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BioInformatics 2019-2020

At the core of life there is a sort of programming; the DNA sequence
contains both the code for the structure of the 3d parts (usually
proteins, programmed self assembly process) and the code that
represents the manual of instructions -how much, where, when a
certain part should be produced.

Bioinformatics is about algorithms and machine learning methods to
identify the coding elements in the DNA sequences and characterise the
parts.

Both DNA sequence and protein structure research have adopted good
abstractions: ‘DNA-as-string’ (a mathematical string is a finite
sequence of symbols) and ‘a protein-as-a three-dimensional-labelled-
graph’ .



Models of DNA and proteins
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ABSTRACTIONS:

DNA AS A STRING,

PROTEIN AS A LABELLED GRAPH
DNA AND PROTEINS AS NETWORKS

sources: Photograph 51’, March 1953, by Rosalind Franklin; Pencil sketch of the DNA
double helix by Francis Crick; Replica of Crick and Watson’s 1953 DNA Double Helix Model,

https://blog.sciencemuseum.org.uk/why-the-double-helix-is-still-relevant/ 3



What is Biolnformatics

Biology and
Medicir

Algorithms
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Bioinformatics: a central position in medicine
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© | :
o | |
3 NGS Imaging  \etadata § Nanosensors
Bioinformatics i . i o
Health Data § & Curation § Synthetic biology
Cooperatives g CRISPR
Cvb E : Blg Data
— ersecurit i i i
e g oo Text Mining Handling
S NGS | Lifestyle Artificial
© Bioinformatics § interventions _
< Citizen Science = Intelligence
. Multimodal i | carly diagnosis Computer simulation,
T data analytics ~ :  Deep Phenotyping: personal avatars
S Databases & | Standards & Devices | Artificial
o . ' . . '
c Data Sharing Epigenetics Adaptive Therapy :
o Bioinformatics i i Intelligence
c NGS | Big Data Analytics
NOW 1-5 years 5-10 years

NGS= next generation sequenging



DNA for genomic diagnostics

GATCGTAGCTGATCGATGCAT

GTGATCGTGATCG

Impact on Personalised Medicine

@ Cancer: Disease stratification
based on driver mutations

@ Rare diseases: Most patients now
receive a genetic diagnosis

@ Drugs: Patient-specific prediction
of efficacy and side effects

National Human Genome
Research Institute

genome.gov/sequencingcosts
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High-performance computing

Who has a computer?

@ 1960s: Major research institutes
@ 1970s: University departments
@ 1980s: Companies and schools

@ 2019: Aimost everybody & always

Genome sequencing

Whose genome has been sequenced?
@ 1996: First bacterium (E. coli)

@ 2001: Human reference genome

@ 2007: First personal genomes

@ 2019: Millions personal genomes



(Garage genomics
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Bento Lab: A DNA laboratory for everybody

Bento Lab is a DNA lab that
can take anywhere. Get
ds-on with genetics

aight away.

Pre-Order now!

~

Created by

Bento Lab

152,415 to help




DNA is big data
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Data Repository: http://www.ebi.ac.uk; http://www.ncbi.nim.nih.gov/ ;
http://genome.ucsc.edu/ www.ensembl.org

In situ data reduction

Real-time processing

Data Phase Astronomy
Acquisition 25 zetta-bytes/year
Storage 1 EBlyear
Analysis

Massive volumes
Distribution

Dedicated lines from antennae
to server (600 TB/s)

doi:10.1371/journal.pbio.1002195.t001

Twitter
0.5—15 billion
tweets/year
1-17 PBlyear

Topic and
sentiment mining

Metadata analysis

Small units of
distribution

YouTube

500-900 million hours/year

1-2 EB/year
Limited requirements

Major component of modern user’s
bandwidth (10 MB/s)

Genomics

1 zetta-bases/year

2-40 EB/year
Heterogeneous data and analysis

Variant calling, ~2 trillion central
processing unit (CPU) hours

All-pairs genome alignments, ~10,000
trillion CPU hours

Many small (10 MB/s) and fewer massive
(10 TB/s) data movement



How much DNA in the body and in the biosphere

Each base pair take a couple of bits to encode (because you have to choose
between G, A, T and C.

You have 46 chromosomes in each (autosomal) cell (3 billion base pairs, 2 meters
long, 2nm thick, folded into a 6um ball). If you teased out those 46 strands and
placed them end to end they'd be about 2 metres long - but that's just one cell.
Every time a cell replicates it has to copy 2 meters of DNA reliably.

As there are about 3.7x10%3 cells in the human body (and hence 1.7x10"°
chromosomes or strands), your entire DNA would stretch about 7.4x10%° km or fifty
thousand million miles (133 Astronomical Units long) — DNA in human population
20 million light years long (the Andromeda Galaxy is 2.5 Million light years).

