 3 n a m a b a n a n a s $ p 1
a 4 n a n a s $ p a n a m a b 1

a 5 n a s $ p a n a m a b a n 2
a 6 s $ p a n a m a b a n a n 3
b 1 a n a n a s $ p a n a m a 1
m 1 a b a n a n a s $ p a n a 2
n 1 a m a b a n a n a s $ p a 3
n 2 a n a s $ p a n a m a b a 4

n 3 a s $ p a n a m a b a n a 5
p 1 a n a m a b a n a n a s $ 1
s 1 $ p a n a m a b a n a n a 6

581

Finding	Pattern	Matches	Using	BWT	

•  Searching	for	ana	in	panamabananas
$1 p a n a m a b a n a n a s 1
a 1 b a n a n a s $ p a n a m 1
a 2 m a b a n a n a s $ p a n 1
a 3 n a m a b a n a n a s $ p 1
a 4 n a n a s $ p a n a m a b 1

a 5 n a s $ p a n a m a b a n 2
a 6 s $ p a n a m a b a n a n 3
b 1 a n a n a s $ p a n a m a 1
m 1 a b a n a n a s $ p a n a 2
n 1 a m a b a n a n a s $ p a 3
n 2 a n a s $ p a n a m a b a 4

n 3 a s $ p a n a m a b a n a 5
p 1 a n a m a b a n a n a s $ 1
s 1 $ p a n a m a b a n a n a 6

582

Finding	Pattern	Matches	Using	BWT	

•  Searching	for	ana	in	panamabananas
$1 p a n a m a b a n a n a s 1
a 1 b a n a n a s $ p a n a m 1
a 2 m a b a n a n a s $ p a n 1
a 3 n a m a b a n a n a s $ p 1
a 4 n a n a s $ p a n a m a b 1

a 5 n a s $ p a n a m a b a n 2
a 6 s $ p a n a m a b a n a n 3
b 1 a n a n a s $ p a n a m a 1
m 1 a b a n a n a s $ p a n a 2
n 1 a m a b a n a n a s $ p a 3
n 2 a n a s $ p a n a m a b a 4

n 3 a s $ p a n a m a b a n a 5
p 1 a n a m a b a n a n a s $ 1
s 1 $ p a n a m a b a n a n a 6

583

Finding	Pattern	Matches	Using	BWT	

•  Searching	for	ana	in	panamabananas
$1 p a n a m a b a n a n a s 1
a 1 b a n a n a s $ p a n a m 1
a 2 m a b a n a n a s $ p a n 1
a 3 n a m a b a n a n a s $ p 1
a 4 n a n a s $ p a n a m a b 1

a 5 n a s $ p a n a m a b a n 2
a 6 s $ p a n a m a b a n a n 3
b 1 a n a n a s $ p a n a m a 1
m 1 a b a n a n a s $ p a n a 2
n 1 a m a b a n a n a s $ p a 3
n 2 a n a s $ p a n a m a b a 4

n 3 a s $ p a n a m a b a n a 5
p 1 a n a m a b a n a n a s $ 1
s 1 $ p a n a m a b a n a n a 6

584

Where	Are	the	Matches?	

•  Multiple	Pattern	Matching	Problem:	
–  Input:	A	collection	of	strings	Patterns	and	a	string	
Genome.	

– Output:	All	positions	in	Genome	where	one	of	
Patterns	appears	as	a	substring.	

•  Where	are	the	positions?		BWT	has	not	
revealed	them.	

585

Where	Are	the	Matches?	

•  Example:	We	know	that	
ana	occurs	3	times,	but	
where?	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

586

Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

587

Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

13

panamabananas$

588

Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

13
5

panamabananas$

589

Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

13
5
3

panamabananas$

590

Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

13
5
3
1

panamabananas$

591

Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

13
5
3
1
7

panamabananas$

592

Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

13
5
3
1
7
9

panamabananas$

593

Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

13
5
3
1
7
9

11

panamabananas$

594

Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

13
5
3
1
7
9

11
6

panamabananas$

595

Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

13
5
3
1
7
9

11
6
4
2
8

10panamabananas$

596

Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

13
5
3
1
7
9

11
6
4
2
8

10
0

panamabananas$

597

Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

13
5
3
1
7
9

11
6
4
2
8

10
0

12

panamabananas$

598

Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

13
5
3
1
7
9

11
6
4
2
8

10
0

12

panamabananas$

599

Using	the	Suffix	Array	to	Find	Matches	

•  Suffix	array:	holds	
starting	position	of	
each	suffix	beginning	
a	row.	

•  Thus,	ana	occurs	at	
positions	1,	7,	9	of	
panamabananas$.	

$ 1panamabananas 1
a 1bananas$panam 1
a 2mabananas$pan 1
a 3namabananas$p 1
a 4nanas$panamab 1
a 5nas$panamaban 2
a 6s$panamabanan 3
b 1ananas$panama 1
m 1abananas$pana 2
n 1amabananas$pa 3
n 2anas$panamaba 4
n 3as$panamabana 5
p 1anamabananas$ 1
s 1$panamabanana 6

13
5
3
1
7
9

11
6
4
2
8

10
0

12

600

The	Suffix	Array:	Memory	Once	Again	

•  Memory:	~	4	x	|Genome|.	

Root a

na

nas$

s$
s$

nas$

5
3

1 7 9

6

11

2 8 10

4 0

12

[13 5 3 1 7 9 11 6 4 2 8 10 0 12]
601

The	Suffix	Array:	Memory	Once	Again	

•  Memory:	~	4	x	|Genome|.	

Root a

na

nas$

s$
s$

nas$

5
3

1 7 9

6

11

2 8 10

4 0

12

[13 5 3 1 7 9 11 6 4 2 8 10 0 12]
602

The	Suffix	Array:	Memory	Once	Again	

•  Memory:	~	4	x	|Genome|.	

Root a

na

nas$

s$
s$

nas$

5
3

1 7 9

6

11

2 8 10

4 0

12

[13 5 3 1 7 9 11 6 4 2 8 10 0 12]
603

Reducing	Suffix	Array	Size	
•  We	don’t	want	to	have	to	store	all	of	the	suffix	
array;	can	we	store	only	part	of	it?		Show	how	
checkpointing	can	be	used	to	store	1/100	the	
suffix	array.	

A	Return	to	Constants	

•  Explain	that	using	a	checkpointed	array	
increases	runtime	by	a	constant	factor,	but	in	
practice	it	is	a	worthwhile	trade-off.	

604

$1 s1
a1 m1
a2 n1
a3 p1
a4 b1
a5 n2
a6 n3
b1 a1
m1 a2
n1 a3
n2 a4
n3 a5
p1 $1
s1 a6

ana

$1 s1
a1 m1
a2 n1
a3 p1
a4 b1
a5 n2
a6 n3
b1 a1
m1 a2
n1 a3
n2 a4
n3 a5
p1 $1
s1 a6

ana

$1 s1
a1 m1
a2 n1
a3 p1
a4 b1
a5 n2
a6 n3
b1 a1
m1 a2
n1a a3
n2a a4
n3a a5
p1 $1
s1 a6

ana

$1 s1
a1 m1
a2 n1
a3na p1
a4na b1
a5na n2
a6 n3
b1 a1
m1 a2
n1 a3
n2 a4
n3 a5
p1 $1
s1 a6

ana
0

1

9

3

13

6
5

11

605

Returning	to	Our	Original	Problem	

•  We	need	to	look	at	INEXACT	matching	in	order	
to	find	variants.	