Lower bound on the total information content in the biosphere: 5.3 x 1031 (3.6 x
1031) megabases (Mb) of DNA. Taking the rate of DNA transcription as an analogy
for processing speed, they further estimated Earth's computational power: 10'°
yottaNOPS (1024 Nucleotide Operations Per Seconds).




Genetic Code J

Aliphatic

Central Dogma

%

mRNA Protein v Positive
Gene [ cells express different subset of the genes Aromatic Polar
In different tissues and under different conditions Hydrophobic Charged
1st position 2nd position 3rd position
CCTGAGCCAACTATTGATGAA | DNA se )y c A GO
GCACTCGGTTGATAACTACTT |
| Phe Ser Tyr Cys U
. . Phe Ser Tyr Cys C
trans r'|p'|'|on U Leu Ser STOP STOP A
1 Leu Ser STOP Trp G
v |
Leu Pro His Arg U
Leu Pro His Arg C
CCUGAGCCAACUAUUCAUGAA ‘mRNA ‘ C lw  Po  Gn  Ag | A
Leu Pro Gin Arg G
I lle Thr Asn Ser U
M lle Thr Asn Ser C
Tr.a ns IGT on A le Thr Lys Arg A
1 Met Thr Lys Arg G
v

Val Ala Asp Gly v
. Val Ala Asp Gly C
PEPTI E ‘ Protein ‘ G Val Ala Glu Gly A
Val Ala Glu Gly 1 G




Healthy Individual

sequences

in Fasjwmat

>gi]128302128|ref|NM 000518.4| Homo sapiens hemoglobin, beta (HBB), mRNA
ACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCATGGTGCATCTGACTCCTGA

GQAE%AGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGC
AGGCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATG

CTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGGC

TCACCTGGACAACCTCAAGGGCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGAT

CCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCA

CCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCA

CTAAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACT

GGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC

>g114504349|ref NP 000509.1| beta globin [Homo sapiens]

MVHLTPIEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLG

AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVAN
ALAHKYH
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Individual with Sickle Cell Anemia

>gi[28302128 |ref|NM 000518.4| Homo sapiens hemoglobin, beta (HBB), mRNA
ACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCATGGTGCATCTGACTCCTGA

(KQEQAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGC
AGGCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATG
CTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGGC
TCACCTGGACAACCTCAAGGGCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGAT
CCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCA
CCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCA
CTAAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACT
GGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC

>g114504349|ref|NP _000509.1| beta globin [Homo sapiens]

MVHLTg\,ﬁKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLG

AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVAN
ALAHKYH
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- Gene and protein interactions as graphs

Genes are activated or repressed by regulatory proteins which bind to gene flanking
sequences (promoter) and are coded by the same or other genes.

Transcription
Factor

(Protein)

. Q - pol F\r’rg\leéase
Protein _ RNA polymerase ,

+~ (reads the information of the (Protein)
ene
DNA on: I
Regulatory ~ I I / G(lane
Element Promoter Gene Regulatory Element
A ' C
New protein New protein

) RNA . RNA
Protein . polymerase Tragzté%)ltl\o‘n . polymeras

=Y M.
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Logic gates: The Cell as an
information processing device

Inactive Active
RNAp activator activator

E No transcription
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Inducer
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regulatory elements
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Toggle switch (cro and cl are genes; T
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proteins of genes cro and cl)




. - (A) bacterial cell (specifically, E. coli: V=1 um? L= 1 pm; 1= 1 hour)
The Cell is a Computer in
S water protein inorganic lipid
Oup ﬁ ion @ protein
5x10° @/ 5x107
2x10'°
3x10°
Tg 2x10° 2x104 5x106bp
v < 0 = = ) - > RNA transcript mRNA nbosome DNA
323823838 4
m Keratin - a hair component (B) yeast cell (specifically, S. cerevisiae: V = 30 pm?; L= 5 um; = 3 hours)
Promoter (control) Region Protein Coding Region %f m
107 10°
; : @ @ 3x10° %
ABOVE: Idealized promoter for a gene involved 6x10" 108
in making hair. Proteins that bind to specific amn () IYYN

3x10* 105  12x107bp

DNA sequences in the promoter region together
turn a gene on or off. These proteins are

themselves regulated by their own promoters © mammalian cel (specifically, HeLa:V = 3000 um L = 20 jm; < = 1 day)
leading to a gene regulatory network with many

of the same properties as a neural network. We ‘ ﬁf @

use chips (right) to monitor the : © o o —

®
6x10"3 2x10M

activity of all the genes in different EEEEE
conditions (gene expression).




Cells versus Computers

E. coli transcriptional

regulatory network

master regulator

middle manager

Linux call graph

workhorse

P

Fig. 1. The hierarchical layout of the E. coli transcriptional regulatory network and the Linux call graph. (Left) The transcriptional regulatory network of E. coli.
(Right) The call graph of the Linux Kernel. Nodes are classified into three categories on the basis of their location in the hierarchy: master regulators (nodes with
zero in-degree, Yellow), workhorses (nodes with zero out-degree, Green), and middle managers (nodes with nonzero in- and out-degree, Purple). Persistent
genes and persistent functions (as defined in the main text) are shown in a larger size. The majority of persistent genes are located at the workhorse level, but
persistent functions are underrepresented in the workhorse level. For easy visualization of the Linux call graph, we sampled 10% of the nodes for display.
Under the sampling, the relative portion of nodes in the three levels and the ratio between persistent and nonpersistent nodes are preserved compared to the
original network. The entire E. coli transcriptional regulatory network is displayed.

percentage In k. COll  percentage In Linux
regulatory network call graph

master regulator 4.6 29.6
middle manager Bl 58.2
workhorse 90.2 12.3
B 100 1 100, ]
-o- out-deg . out-deg | |
| ~$-in-deg 10_1; —6—in-deg
c 10 i |
k=] X |
3 1072} %
2 .o, [
5 10 10|
% |
4 \
2 108 1107
o |
out-degree hubs 10-5!
SR %, &

| in-degree hubs
| e.g. “printk”

100 102 104 100 102 104

Degree

The transcriptional regulatory network (1,378 nodes)
follows a conventional hierarchical picture, with a few
top regulators and many workhorse proteins. The
Linux call graph (12,391 nodes), on the other hand,
possesses many regulators; the number of workhorse
routines is much lower in proportion. The regulatory
network has a broad out-degree distribution but a
narrow in-degree distribution. The situation is reversed
in the call graph, where we can find in-degree hubs,
but the out-degree distribution is rather narrow. Yan et
al. PNAS 2010, 107, 20.



Scales of electronic and bio devices

proteins inside
a bacterium

Scale in A

A =0.25 micron

in Pentium Il
. -
1 micron

Bacterium

(a) NAND gate layout geometry.

Human
chromos
ome.
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The network level: can you spot the difference?

Networks

Tissues,
cultures

Biochemical
reactions

‘\‘ Proteins,
genes...

- -
——————
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Nature is programmed for self-assemble;
Bioinformatics is needed to identify the key elements

DNA, RNA and proteins can:

Organize themselves to self assemble different types of devices
(mechanisms such rotors, motors) or structures with different
shapes across time and space scales.

Organise other types of molecules such as lipids, sugars and
artificial ones.

Organise large set of reactions (such as metabolic networks) and
Execute different kinetics

Self-Assemble control devices

sensitive
channel aquaporin
(1msl) (1fqy)

ATP synthase
(1c17+1e79)

cytochrome b-c1

phospholipid




IKEA® OVEN PARTS o BTN TOP VENTING PARTS

For Models: msm;gv(fg‘o:i:‘?:ss;ovwsw TH;L%{F:'%CL'%@ION rertlos Iasmmsogi:::;wwsw M a C r O S C a I e

IKEA: not
self

assembly

Literature Parts

@
28/ |

lllus. Part lllus. Part lllus. Part
No.No.DESCRIPTION | No.No.DESCRIPTION | No. No. DESCRIPTION

1 4451759 Vent, Exhaust 7 W10171405 Mounting Plate 14 Side, Control Top

2 4455178 Elbow, Vent-Top 8 8303076 Insulation 4451597 Right

3 8300223 Blower 9 4449040 Screw 4451598 Left

4455352 Bracket 10 3400080 Screw 15 8303100 Back, Control

4 4451758 Block, Foam 11 7401P038-60 Block, Terminal 16 4450551 Cover, Top Rear

5 4455177 Elbow, Vent-Bottom 12 4450038 Screw 17 4449809 Screw

6 9760587 Transformer, 13 8303497 Vel 18 4452367 Cover, Top Front

nt,
Control Control Panel 19 4451985 Suppressor

OVEN DOOR PARTS
For Models: IBS550PWW00, IBS550PWS00
(White) (Stainless)