•  Approx.	Pattern	Matching	Problem:	
–  Input:	A	string	Pattern,	a	string	Genome,	and	an	
integer	d.	

– Output:	All	positions	in	Genome	where	Pattern	
appears	as	a	substring	with	at	most	d	mismatches.	

606

Returning	to	Our	Original	Problem	

•  We	need	to	look	at	INEXACT	matching	in	order	
to	find	variants.	

•  Multiple	Approx.	Pattern	Matching	Problem:	
–  Input:	A	collection	of	strings	Patterns,	a	string	
Genome,	and	an	integer	d.	

– Output:	All	positions	in	Genome	where	a	string	
from	Patterns	appears	as	a	substring	with	at	most	
d	mismatches.	

607

Method	1:	Seeding	

•  Say	that	Pattern	appears	in	Genome	with	1	
mismatch:	

…ggcacactaggctcc…

Pattern

Genome

 acttggct

608

Method	1:	Seeding	

•  Say	that	Pattern	appears	in	Genome	with	1	
mismatch:	

•  One	of	the	substrings	must	match!	

…ggcacactaggctcc…

Pattern

Genome

 acttggct

609

Method	1:	Seeding	

•  Theorem:	If	Pattern	occurs	in	Genome	with	d	
mismatches,	then	we	can	divide	Pattern	into	
d	+	1	“equal”	pieces	and	find	at	least	one	
exact	match.	

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

610

Method	1:	Seeding	

•  Say	we	are	looking	for	at	most	d	mismatches.	

•  Divide	each	of	our	strings	into	d	+	1	smaller	
pieces,	called	seeds.	

•  Check	if	each	Pattern	has	a	seed	that	matches	
Genome	exactly.	

•  If	so,	check	the	entire	Pattern	against	Genome.	611

Method	2:	BWT	Saves	the	Day	Again	

•  Recall:	searching	for	ana	in	panamabananas
$1 p a n a m a b a n a n a s 1
a 1 b a n a n a s $ p a n a m 1
a 2 m a b a n a n a s $ p a n 1
a 3 n a m a b a n a n a s $ p 1
a 4 n a n a s $ p a n a m a b 1

a 5 n a s $ p a n a m a b a n 2
a 6 s $ p a n a m a b a n a n 3
b 1 a n a n a s $ p a n a m a 1
m 1 a b a n a n a s $ p a n a 2
n 1 a m a b a n a n a s $ p a 3
n 2 a n a s $ p a n a m a b a 4

n 3 a s $ p a n a m a b a n a 5
p 1 a n a m a b a n a n a s $ 1
s 1 $ p a n a m a b a n a n a 6

Now we extend
all strings with at
most 1 mismatch.

Mismatches

1
0
1
1
0
0

612

Method	2:	BWT	Saves	the	Day	Again	

•  Recall:	searching	for	ana	in	panamabananas
$1 p a n a m a b a n a n a s 1
a 1 b a n a n a s $ p a n a m 1
a 2 m a b a n a n a s $ p a n 1
a 3 n a m a b a n a n a s $ p 1
a 4 n a n a s $ p a n a m a b 1

a 5 n a s $ p a n a m a b a n 2
a 6 s $ p a n a m a b a n a n 3
b 1 a n a n a s $ p a n a m a 1
m 1 a b a n a n a s $ p a n a 2
n 1 a m a b a n a n a s $ p a 3
n 2 a n a s $ p a n a m a b a 4

n 3 a s $ p a n a m a b a n a 5
p 1 a n a m a b a n a n a s $ 1
s 1 $ p a n a m a b a n a n a 6

One string
produces a
second mismatch
(the $), so we
discard it.

Mismatches

1
1
0
0
0
2

613

Method	2:	BWT	Saves	the	Day	Again	

•  Recall:	searching	for	ana	in	panamabananas
$1 p a n a m a b a n a n a s 1
a 1 b a n a n a s $ p a n a m 1
a 2 m a b a n a n a s $ p a n 1
a 3 n a m a b a n a n a s $ p 1
a 4 n a n a s $ p a n a m a b 1

a 5 n a s $ p a n a m a b a n 2
a 6 s $ p a n a m a b a n a n 3
b 1 a n a n a s $ p a n a m a 1
m 1 a b a n a n a s $ p a n a 2
n 1 a m a b a n a n a s $ p a 3
n 2 a n a s $ p a n a m a b a 4

n 3 a s $ p a n a m a b a n a 5
p 1 a n a m a b a n a n a s $ 1
s 1 $ p a n a m a b a n a n a 6

In the end, we
have five 3-mers
with at most 1
mismatch.

Mismatches

1
1
0
0
0

614

Method	2:	BWT	Saves	the	Day	Again	

•  Recall:	searching	for	ana	in	panamabananas
$1 p a n a m a b a n a n a s 1
a 1 b a n a n a s $ p a n a m 1
a 2 m a b a n a n a s $ p a n 1
a 3 n a m a b a n a n a s $ p 1
a 4 n a n a s $ p a n a m a b 1

a 5 n a s $ p a n a m a b a n 2
a 6 s $ p a n a m a b a n a n 3
b 1 a n a n a s $ p a n a m a 1
m 1 a b a n a n a s $ p a n a 2
n 1 a m a b a n a n a s $ p a 3
n 2 a n a s $ p a n a m a b a 4

n 3 a s $ p a n a m a b a n a 5
p 1 a n a m a b a n a n a s $ 1
s 1 $ p a n a m a b a n a n a 6

Suffix Array

5
3
1
7
9

In the end, we
have five 3-mers
with at most 1
mismatch.

615

Method	2:	BWT	Saves	the	Day	Again	

•  Recall:	searching	for	ana	in	panamabananas
$1 p a n a m a b a n a n a s 1
a 1 b a n a n a s $ p a n a m 1
a 2 m a b a n a n a s $ p a n 1
a 3 n a m a b a n a n a s $ p 1
a 4 n a n a s $ p a n a m a b 1

a 5 n a s $ p a n a m a b a n 2
a 6 s $ p a n a m a b a n a n 3
b 1 a n a n a s $ p a n a m a 1
m 1 a b a n a n a s $ p a n a 2
n 1 a m a b a n a n a s $ p a 3
n 2 a n a s $ p a n a m a b a 4

n 3 a s $ p a n a m a b a n a 5
p 1 a n a m a b a n a n a s $ 1
s 1 $ p a n a m a b a n a n a 6

Suffix Array

5
3
1
7
9

In the end, we
have five 3-mers
with at most 1
mismatch.

616

http://www.allisons.org/ll/AlgDS/Strings/BWT/	

The gene information starts with the promoter,
which is followed by a transcribed (i.e. RNA) but
non-coding (i.e. not translated) region called 5’
untranslated region (5’ UTR). The initial exon
contains the start codon which is usually ATG.
There is an alternating series of introns and
exons, followed by the terminating exon, which
contains the stop codon. It is followed by
another non-coding region called the 3’ UTR; at
the end there is a polyadenylation (polyA)
signal, i.e. a repetition of the amino acid
adenine. The intron/exon and exon/intron
boundaries are conserved short
sequences and called the acceptor and donor
sites. For all these different parts we need to
know their probability of occurrence in a large
database.