OVEN PARTS
For Models: IBS550PWW00, IBS550PWS00

(White) (Stainless)
lllus. Part lllus. Part lllus. Part
No.No.DESCRIPTION [ No.No.DESCRIPTION [ No.No.DESCRIPTION
1 Literature Parts 12 4452166 Bulb, Light 29 W10131825 Sensor
W10210919 Instructions, 13 3196176 Screw 30 3400805 Screw
Installation 14 W10115831 Frame, Front 31 9760677 Deflector, Vent
W10075750 Instruction, 15 4455382 Gasket, Door 33 9759243 Thermostat
Installer 16 W10158972 Control 34 9759713 Base, Chassis
W10270566 Owners Manual 17 4452152 Bracket, Mounting 35 4448933 Retainer, Gasket
W10201489 Tech Sheet 18 4449154 Screw 36 4451747 Cover, Back
8304572 Installation/ 19 4451478 Support, Insulation 37 4449845 Support, Bracket
Undercounter 21 Rail, Mounting 38 W10163965 Trim, Bottom
3 Hinge Receiver W10158955 Right 40 98997 Clip
4455606 Right W10158956 Left
4455605 Left 22 9760888 Latch, Motorized FOLLOWING PARTS lllus. Part lllus. Part lllus. Part
4 W10105790 Bumper, Door 23 4449040 Screw NOT ILLUSTRATED Ho-H 10N bo-H TION HNo-No-DESCRIFTION ———
6 8285593 Cove" Wire 24 4450118 Nut 1 9759413 Door Liner 8 4449809 Screw 16 4457132 Retainer, Glass
7 8303099 Top Chassis 25 4455641 Side, Chassis % areosy Figm 10 Wio138877 Doot Hande 19 Wioiseers Retaner, Gip
8 4449809 Screw 26 W10161110 Back, Chassis INSULATION- s gﬁgggg gﬁ . :; W10159515 gvackéalt. Handle S? 4448520 gllxmpelv, Door (3)
9 4452158 Tube, Vent 27 Liner, Oven ass, mnet oot Slass jass, Inner
10 WIO0G7870 Lens, Light (Nof senviceabl) c45518 Wnsuion, Weep § e | mmeR. | waRIE. 21
’ 10169394 1 t . Hil
11 W10009930 Assembly, Oven 28 4448444 Grommet 4450365 Insulation, Back 7 "'5756255 Giass, Inner 14 9759230 siiikiéar% elffss)) wiotazoss Fight

Light 15 4457104 Shield, Heat W10137043 Left



Structure of T4 Bacteriophage

Head (contains DNA)

microscale IKEA: Nature is
programmed for self assembly

Neck

Whiskers

Tail fibre

Tail Assembly

Head Assembly
- DNA +
Baseplate \4 lTaiI core added /
e DNA packaged inside head
Sheath added Tail Fibre Assembly

around core

-

Mature phage

AR\

24 to 200 nanometers they’re
10 to 100 times smaller than the
average bacterium, much too
small to see with an ordinary
light microscope.

5. We absorb about 30 billion
phages into our bodies every
day. They form an integral part
of our microbial ecosystem.
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The genome contains both the instructions for assembly and for the parts and it is
shipped with the virus
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Cells versus Computers

Base-4 (ACGT)  Base-2 (101010)
DNA « Magnetic tape/Disk
Bases » Bits/Transistors

Codons (triplets of

bases for each amino ~ ~ SYies
acid) * |Instruction Set

Genetic Code (translate
codons into amino

acids) |
Gene/Protein » File, Prf)gram
Chromosome - Hard Disk

Genome Size * Disk Capacity




Cells versus Computers

Biology Computer science

1. Digital alphabet consists of bases A, C, T, G 1. Digital alphabet consists of 0, 1

2. Codons consist of three bases 2. Computer bits form bytes

3. Genes consist of codons 3. Files consist of bytes

4. Promoters indicate gene locations 4. File-allocation table indicates file locations
5. DNA information is transcribed into hnRNA and 5. Disc information is transcribed into RAM

processed into mMRNA

6. mRNA information is translated into proteins 6. RAM information is translated onto a screen or
paper

7. Genes may be organized into operons or groups with 7. Files are organized into folders
similar promoters

8. "Old" genes are not destroyed; their promoters 8. "OlId" files are not destroyed; references to their
become nonfunctional location are deleted
9. Entire chromosomes are replicated 9. Entire discs can be copied

10. Genes can diversify into a family of genes through  10. Files can be modified into a family of related files
duplication

11. DNA from a donor can be inserted into host 11. Digital information can be inserted into files
chromosomes

12. Biological viruses disrupt genetic instructions 12. Computer viruses disrupt software instructions
13. Natural selection modifies the genetic basis of 13. Natural selection procedures modify the software
organism design that specifies a machine design

14. A successful genotype in a natural population 14. A successful website attracts more "hits" than

outcompetes others others

25




If you want to know more about biology

A free book is this: cell biology by the numbers |
http://book.bionumbers.org/ ' CELLBIOLOGY

Usicated by
NigehOrme

bqwnu ay1 Ag ADOTOIG 114D

* Genetics for Computer Scientists

https://www.cs.helsinki.fi/group/genetics/
Genetics for CS March 04.pdf

 Molecular Biology for Computer Scientists:
http://tandy.cs.illinois.edu/Hunter_MolecularBiology.pdf

Biology and Computers: A lesson in what is possible
https://ethw.org/

https://www.wehi.edu.au/wehi-tv/
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General references for course

BIOINFORMATICS ALGORITHMS  BIOINFORMATICS ALGORITHMS
An Active Learning Approach éﬂ éqﬁiyg Eeg}fping APP}'Q?{’E e
2nd Edition, Vol. T 3 2nd Edition, Vol. II

P,
o
) - G oo
§ S
A 3 J
1
i/
»
e

Partly based on book: Compeau and
Pevzner Bioinformatics algorithms (chapter
3,5,7-10 chapter).