How to identify Genes and gene parts?
Hidden Markov models

619

Splice	Sites	

FAIR LOADED

0.05

0.05

0.95 0.95

P(1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

P(1|L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(6|L) = 1/2

The dishonest casino model

Definition:	A	hidden	Markov	model	(HMM)	
•  Alphabet	 	Σ	=	{	b1,	b2,	…,	bM	}	
•  Set	of	states	 	Q	=	{	1,	...,	K	}	
•  Transition	probabilities	between	any	two	states	

	 		
	 	aij	=	transition	prob	from	state	i	to	state	j	

	
	 	ai1	+	…	+	aiK	=	1,			for	all	states	i	=	1…K	

	
•  Start	probabilities	a0i	

	
	 	a01	+	…	+	a0K	=	1	

	
•  Emission	probabilities	within	each	state	
	

	 	ei(b)	=	P(xi	=	b	|	πi	=	k)	
	

	 	ei(b1)	+	…	+	ei(bM)	=	1,			for	all	states	i	=	1…K	

K

1

…

2

HMM

	
	
At	each	time	step	t,		
the	only	thing	that	affects	future	states		
is	the	current	state	πt	
	
P(πt+1	= 	k	|	“whatever	happened	so	far”)	 	=	
P(πt+1	= 	k	|	π1,	π2,	…,	πt,	x1,	x2,	…,	xt) 	=	
P(πt+1	= 	k	|	πt)	
	

K

1

…

2

A Hidden Markov Model is memory-less

Given	a	sequence	x	=	x1……xN,	
A	parse	of	x	is	a	sequence	of	states	π	=	π1,	……,	πN	
	

1

2

K

…

1

2

K

…

1

2

K

…

…

…

…

1

2

K

…

x1 x2 x3 xK

2

1

K

2

A parse of a sequence

Likelihood	of	a	parse	

Given	a	sequence	x	=	x1……xN	
and	a	parse	π	=	π1,	……,	πN,	
	
To	find	how	likely	is	the	parse:	
		(given	our	HMM)	
	
P(x,	π)	=	P(x1,	…,	xN,	π1,	……,	πN)	=	
											P(xN,	πN	|	πN-1)	P(xN-1,	πN-1	|	πN-2)……P(x2,	π2	|	π1)	
P(x1,	π1)	=	
	 			P(xN	|	πN)	P(πN	|	πN-1)	……P(x2	|	π2)	P(π2	|	π1)	P(x1	|	
π1)	P(π1)	=	
					a0π1	aπ1π2……aπN-1πN	eπ1(x1)……eπN(xN)		

1

2

K

…

1

2

K

…

1

2

K

…

…

…

…

1

2

K

…

x1 x2 x3 xK

2

1

K

2

Example:	the	dishonest	casino	
Let	the	sequence	of	rolls	be:	
	
x	=	1,	2,	1,	5,	6,	2,	1,	6,	2,	4	
	
Then,	what	is	the	likelihood	of	
	
π  =	Fair,	Fair,	Fair,	Fair,	Fair,	Fair,	Fair,	Fair,	Fair,	Fair?	

(say	initial	probs	a0Fair	=	½,	aoLoaded	=	½)	
	
½	×	P(1	|	Fair)	P(Fair	|	Fair)	P(2	|	Fair)	P(Fair	|	Fair)	…	P(4	|	Fair)	=	
	
½	×	(1/6)10	×	(0.95)9	=	.00000000521158647211	=	0.5	×	10-9	

Example:	the	dishonest	casino	
So,	the	likelihood	the	die	is	fair	in	all	this	run	
is	just	0.521	×	10-9	
	
OK,	but	what	is	the	likelihood	of	
=	Loaded,	Loaded,	Loaded,	Loaded,	Loaded,	Loaded,	Loaded,	
Loaded,	Loaded,	Loaded?	

½	×	P(1	|	Loaded)	P(Loaded,	Loaded)	…	P(4	|	Loaded)	=	
½	×	(1/10)8	×	(1/2)2	(0.95)9	=	.00000000078781176215	=	7.9	
×	10-10	

Therefore,	it	is	after	all	6.59	times	more	likely	that	the	die	is	
fair	all	the	way,	than	that	it	is	loaded	all	the	way.	

Example:	the	dishonest	casino	
Let	the	sequence	of	rolls	be:	
	
x	=	1,	6,	6,	5,	6,	2,	6,	6,	3,	6	
	
Now,	what	is	the	likelihood	π	=	F,	F,	…,	F?	

½	×	(1/6)10	×	(0.95)9	=	0.5	×	10-9,	same	as	before	
	
What	is	the	likelihood	
	
π  =	L,	L,	…,	L?	
	
½	×	(1/10)4	×	(1/2)6	(0.95)9	=	.00000049238235134735	=	0.5	×	10-7	
	
So,	it	is	100	times	more	likely	the	die	is	loaded	

The	three	main	questions	on	HMMs	
1.  Evaluation	

GIVEN	 	a	HMM	M,	 	and	a	sequence	x,	
FIND	 	Prob[x	|	M]	

2. Decoding	
GIVEN 	a	HMM	M,	 	and	a	sequence	x,	
FIND 	the	sequence	π	of	states	that	maximizes	P[x,	π	|	

M]	
	

3.  Learning	
GIVEN 	a	HMM	M,	with	unspecified	transition/emission	

probs., 	and	a	sequence	x,	
FIND 	parameters	θ	=	(ei(.),	aij)	that	maximize	P[x	|	θ]	

Let’s	not	be	confused	by	notation	
	
P[x	|	M]:	 	The	probability	that	sequence	x	was	generated	by	

	 	the	model	
	
	 	 	The	model	is:	architecture	(#states,	etc)	
	 	 	 											+	parameters	θ	=	aij,	ei(.)	
	 	 		

So,	P[x	|	θ],	and	P[x]	are	the	same,	when	the	architecture,	
and	the	entire	model,	respectively,	are	implied	

	
Similarly,	P[x,	π	|	M]	and	P[x,	π]	are	the	same	
	
In	the	LEARNING	problem	we	always	write	P[x	|	θ]	to	

emphasize	that	we	are	seeking	the	θ	that	maximizes	P[x	|	
θ]	

Decoding	
GIVEN	x	=	x1x2……xN	
	
We	want	to	find	π	=	π1,	……,	πN,	
such	that	P[x,	π]	is	maximized	
	
π*	=	argmaxπ	P[x,	π]	
	
We	can	use	dynamic	programming!	
	
Let	Vk(i)	=	max{π1,…,i-1}	P[x1…xi-1,	π1,	…,	πi-1,	xi,	πi	=	k]	
	 	 	=	Probability	of	most	likely	sequence	of	
states	ending	at					 				state	πi	=	k	

1

2

K
…

1

2

K
…

1

2

K
…

…

…

…

1

2

K
…

x1 x2 x3 xK

2

1

K

2

Decoding	–	main	idea	
Given	that	for	all	states	k,		and	for	a	fixed	position	i,	
		Vk(i)	=	max{π1,…,i-1}	P[x1…xi-1,	π1,	…,	πi-1,	xi,	πi	=	k]	

What	is	Vk(i+1)?	
From	definition,		
Vl(i+1)	=	max{π1,…,i}P[x1…xi,	π1,	…,	πi,	xi+1,	πi+1	=	l]	
=	max{π1,…,i}P(xi+1,	πi+1	=	l	|	x1…xi,π1,…,	πi)	P[x1…xi,	π1,…,	πi]			
=	max{π1,…,i}P(xi+1,	πi+1	=	l	|	πi)	P[x1…xi-1,	π1,	…,	πi-1,	xi,	πi]	
=	maxk	P(xi+1,	πi+1	=	l	|	πi	=	k)	max{π1,…,i-1}P[x1…xi-1,π1,…,πi-1,	
xi,πi=k]		=	el(xi+1)	maxk	akl	Vk(i)	

The	Viterbi	Algorithm	
Input:	x	=	x1……xN	
Initialization:	
	V0(0)	=	1 	 	 	(0	is	the	imaginary	first	position)	
	Vk(0)	=	0,	for	all	k	>	0	

	
Iteration:	
	Vj(i)		 	=	ej(xi)	×	maxk	akj	Vk(i-1)	

	
	Ptrj(i)	 	=	argmaxk	akj	Vk(i-1)	

	
Termination:	
	P(x,	π*)	=	maxk	Vk(N)	

	
Traceback:	
		πN*	=	argmaxk	Vk(N)	
		πi-1*		=	Ptrπi	(i)	

Andrew
Viterbi

The	Viterbi	Algorithm	

left:	Similar	to	“aligning”	a	set	of	states	to	a	sequence,	
Time:	O(K2N);		Space:	O(KN);	right	:	comparison	of	valid	
directions	in	the	alignment	and	decoding	problem.	

Viterbi	Algorithm	–	a	practical	detail	
Underflows	are	a	significant	problem	
	
P[x1,….,	xi,	π1,	…,	πi]	=		a0π1	aπ1π2……aπi	eπ1(x1)……eπi(xi)	
	
These	numbers	become	extremely	small	–	underflow		
	
	
Solution:	Take	the	logs	of	all	values	
	

Vl(i)	=	log	ek(xi)	+	maxk	[Vk(i-1)	+	log	akl]	
	
	

Example	
Let	x	be	a	sequence	with	a	portion	of	~	1/6	6’s,	followed	by	a	portion	of	

~	½	6’s…	
	
x	=	123456123456…12345	6626364656…1626364656	
	
Then,	it	is	not	hard	to	show	that	optimal	parse	is	(exercise):	
	
			FFF…………………...F	LLL………………………...L	

	
6	nucleotides	“123456”	parsed	as	F,	contribute	.956×(1/6)6														=	

1.6×10-5	
	 		 										parsed	as	L,	contribute	.956×(1/2)1×(1/10)5	=	0.4×10-5		
	 									“162636”	parsed	as	F,	contribute	.956×(1/6)6														=	
1.6×10-5	
	 	 										parsed	as	L,	contribute	.956×(1/2)3×(1/10)3	=		
9.0×10-5	

Generating	a	sequence	by	the	model	
Given	a	HMM,	we	can	generate	a	sequence	of	length	n	

as	follows:	
Start	at	state	π1	according	to	prob	a0π1		
1.  Emit	letter	x1	according	to	prob	eπ1(x1)	
2. Go	to	state	π2	according	to	prob	aπ1π2	
3. …	until	emitting	xn		

1

2

K
…

1

2

K
…

1

2

K
…

…

…

…

1

2

K
…

x1 x2 x3 xn

2

1

K

2
0

e2(x1)

a02

A	couple	of	questions	
Given	a	sequence	x,	
	
•  What	is	the	probability	that	x	was	generated	by	the	
model?	

•  Given	a	position	i,	what	is	the	most	likely	state	that	
emitted	xi?	

Example:	the	dishonest	casino 		
		
	Say	x	=	12341623162616364616234161221341	
		
	Most	likely	path:	π	=	FF……F	
	However:	marked	letters	more	likely	to	be	L	than	unmarked	
letters	

Evaluation	
We	will	develop	algorithms	that	allow	us	to	compute:	
	
	P(x)	 	Probability	of	x	given	the	model	
		
	P(xi…xj) 	Probability	of	a	substring	of	x	given	the	model	

	
	P(πI	=	k	|	x) 	Probability	that	the	ith	state	is	k,	given	x	
	 	 	 		
	 	A	more	refined	measure	of	which	states	x	may	be	in	

The	Forward	Algorithm	
We	want	to	calculate	
	
P(x)	=	probability	of	x,	given	the	HMM	
	
Sum	over	all	possible	ways	of	generating	x:	
	

	 	 	P(x)	=	 Σπ	P(x,	π)		=	 Σπ	P(x	|	π)	P(π)		
	
To	avoid	summing	over	an	exponential	number	of	paths	π,	
define		

	
	 	fk(i)	=	P(x1…xi,	πi	=	k)	 	(the	forward	probability)	

The	Forward	Algorithm	–	derivation	
Define	the	forward	probability:	
	
fl(i)	=	P(x1…xi,	πi	=	l)		
	

			=	Σπ1…πi-1	P(x1…xi-1,	π1,…,	πi-1,	πi	=	l)	el(xi)	
	

			=	Σk	Σπ1…πi-2	P(x1…xi-1,	π1,…,	πi-2,	πi-1	=	k)	akl	el(xi)	
	

			=	el(xi)	Σk	fk(i-1)	akl	
	

The	Forward	Algorithm	
We	can	compute	fk(i)	for	all	k,	i,	using	dynamic	programming!	
Initialization: 		
	f0(0)	=	1	
	fk(0)	=	0,	for	all	k	>	0	

Iteration:	
	fl(i)	=	el(xi)	Σk	fk(i-1)	akl	

Termination:	
	P(x)	=	Σk	fk(N)	ak0	

	
	Where,	ak0	is	the	probability	that	the	terminating	state	is	k	
(usually	=	a0k)	

Relation	between	Forward	and	Viterbi	

	 	VITERBI	
Initialization:	
	V0(0)	=	1	
	Vk(0)	=	0,	for	all	k	>	0	

	
Iteration:	
	

	Vj(i)	=	ej(xi)		maxk	Vk(i-1)	akj		
	
Termination:	
	

	P(x,	π*)	=		maxk	Vk(N)	

	 	FORWARD	
Initialization: 		
	f0(0)	=	1	
	fk(0)	=	0,	for	all	k	>	0	

	
Iteration:	
	

	fl(i)	=	el(xi)	Σk	fk(i-1)	akl	
	
Termination:	

	P(x)	=	Σk	fk(N)	ak0	

Motivation	for	the	Backward	Algorithm	

We	want	to	compute	
	P(πi	=	k	|	x),	

the	probability	distribution	on	the	ith	position,	given	x	
	
We	start	by	computing	
P(πi	=	k,	x)	=	P(x1…xi,	πi	=	k,	xi+1…xN)	
	 						=	P(x1…xi,	πi	=	k)	P(xi+1…xN	|	x1…xi,	πi	=	k)		
	 						=	P(x1…xi,	πi	=	k)	P(xi+1…xN	|	πi	=	k)		

Forward, fk(i) Backward, bk(i)

The	Backward	Algorithm	–	derivation	
Define	the	backward	probability:	
	
	bk(i)	=	P(xi+1…xN	|	πi	=	k)		

								=	Σπi+1…πN	P(xi+1,xi+2,	…,	xN,	πi+1,	…,	πN	|	πi	=	k)	

								=	Σl	Σπi+1…πN	P(xi+1,xi+2,	…,	xN,	πi+1	=	l,	πi+2,	…,	πN	|	πi	=	
k)	

								=	Σl	el(xi+1)	akl	Σπi+1…πN	P(xi+2,	…,	xN,	πi+2,	…,	πN	|	πi+1	=	l)	

								=	Σl	el(xi+1)	akl	bl(i+1)	
	

The	Backward	Algorithm	
We	can	compute	bk(i)	for	all	k,	i,	using	dynamic	
programming	

Initialization: 		
	bk(N)	=	ak0,	for	all	k	

	
Iteration:	

	bk(i)	=	Σl	el(xi+1)	akl	bl(i+1)	
	
Termination:	

	P(x)	=	Σl	a0l	el(x1)	bl(1)	

Computational	Complexity	
	
What	is	the	running	time,	and	space	required,	for	
Forward,	and	Backward?	