R
o

by FPhillip Compeau & Pavel Pevzner g by Phillip Compeau & Pavel Pevzner 3

¢
also Richard Durbin, Sean R. Eddy, Anders Krogh, Graeme Biological z :
Mitchison SequIEI!Ce :: :
Biological Sequence Analysis: GULEDE <
Probabilistic Models of Proteins and Nucleic Acids P s ¢ u
nucieic acids : 5
e
e m
R. Durbin —
No biology in the exam questions (You need to know only the s : S
. G. Mitchison ‘ O |

reason of the algorithms). o4 o7
===l ¢




Structure of the course

Hidden
Markov
Models 6

W
Yy Ga
[}S‘ 2
Alignment 1 GQ fo
(/@/7
DNA >y -

Computing/
storage
information

Phylogeny 2

Genome
sequencing

Genome
Assembly 4
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Aligning DNA and Protein Sequences

* how to aligh two sequences?

* Trees (what is the relationships of multiple
sequences and what has to do with species
evolutionary history)

* Genome sequence (how to analyse a genome)




How Do We Compare Biological Sequences?

From Sequence Comparison to Biological Insights

The Alignment Game and the Longest Common Subsequence
Dynamic Programming and Backtracking Pointers

From Global to Local Alignment

Penalising Insertions and Deletions in Sequence Alignment
Space-Efficient Sequence Alignment

Nussinov folding algorithm (RNA 2dimensional folding)



Summary for alignment lectures

Algorithms in this lecture: Longest common subsequence, Needleman-Wunsch,
Smith-Waterman, Affine gap, Hirschberg, Nussinov RNA folding. Typical tasks: align
genome and protein sequences; we want to detect all differences at the single base to
block of bases levels. In the RNA folding problem we want to align a molecule with
itself.

Data: DNA or protein (amino acid) sequences considered as strings; input: two strings
(Nussinov accepts one string in input and search for internal similarities). Output: a set
of aligned positions that makes easy the identification of conserved patterns. Note that
each string belongs to a double helix so the information could be related to one of the
two strands and read in one or the opposite orientation.

Many events (mutations) could lead to sequence changes. Therefore the conservation
of a substring between two strings may suggest to a crucial functional role for the cell.
The dynamic programming algorithms could be used to detect similarities within a
single string (last section of the lecture). This is particularly useful to find the folding of
RNA moleculaes (in a RNA molecule the T is replaced by U).

Main question in this lecture: how similar are these two sequences?

31




What Is the Sequence Alignment?

matches insertions delwtches

AT—GTTATA
ATCGT-2ZC C
+1+1 +1+1 =4

Alignment of two sequences is a two-row matrix:

ll ”

15t row: symbols of the 15t sequence (in order) interspersed by
2" row: symbols of the 2"9 sequence (in order) interspersed by

o ”
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Longest Common Subsequence

AT-GTTATA
ATCGT-C-2C

Matches in alignment of two sequences (ATGT) form their
Common Subsequence

Longest Common Subsequence Problem: Find a longest
common subsequence of two strings.
* Input: Two strings.
 Output: A longest common subsequence of these
strings.



Alignment: 2 row representation

Given 2 DNA sequences v and w:

v: ATGTTAT m=7/
w: ATCGTAC n=>7/

Alignment: 2 * k matrix (k>m, n)

letters of v A|T!|-|G|T|TI|A|T

letters of w Al T|C |G |T |- |A]|-|C

4 matches 2 insertions 2 deletions
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Longest Common Subsequence

Longest Common Subsequence (LCS) —the simplest form of
sequence alignment — allows only insertions and deletions (no
mismatches). In the LCS Problem, we scored 1 for matches and O
for indels; in real analysis we consider penalising indels and

mismatches with negative scores.

Given two sequences V=V, V..V, and w=w, w,..w_
The LCS of v and w is a sequence of positions in
vil <ih <L, <...<ig<m
and a sequence of positions in
wil <j;, <), <...<Jy£<h

such that i, -th letter of v equals to j.-th letter of wand tis
maximal.



Longest Common Subsequence

icoords: O 1 2 2 3 3 4 5 6 7 38

elements of v AlTl~-lcl-|TlglAalTIE
elements of w - ITlglclAaAlT!l=-1Al-1lC
jcoords: 0 O 1 2 3 4 5 5 6 6 7/

(0,02 (1,0)> (2,1)> (2,2)=> (3,3)> (3,4)~> (4,5)~> (5,5)~> (6,6)~> (7,6)=> (8,7)

positionsinv: 2<3<4<6<8
Matches shown in red - ,
pOSlthhSan: 1<3<5<6<7

Every common subsequence is a path in 2-D grid
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Longest Common Subsequence

The Edit distance between two strings is the minimum number of operations
(insertions, deletions, and substitutions) to transform one string into the other

Hamming distance Edit distance
always compares may compare

ith letter of v with ith [etter of v with
ith letter of w j’th letter of w

V = ﬁTﬁl’ﬂﬂ Justoneshit Y = -‘A‘T‘A‘TﬁT‘/‘*T
W = TATATATA Makeltalllneup gy - TATATATA-

Hamming distance: Edit distance:
d(v, w)=8 d(v, w)=2
Computing Hamming distance Computing edit distance

is a trivial task is @ non-trivial task



Edit Distance: Example

TGCATAT > ATCCGAT in 4 steps

TGCATAT - (insert A at front)
ATGCATA - (delete 6t )
ATGCATA = (substitute G for 5t A)
ATGCGTA - (substitute C for 37 G)
ATCCGAT (Done)



Alignment as a Path in the Edit Graph

*"BT G T NG |
v 0 4 2 8 4 B8 6 7T Old Alignment

0 0122345677
& N v= AT_GTTAT_
I _ W= ATCGT_A_C
Gh ] ( 0123455667
T, ‘

4 v New Alignment
1, N 0122345677
A - v= AT_GTTAT_

6 w= ATCG_TA_C
W? 1 0123445667

Two similar alignments; the score is 5 for both the alignment paths.
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LCS Problem as - Edit Graph

Every pathis a
common
subsequence.

Every diagonal
edge adds an extra
element to
common
subsequence

LCS Problem: Find
a path with
maximum number
of diagonal edges
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Computing LCS

1-1,] -1 1-1,]

Letv. = prefixof voflengthi: v, ..v,

and w; = prefix of w of length j: w, ... w, il B
The length of LCS(v;,w;) is computed by: ’ 1)
Si1; 0

s;; = MAX Sijq +0

Si1jat L, if v.= W,

W
A T C G Every Path in the Grid Corresponds to

1 2 3 4 an Alignment

NN

0
&
0
012234
\\\\\ V= AT-GT
| | ]
— W= ATCG-
3 012 344

- o -+ >
N
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LCS Algorithm

LCS(v,w)
1 fori—0Oton o
2 s.0— 0 PRINTLCS(b, v,1, j)
3 for j— ltom 1 #i=00rj=0
4 80‘1 — O 2 . mtur“n »
5 fori—1lton 3 i by ="\
6 for j— 1tom - PRINTLCS(b,v,i - 1,5 - 1)
5 print W
Si—1.9
7 St < max Sg.7-1 6 else . N
si-15-1+1, ifv=wy 7 if byy="1 . _
CP i sy, =81y 8 PRINTLCS(b, v,i - 1,7)
8 bf.] — “ et lf Sf;] = SLJ_ll 9 else
“x i sfj = sg_14-1 +1 10 PRINTLCS(b, v,i,j — 1)

9 return (spm b)

The above recursive program prints out the longest common subsequence
using the information stored in b. The initial invocation that prints
the solution to the problem is PRINTLCS(b, v, n,m).
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Alignment Graph

5;

j= MaX

g

——

Si'l,j -0

Si,j-l -0
Si1 1t 1 ifv=w,

Si'l,j-l - “, If VI¢Wj
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All genomes are littered with repeats so alignment of
large sequences is difficult

TGCATTGCGTAGGC

*  Single nucleotide polymorphisms (SNPs)
TGCATTCCGTAGGC

— 1 every few hundred bp, mutation rate* = 107

*  Short indels (=insertion/deletion) TGCATT——-TAGGC

— 1 every few kb, mutation rate v. variable

TGCATTCCGTAGGC
*  Microsatellite (STR) repeat number
— 1 every few kb, mutation rate <10 TGCTCATCATCATCAGC
TGCTCATCA—————— GC

*  Minisatellites
— 1 every few kb, mutation rate < 10!