	
	 	 	 	Time:			O(K2N)	
	 	 	 	Space:	O(KN)	

Useful	implementation	technique	to	avoid	underflows	
	
	Viterbi: 										sum	of	logs	
	Forward/Backward:	rescaling	at	each	position	by	
multiplying	by	a	constant	

647

Genscan	

648

A	eukaryotic	gene	

•  This	is	the	human	p53	tumor	suppressor	gene	
on	chromosome	17.	

•  Genscan	is	one	of	the	most	popular	gene	
prediction	algorithms.	

A	eukaryotic	gene	

3’ untranslated
region

Final exon

Initial exon

Introns

Internal exons

This particular gene lies on the reverse strand.

An	Intron	

3’ splice site 5’ splice site

revcomp(CT)=AG
revcomp(AC)=GT GT: signals start of intron

AG: signals end of intron

Modeling	the	5’	splice	site	

•  Most	introns	begin	with	the	letters	“GT.”	
•  We	can	add	this	signal	to	the	model.	

5’ splice
site

3’ splice
site Intron GT

Modeling	the	5’	splice	site	

•  Most	introns	begin	with	the	letters	“GT.”	
•  We	can	add	this	signal	to	the	model.	
•  Indeed,	we	can	model	each	nucleotide	with	its	
own	arrow.	

5’ splice
site

3’ splice
site Intron G T

Pr(A)=0
Pr(C)=0
Pr(G)=0
Pr(T)=1

Pr(A)=0
Pr(C)=0
Pr(G)=1
Pr(T)=0

Modeling	the	5’	splice	site	

•  Like	most	biological	phenomenon,	the	splice	
site	signal	admits	exceptions.	

•  The	resulting	model	of	the	5’	splice	site	is	a	
length-2	PSSM.	

5’ splice
site

3’ splice
site Intron G T

Pr(A)=0.01
Pr(C)=0.01
Pr(G)=0.01
Pr(T)=0.97

Pr(A)=0.01
Pr(C)=0.01
Pr(G)=0.97
Pr(T)=0.01

Real	splice	sites	

•  Real	splice	sites	show	some	conservation	at	positions	
beyond	the	first	two.	

•  We	can	add	additional	arrows	to	model	these	states.	

weblogo.berkeley.edu

Modeling	the	5’	splice	site	

5’ splice
site

3’ splice
site Intron

657

GenScan
•  N	-	intergenic	region	
•  P	-	promoter	
•  F	-	5’	untranslated	region	
•  Esngl	–	single	exon	(intronless)	(translation	

start	->	stop	codon)	
•  Einit	–	initial	exon	(translation	start	->	

donor	splice	site)	
•  Ek	–	phase	k	internal	exon	(acceptor	

splice	site	->	donor	splice	site)	
•  Eterm	–	terminal	exon	(acceptor	splice	site	

->	stop	codon)	
•  Ik	–	phase	k	intron:	0	–	between	codons;	

1	–	after	the	first	base	of	a	codon;	2	–	
after	the	second	base	of	a	codon	

658

E0 E1 E2

E

poly-A

3'UTR5'UTR

termEini

Esingle

I0 I 1 I 2

intergenic
region

Forward (+) strand
Reverse (-) strand

Forward (+) strand
Reverse (-) strand

promoter

…

…

ttaaggagcagtgactagcgactagcatcgatgctac

gtacgatgc
………..

acgtactagctagctagcgcatgacgtagctagcacg
catcgaga

GENSCAN (Burge & Karlin)

6201
6261
6321
6381
6441
6501
6561
6621
6681
6741
6801
6861
6921
6981
7041
7101
7601
7661
7721
7781
7841
7901
7961
8021
8081
8141
8201
8261
8321
8381
8441
8901
8961
9021
9081
9141
9201
9261

659

Genscan	model	
•  Duration	of	states	–	length	distributions	of		

–  Exons	(coding)	
–  Introns	(non	coding)	

•  Signals	at	state	transitions	
–  ATG	
–  Stop	Codon	TAG/TGA/TAA	
–  Exon/Intron	and	Intron/Exon	Splice	Sites	

•  Emissions	
–  Coding	potential	and	frame	at	exons	
–  Intron	emissions	

GenScan features
•  Model both strands at once
•  Each state may output a string of symbols (according to some probability

distribution).
•  Explicit intron/exon length modeling
•  Advanced splice site modeling
•  Complete intron/exon annotation for sequence
•  Able to predict multiple genes and partial/whole genes
•  Parameters learned from annotated genes
•  Separate parameter training for different CpG content groups (< 43%, 43-51%,

51-57%,>57% CG content)

Performance	
•  >	80%	correct	exon	predictions,	and	>	90%	correct	coding/non	coding	predictions	by	bp.	
•  BUT	-		the	ability	to	predict	the	whole	gene	correctly	is	much	lower	

661

Membrane	proteins	that	are	important	for	cell	
import/export.	We	would	like	to	predict	the	
position	in	the	amino	acids	with	respect	to	the	
membrane.	The	prediction	of	gene	parts	and	of	
the	membrane	protein	topology	(i.e.	which	
parts	are	outside,	inside	and	buried	in	the	
membrane)	will	require	to	train	the	model	with	
a	dataset	of	experimentally	determined	
genes	/	transmembrane	helices	and	to	validate	
the	model	with	another	dataset.	The	figure	
below	describes	a	7	helix	membrane	protein	
forming	a	sort	of	a	cylinder	(porus)	across	the	
cell	membrane	

662

Hidden Markov models
How to identify protein structural parts?

Membrane proteins

Cystic	fibrosis	

664

The gene affected by CF controls the movement of salt and
water in and out of cells. People with cystic fibrosis experience
a build-up of thick sticky mucus in the lungs, digestive system
and other organs, causing a wide range of challenging
symptoms affecting the entire body.

TMHMM: Prediction of transmembrane topology of protein sequence
Model consists of submodels for:

•  helix core and cap regions (cytoplasmic and extracellular)
•  cytoplasmic and extracellular loop regions
•  globular domain regions

Trained form 160 proteins with experimentally determined transmembrane
helices.

665	

Prediction method:
Posterior decoding, the
program computes for each
residue of the sequence the
probability of being part if a
transmembrane helix, an
intracellular loop or globular
domain region, or an
extracellular loop or domain
region.

Assessing	performance:	Sensitivity	and	Specificity	
•  Testing	of	predictions	is	performed	on	sequences	where	
the	gene	structure	is	known	

•  Sensitivity	is	the	fraction	of	known	genes	(or	bases	or	
exons)	correctly	predicted:	Sn=NTrue	Positives	/NAll	True	
–  “Am	I	finding	the	things	that	I’m	supposed	to	find?	