* Repeated genes

. <100b! . .
— [RNA, histones <100bp increased difficulty
T —T—— : ;
* Large deletions, duplications, inversions I e e — e R Wlth a pUZZ!e. Wlth
— Rare, e.g. Y chromosome 15kb many repet|t|0ns

Figure : Type and frequency of mutations (replacements, insertions, deletions) in the human
genome per generation; mutations change single DNA bases (SNP polymorphism) or rearrange
DNA strings at different length scales. In sequence alignment we compare sequences that are
different because of mutations.
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Towards an algorithm to align biological sequences

(note 1 am using a DIFFERENT NOTATION!)

F1-1,)-1] | F1,)-1]
Notice three possible cases: ~ ,
m, if X; =y,

1. xalignstoy, F(.j) = F(-1,]-1) ¢

Xqeenen X4 X _ -S, if not

Yieeenn Vi1 Y,
2 X; aligns to a gap

X1 ...... X|_1 X| L. . .

Yieeenn. i - F(i,j) = F(i-1,j) - d

ViveeeeYin ) F(ij) = F(i, 1) - o




Alignment

e How do we know which case is correct?

Fli-1,j-1] | F[isj-1]

Inductive assumption: F[i-1,j] F[1,]

F(, j-1), F(i-1, j), F(i-1, j-1)  are optimal

Then,

C F(-1, 1) +s(x, )
F(i, ) =max < F(i-1, j)-d

F( i,j-1)-d

Where F(x, y) =m,ifx=y; -s,if not
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* The Global Alignment Problem tries to
find the longest path between vertices
(0,0) and (n,m) in the edit graph.

Global

* The Local Alignment Problem tries to alighment

find the longest path among paths
between arbitrary vertices (i,j) and (i,
j’) in the edit graph.

* Global Alignment

——T—CC-C-AGT—TATGT-CAGGGGACACG—A-GCATGCAGA-GAC

I N R 0L O A A O 6 D
AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

* Local Alignment—Dbetter alignment to find highly
conserved segments

tccCAGTTATGTCAGgggacacgagcatgcagagac
NN

aattgccgccgtecgttttcagCAGTTATGTCAGatc



Protein ____ RNA polymerase

DNA

Regulatory
Element

= ; =/ (reads the information of the
gene!

l I

Promoter Gene

local alignment to detect
regulatory sites

e
———
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Global Alignment

Global Alignment Problem: Find the highest-scoring
alignment between two strings by using a scoring matrix.

* Input: Strings v and w as well as a matrix score.

e Qutput: An alignment of v and w whose alignment
score (as defined by the scoring matrix score) is
maximal among all possible alignments of vand w.




The Needleman-Wunsch Algorithm (Global alignment)

1. Initialization.
a. F0,00 =0
b. F(0,]) =-jxd
c. F(,0) =-ixd
2.  Main lteration. Filling-in partial alignments d is a penalty
a. For each i=1...... M
Foreach j=1...... N

F(i-1.i) -d [case 1]
F(,)) = max F(, j-1) —d [case 2]
F(i-1, j-1) + s(x, y;) [case 3]

UP, if [case 1]
Ptr(i.)) = LEFT if [case 2]
DIAG if [case 3]

3. Termination. F(M, N) is the optimal score, and from Ptr(M, N) can trace back optimal
alignment

Complexity: Space: O(mn); Time: O(mn)
Filling the matrix O(mn)
Backtrace O(m-+n)




The Overlap Detection variant

Maybe it is OK to have an unlimited # of gaps in the beginning and end:

—————————— CTATCACCTGACCTCCAGGCCGATGCCCCTTCCGGC
GCGAGTTCATCTATCAC--GACCGC--GGTCG-—-———=———=—————

>

1. Initialization
For all i, j,

F(i, 0) =

F(O, )) =

2. Termination
max; F(i, N)
Fopr = max’ max; F(M, )

"
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Can we use a similar algorithm to align entire genomes?

Mouse and Human Genetic Similarities

Mouse chromosomes Human chromosomes
& 7 a 4 3 Kl 5 6 T 8 -

i 2 3 4 5
o 10 8 E 1) ;l |
) . B ) B ;
q "
2 2 * Ha 1" 0 =
" B 2 15 z 15
W 5 3 » £
. = % " > '
n | v ’ ¥ 3
1 - 2 J =
_J = P 13 b '

n

- e e

13 4 15 16 17 18
LY LA 12 1] 14 15 1E w L
L 2z B: B * 5 w . L.
é 7 ? o 7 M
3 N E
» Hs Il s
A 14 7 4 15
Y & : : 1 =
© L 13 2 2
" v
' e
x
4
Courtesy Lisa Stubbs
A Oak Ridge National Laboratory 52




Local Alignment= Global Alignment in a subrectangle

¢c A G T T AT

—==G———-C————~ C--CAGTTATGTCAGGGGGCACGAGCATGCAGA
GCCGCCGTCGTTTTCAGCAGTTATGTCAG—————. A—————— T ————
Local alignment

THAPOCCORA

GCC-C-AGT-TATGT-CAGGGGGCACG--A-GCATGCAGA-
GCCGCC-GTCGT-T-TTCAG----CA-GTTATG-T-CAGAT
Global alignment

POPOQHAPOAQPAOPOOAAAAAYP OHQAY

local alignment to detect
regulatory sites



Local Alignment Problem

Local Alignment Problem: Find the highest-scoring local
alignment between two strings.