•  Specificity	is	the	fraction	of	predicted	genes	(or	bases	or	exons)	
that	correspond	to	true	genes:	Sp=NTrue	Positives	/NAll	Positives	
–  “What	fraction	of	my	predictions	are	true?	

•  In	general,	increasing	one	decreases	the	other	

666	

667

Validation	

Assessing	performance:	Sensitivity	and	Specificity	
•  Testing	of	predictions	is	performed	on	sequences	where	
the	gene	structure	is	known	

•  Sensitivity	is	the	fraction	of	known	genes	(or	bases	or	
exons)	correctly	predicted:	Sn=NTrue	Positives	/NAll	True	
–  “Am	I	finding	the	things	that	I’m	supposed	to	find?	

•  Specificity	is	the	fraction	of	predicted	genes	(or	bases	or	exons)	
that	correspond	to	true	genes:	Sp=NTrue	Positives	/NAll	Positives	
–  “What	fraction	of	my	predictions	are	true?	

•  In	general,	increasing	one	decreases	the	other	

668

()() ()()[]
()()()()

FNTNPNFPTPPP
FNTPAPFPTNAN

PNAPPPAN
FNFPTNTPCC

+=+=

+=+=

−
=

;
;;

Graphic	View	of	Specificity	and	Sensitivity	

669

()() ()()[]
()()()()

FNTNPNFPTPPP
FNTPAPFPTNAN

PNAPPPAN
FNFPTNTPCC

+=+=

+=+=

−
=

;
;;

Correlation Coefficient

Specificity/Sensitivity	Tradeoffs	

•  Ideal	Distribution	of	
Scores	

•  More	Realistically…	

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35 40 45 50
score (arb units)

co
un

t

random sequence true sites

0

200

400

600

800

1000

1200

0 10 20 30 40 50

score (arb units)

co
un

t
random sequence true sites

670

671

Model	architecture	of	TMHMM	

TMHMM: uses cyclic model with 7 states for
- TM helix core
- TM helix caps on the N- and C-terminal side
- non-membrane region on the cytoplasmic side
- 2 non-membrane regions on the non-cytoplasmic side (for short and long loops
to account for different membrane insertion mechanism)
- a globular domain state in the middle of each non-membrane region
 672

>gi|218694017|ref|YP_002401684.1| membrane protein; channel [Escherichia
coli 55989]
MQDLISQVEDLAGIEIDHTTSMVMIFGIIFLTAVVVHIILHWVVLRTFEKRAIASS
RLWLQIITQNKLFH
RLAFTLQGIIVNIQAVFWLQKGTEAADILTTCAQLWIMMYALLSVFSLLDVILNL
AQKFPAASQLPLKGI
FQGIKLIGAILVGILMISLLIGQSPAILISGLGAMAAVLMLVFKDPILGLVAGIQLS
ANDMLKLGDWLEM
PKYGADGAVIDIGLTTVKVRNWDNTITTIPTWSLVSDSFKNWSGMSASGGRR
IKRSISIDVTSIRFLDED
EMQRLNKAHLLKPYLTSRHQEINEWNRQQGSTESILNLRRMTNIGTFRAYLN
EYLRNHPRIRKDMTLMVR
QLAPGDNGLPLEIYAFTNTVVWLEYESIQADIFDHIFAIVEEFGLRLHQSPTGN
DIRSLAGAFKQ

Example for TMHMM
www.cbs.dtu.dk/services/TMHMM/

TMHMM-Output	

674

http://www.cbs.dtu.dk/services/TMHMM-2.0/

Adleman's	first	DNA	computation	solved	a	traveling	salesman	problem	of	seven	cities.			He	
used	DNA	techniques	to	assemble	itineraries	at	random;	Select	itineraries	from	initial	city	to	
final	city.	The	correct	number	of	cities	must	be	visited.	No	city	can	be	left	out.	

Each	city	is	represented	by	a	unique	sequence	of	bases.		Connections	between	two	cities	are	
created	from	a	combination	of	the	complement	of	the	first	half	of	the	sequence	of	one	city,	
and	the	complement	of	the	second	half	of	the	sequence	of	a	connected	city.	In	this	way	
DNA	representing	the	trip	will	be	created	with	one	strand	representing	a	sequence	of	cities	
and	the	complementing	strand	representing	a	series	of	connections.		
	
The	next	step	is	filtering	out	trips	that	start	and	end	in	the	correct	cities,	then	filtering	trips	
with	the	correct	number	of	cities,	and	finally	filtering	out	trips	that	contain	each	city	only	
once.	Pros:	1	gram	of	DNA	can	hold	about	1x1014	MB	of	data.	A	test	tube	of	DNA	can	
contain	trillions	of	strands.	Each	operation	on	a	test	tube	of	DNA	is	carried	out	on	all	strands	
in	the	tube	in	parallel;	Adleman	figured	his	computer	was	running	2	x	1019	operations	per	
joule.	Adleman’s	process	to	solve	the	traveling	salesman	problem	for	200	cities	would	
require	an	amount	of	DNA	that	weighed	more	than	the	Earth.	
	
	

675

Adleman, L. M. (1994). “Molecular computation of solutions to
combinatorial problems”. Science 266 (5187): 1021-1024. doi:10.1126/
science.7973651.

DNA for computing:

DNA for computing:
Represent Each City By A DNA Strand of 20 Bases City1 ATGCTCAGCTACTATAGCGA

City2 TGCGATGTACTAGCATATAT

City3 GCATATGGTACACTGTACAA

City4 TTATTAGCGTGCGGCCTATG

City5 CCGCGATAGTCTAGATTTCC

Etc.

City 1->2 TGATATCGCTACGCTACATG

City 2->3 ATCGTATATACGTATACCAT

City 3->4 GTGACATGTTAATAATCGCA

City 4->5 CGCCGGATACGGCGCTATCA

City 5->6 GATCTAAAGGTATGCATACG

Etc.

Represent Each Air Route By Mixed Complementary Strands

L. Adelman, Scientific American, pp. 54-61 (Aug
1998);

677

 figures from Martyn Amos

routes

cities

selection for length and initial/end points

DNA for computing

‘travelling	salesman’	problem	
	

The	challenge	is	finding	a	route	between	various	cities,	passing	
through	each	only	once.		
Adleman	first	generated	all	the	possible	itineraries	and	then	
selected	the	correct	itinerary.		
	Since	the	enzymes	(enzymes	are	proteins	catalyzing	a	reaction)	
work	on	many	DNA	molecules	at	once,	the	selection	process	is	
massively	parallel.	Specifically,	the	method	based	on	Adleman’s	
experiment	would	be	as	follows:	
•  Generate	all	possible	routes.	
•  Select	itineraries	that	start	with	the	proper	city	and	end	with	

the	final	city.	
•  Select	itineraries	with	the	correct	number	of	cities.	
•  Select	itineraries	that	contain	each	city	only	once.	
•  All	of	the	above	steps	can	be	accomplished	with	standard	

molecular	biology	techniques.	
678

679

Discover magazine
published an article in
comic strip format
about Leonard
Adleman's DNA computation.

Sort	the	DNA	by	length	and	select	the	DNA	
whose	length	corresponds	to	7	cities	

		
A	test	tube	is	now	filled	with	DNA	encoded	itineraries	
that	start	with	LA	and	end	with	NY,	where	the	number	
of	cities	in	between	LA	and	NY	varies.		
We	now	want	to	select	those	itineraries	that	are	seven	
cities	long.	To	accomplish	this	we	can	use	a	technique	
called	Gel	Electrophoresis,	which	is	a	common	
procedure	used	to	resolve	the	size	of	DNA.	The	basic	
principle	behind	Gel	Electrophoresis	is	to	force	DNA	
through	a	gel	matrix	by	using	an	electric	field.		
DNA	is	a	negatively	charged	molecule	under	most	
conditions,	so	if	placed	in	an	electric	field	it	will	be	
attracted	to	the	positive	potential.		

680

681

 The gel is made up of a polymer
that forms a meshwork of linked
strands. The DNA now is forced to
thread its way through the tiny
spaces between these strands,
which slows down the DNA at
different rates depending on its
length.

What we typically end up with after
running a gel is a series of DNA
bands, with each band
corresponding to a certain length.

We can then simply cut out the
band of interest to isolate DNA of a
specific length. Since we know that
each city is encoded with a certain
number of base pairs of DNA,
knowing the length of the itinerary
gives us the number of cities.

Technique	for	Generating	Routes	Strategy:	
Encode	city	names	in	short	DNA	sequences.	Encode	itineraries	by	connecting	the	city	
sequences	for	which	routes	exist.	
Synthesizing	short	single	stranded	DNA	is	now	a	routine	process,	so	encoding	the	city	
strings	is	straightforward.	Itineraries	can	then	be	produced	from	the	city	encodings	by	
linking	them	together	in	proper	order.		
To	accomplish	this	you	can	take	advantage	of	the	fact	that	DNA	hybridizes	(=binds)		with	its	
complimentary	sequence	(complementary	strands	of	DNA	bind	each	other).		
For	example,	you	can	encode	the	routes	between	cities	by	encoding	the	compliment	of	the	
second	half	(last	n	letters)	of	the	departure	city	and	the	first	half	(first	n	letters)	of	the	
arrival	city.		
For	example	the	route	between	Miami	(CTACGG)	and	NY	(ATGCCG)	can	be	made	by	taking	
the	second	half	of	the	coding	for	Miami	(CGG)	and	the	first	half	of	the	coding	for	NY	(ATG).	
This	gives	CGGATG.	
By	taking	the	complement	of	this	you	get,	GCCTAC,	which	not	only	uniquely	represents	the	
route	from	Miami	to	NY,	but	will	connect	the	DNA	representing	Miami	and	NY	by	
hybridizing	itself	to	the	second	half	of	the	code	representing	Miami	(...CGG)	and	the	first	
half	of	the	code	representing	NY	(ATG…).		
Random	itineraries	can	be	made	by	mixing	city	encodings	with	the	route	encodings.	Finally,	
the	DNA	strands	can	be	connected	together	by	an	enzyme	called	ligase	(ligases	are	
enzymes,	i.e.	proteins	connecting	strings).	What	we	are	left	with	are	strands	of	DNA	
representing	itineraries	with	a	random	number	of	cities	and	random	set	of	routes.		

682

Strategy:	Selectively	copy	and	amplify	only	the	section	of	the	DNA	that	starts	with	LA	and	ends	
with	NY	by	using	the	Polymerase	Chain	Reaction	(PCR).	See	next	slide.	

After	generating	the	routes,	we	now	have	a	test	tube	full	of	various	lengths	of	DNA	that	encode	
possible	routes	between	cities.		
What	we	want	are	routes	that	start	with	LA	and	end	with	NY.		To	accomplish	this	we	can	use	a	
technique	called	Polymerase	Chain	Reaction	(PCR),	which	allows	you	to	produce	many	copies	of	
a	specific	sequence	of	DNA.		
After	many	iterations	of	PCR,	the	DNA	you're	working	on	is	amplified	exponentially.		
	
So	to	selectively	amplify	the	itineraries	that	start	and	stop	with	our	cities	of	interest,	we	use	
primers	that	are	complimentary	to	LA	and	NY.		
	
What	we	end	up	with	after	PCR	is	a	test	tube	full	of	double	stranded	DNA	of	various	lengths,	
encoding	itineraries	that	start	with	LA	and	end	with	NY.	

683

	Itineraries	Selection:		
Start	and	End	with	Correct	Cities	

684

from wikipedia

PCR is an iterative process that cycle through a series of copying events using an enzyme
called polymerase. Polymerase will copy a section of single stranded DNA starting at the
position of a primer, a short piece of DNA complimentary to one end of a section of the DNA
that you're interested in.
By selecting primers that flank the section of DNA you want to amplify, the polymerase
preferentially amplifies the DNA between these primers, doubling the amount of DNA containing
this sequence.

	

DNA	containing	a	specific	sequence	can	be	purified	from	a	sample	of	mixed	DNA	by	a	technique	called	
affinity	purification,	as	shown	below.	This	is	accomplished	by	attaching	the	compliment	of	the	sequence	
in	question	to	a	substrate	like	a	magnetic	bead.	The	beads	are	then	mixed	with	the	DNA.	DNA,	which	
contains	the	sequence	you're	after	then	hybridizes	with	the	complement	sequence	on	the	beads.	These	
beads	can	then	be	retrieved	and	the	DNA	isolated.	

685

Itineraries	Selection:	Have	a	Complete	Set	of	Cities	

Select itineraries that have a complete set of cities. Sequentially affinity-purify n times, using a
different city complement for each run. We are left with itineraries that start in LA, visit each
city once, and end in NY.

•  Adleman's	experiment	solved	a	seven	city	problem,	
but	there	are	two	major	shortcomings	preventing	a	
large	scaling	up	of	his	computation.		

•  The	complexity	of	the	traveling	salesman	problem	
simply	doesn’t	disappear	when	applying	a	different	
method	of	solution	-	it	still	increases	exponentially.		

•  For	Adleman’s	method,	what	scales	exponentially	is	
not	the	computing	time,	but	rather	the	amount	of	
DNA.	Unfortunately	this	places	some	hard	restrictions	
on	the	number	of	cities	that	can	be	solved;	after	the	
Adleman	article	was	published,	more	than	a	few	
people	have	pointed	out	that	using	his	method	to	
solve	a	200	city	problem	would	take	an	amount	of	
DNA	that	weighed	more	than	the	earth.		

686

Adleman’s	pros	&	cons	

Pros:	1	gram	of	DNA	can	hold	about	1x1014	MB	of	data.	A	
test	tube	of	DNA	can	contain	trillions	of	strands.		
5	grams	of	DNA	contain	10	21	bases	(Zetta	Bytes)	
Each	operation	on	a	test	tube	of	DNA	is	carried	out	on	all	
strands	in	the	tube	in	parallel;	Adleman	figured	his	
computer	was	running	2	x	1019	operations	per	joule.		
Adleman’s	process	to	solve	the	traveling	salesman	
problem	for	200	cities	would	require	an	amount	of	DNA	
that	weighed	more	than	the	Earth.	
Speed:	500-5000	base	pairs	a	second.		
	

687

Design	of	random	access	primers	and	coding	algorithm.	(a,	i)	
They	designed	a	primer	library.	The	primer	sequence	set	is	
then	filtered	that	has	low	similarity	between	the	sequences.	(a,	
ii)	The	resulting	set	of	candidate	primers	is	then	validated	
experimentally	by	synthesizing	a	pool	of	about	100,000	strands	
containing	sets	of	size	1	to	200	DNA	sequences	each,	
surrounded	by	one	of	the	candidate	primer	pairs,	and	then	
randomly	selecting	48	of	those	pairs	for	amplification.	The	
product	is	sequenced,	and	sequences	with	each	of	the	48	
primer	pairs	appear	among	sequencing	reads,	albeit	at	
different	relative	proportions	when	normalized	to	the	number	
of	sequences	in	each	set.		 688

References	

•  Adleman,	L.	M.	(1994).	“Molecular	computation	
of	solutions	to	combinatorial	problems”.	Science	
266	(5187):	1021-1024.	doi:10.1126/science.
7973651.	PMID	7973651.	

•  		Boneh,	D.;	Dunworth,	C.;	Lipton,	R.	J.;	Sgall,	J.	Í.	
(1996).	“On	the	computational	power	of	DNA”.	
Discrete	Applied	Mathematics	71:	79-94	

•  Shapiro,	Ehud	(1999-12-07).,	“A	Mechanical	
Turing	Machine:	Blueprint	for	a	Biomolecular	
Computer,”	Weizmann	Institute	of	Science.	
Retrieved	2009-08-13.	

689

690
more at the end of the course

DNA as information storage

691

https://www.nature.com/articles/nbt.4079

july 2018

692

 The principle of DNA information storage in Organick et al.
(a) Two files are stored by encoding each file in a set of different DNA sequences.
Redundant information is added to enable error recovery at retrieval, and a distinct primer is
appended to each set of sequences corresponding to a file.
The resulting strings are synthesized and stored as a pool of different DNA molecules.

(b) A specific file is retrieved by amplifying the molecules corresponding to the file by ePCR,
sequencing the PCR products, and algorithmically reconstructing the data from the reads.

1

Organick	et	al.		stored	and	retrieved	more	than	200	megabytes	of	
data.	
Specifically,		they		attach		distinct		primers		to		each	set	of	DNA	
molecules	carrying	information	about	a	file.	This	allows	them	to	
retrieve	a	given	file	by	selectively	amplifying	and	sequencing	only	
the	molecules	with	the	primer	marking		the	desired	file.		
To	test	their	scheme,	they	designed		a	primer	library	that	allowed	
them	to	uniquely		tag	data	stored	in	DNA.	They	encoded		35	digital	
files	into	13,448,372	DNA	sequences,	each	150-nucleotides	long.	
Redundant	information	using	error	detection	codes	is	also	included	
to		increase		robustness		to		missing		sequences		and	errors.		
	
To		improve		recovery		of		the		information,	Organick	et		al.		
develop		a		clustering		and	consensus		algorithm		that		aligns		and		
filters	reads	before	error	correction.		
	
This		algorithm		also		takes	into	account	reads	that	differ	from	the	
correct		length.			 693

This	work	describes	large-scale	random	access,	low	redundancy,	and	robust	
encoding	and	decoding	of	information	stored	in	DNA,	as	well	as	a	notable	increase	
in	the	volume	of	data	stored	(200	MB,	the	largest	synthetic	DNA	pool	available	to	
date).Overview	of	the	DNA	data	storage	workflow	and	stored	data.		
(a)  The	encoding	process	maps	digital	files	into	a	large	set	of	150-nucleotide	DNA	

sequences,	including	Reed–Solomon	code	redundancy	to	overcome	errors	in	
synthesis	and	sequencing.	The	resulting	collection	of	sequences	is	
synthesized.	The	random	access	process	starts	with	amplifying	a	subset	of	the	
sequences	corresponding	to	one	of	the	files	using	PCR.	The	amplified	pools	
are	sequenced.	Finally,	sequencing	reads	are	decoded	using	clustering,	
consensus	and	error	correction	algorithms.	

694

Example	files	encoded	within	the	200	MB	of	data.	

695

a	comparison	to	
research	
achievements	shows	
that	our	coding	
scheme	has	similar	
logical	redundancy,	
but	requires	lower	
sequencing	coverage	
to	recover	files	

The	encoding	process	starts	by	randomizing	data	to	reduce	chances	of	secondary	structures,	primer–payload	non-specific	
binding,	and	improved	properties	during	decoding.	It	then	breaks	the	data	into	fixed-size	payloads,	adds	addressing	information	
(Addr),	and	applies	outer	coding,	which	adds	redundant	sequences	using	a	Reed–Solomon	code	to	increase	robustness	to	
missing	sequences	and	errors.	The	level	of	redundancy	is	determined	by	expected	errors	in	sequencing	and	synthesis,	as	well	as	
DNA	degradation.	Next,	it	applies	inner	coding,	which	ultimately	converts	the	bits	to	DNA	sequences.	The	resulting	set	of	
sequences	is	surrounded	by	a	primer	pair	chosen	from	the	library	based	on	(low)	level	of	overlap	with	payloads.	

696

The	decoding	process	starts	by	clustering	reads	based	on	similarity,	and	
finding	a	consensus	between	the	sequences	in	each	cluster	to	reconstruct	the	
original	sequences,	which	are	then	decoded	back	to	digital	data.	

The	data	longevity		and	information	density	of	current	DNA	data	storage	
systems	already	surpass	those	of	traditional	storage	systems,	but	the	cost	
and	the	read	and	write	speeds	do	not.		
	
Storing	one	megabyte		of	data	in	DNA	with	existing	technology	costs	
hundreds	of	dollars,	compared	with	less		than	$0.0001	per	year	using	tape,	
the	standard	for		archival		data		storage.			
The		price		of		DNA	storage		will		undoubtedly		drop		substantially	as		the		
costs		of		DNA		synthesis		and		sequencing		fall.			
	
The		more		pressing		challenge		is		that	DNA		synthesis		and		sequencing		are		
inherently	slow.		
	
DNA	synthesis	and	sequencing	DNA	can	be	extensively	parallelized,	their	
slow	speeds	limit	the	amount	of	data	that	can	be		written		and		read		in		a		
given		time		interval.	The		bottleneck		for		both		cost		and		speed		is	synthesis.	
	
A	fully		automated	DNA	drive	would	include	synthesis	and	sequencing	
technology,	components	to		store	and	handle	the	DNA,	as	well	as	a	supply	of	
chemicals.		

697

Exam	questions	

698

699

Exam	questions	

1.  Give the alignment matrix of the sequences `AATCGCGCGGT' and
`ATGCGCCGT' assuming the following costs: Cost(a,a)=0; Cost(a,b)=3
when a ≠ b, Cost(a,-)=Cost(-,a)=2.

2.  How would you set the function Cost in order to compute the longest
subsequence common to x and y?

3.  Describe the differences between the algorithms for global and local
alignments

4.  Which of the following reasons would lead you to use the Smith-Waterman
local alignment algorithm instead of the Needleman-Wunsch global
alignment algorithm?

Select all appropriate answers.
(a) Computer memory is too limited to compute the optimal global alignment.
(b) One wants to identify common protein domains in the two sequences.
(c) The sequences have very different lengths.
(d) Smith-Waterman is faster than Needleman-Wunsch on long sequences.
5.  Describe the notion of a parsimonious phylogeny for a finite set of

sequences and the hypothesis assumed on them

Exam	questions	