* Input: Strings v and w as well as a matrix score.

* Output: Substrings of v and w whose global alignment
(as defined by the matrix score), is maximal among all
global alignments of all substrings of vand w.




The local alignment: Smith-Waterman algorithm

T.F. Smith, M.S.Waterman, Identification of common molecular subsequences, ] Mol Biol vol 147,195-197, 1981.

Idea: Ignore badly alighing regions: Modifications to
Needleman-Wunsch

e.g. X = aaaacccccgggse
y = cccgggaaccaacce
Initialization: F(0,0)=F(0, j)=F(i,0)=0

( 0
Iteration: F(i,jJ)=max | F(i—1,j)—d
1 Fli,j—1)-d =
| Fi-1,j-1)+slxy) {
Termination: " ,

: . % =9
' \ e

1. If we want the best local alignment... |
2. If we want all local alignments scoring > t /

A

7/
o 7 4

David Waterman

For alli, j find F(i, j) > t, and trace back




Which Alignment is Better?

e Alignment 1: score = 22 (matches) - 20 (indels)=2.

GCC-C-AGT--TATGT-CAGGGGGCACG--A-GCATGCAGA-
GCCGCC-GTCGT-T-TTCAG----CA-GTTATG--T-CAGAT

e Alignment 2: score = 17 (matches) - 30 (indels)=-13.

CAGTTATGTCAG
CAGTTATGTCAG

loca

the local alignment detects a
biological finding: two genes are regulated

by he same protein
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Scoring Gaps

 We previously assigned a fixed penalty o to
each indel.

* However, this fixed penalty may be too severe
for a series of 100 consecutive indels.

* Aseries of k indels often represents a single
evolutionary event (gap) rather than k events:

two gaps GATCCAG GATCCAG a single gap

(lower score) GA-C-AG GA--CAG (higher score)
or maybe 2 events



Mismatches and Indel Penalties

H QP

#matches — u - #mismatches — o - #indels

AT-GTTATA
ATCGT-C-2C
+1+1-24141-2-3-2-3=-7

A C GG T - A C G T -
+1 -p —-p —-p -o A +1 -3 -5 -1 -3
-p +1 -p —-p o C -4 +1 -3 -2 -3
-p —p +1 —p -o G -9 -7 +1 -1 -3
-H —p —p +1 -o T -3 -5 -8 +1 -4
-0 -0 -0 -0 - -4 -2 -2 -1

Scoring matrix Even more general scoring matrix



How to compare amino acids: scoring matrices

C}fS || 12 Very small

(0]
D
=
<
2

...............................

......................................

.....................................................

..............................................................

Glu |-5 |0 (0 i-1:0 0 |1 :3 :4

......................................................................

His =3 |-1 i=-1:0: :=1:=2 ]2 1 : ;3

.....................................................................................

Arg -4 lo i-1i0 i2:3|0 i-1i-1i1 |2 i6

.................................................................................................

el | Follciiwl bz | Fn) R vl el Re] | K@
e
=
~

E
<]
%]
|
Uh
L]
o
|
—
|
—
I
)
—
o
)
—
o

-
t+
}
Lh
|
()
I
—
1
[
}
—
}
)
I
[
|
L)
I
()
I
p—t
I
[
[l | RN
O,

...............................................................................................................

T el D W oy W g P O T N B R S R g

...............

—

.....................................................................................................

E I&n)as |52 7 53 5.7 i |3 R 12 2.5 |20 B2 12 |de 17 2%

............................................................................................................................

Y Ral -2 | L S0 LT B0 il |2 22 2.2 2.9 |22 522 B2 |2 B4, B2 il
F Phe |24 |23 1.3 5.5 .5 1.5 |4 126 £5 i85 | =2 04 D25 |00 21 3T

(v Tyr J0 ]3035 3150204440 Tara)9 oD

WTp [-8]-2:-5:-6i-6i-7]|-4:-7:-7:-5|-3:2 :-3|-4:-5:-2{-6
lc|s|T|P|A|G|N[D|E|Q|H|R([K|M|I |L [V

17
Y [W

Hl|lS N W
L

example: Y (Tyr) often mutates into F (score +7) but rarely mutates into P (scores5)



More Adequate Gap Penalties

Affine gap penalty for a gap of length k: o+e-(k-1)

o - the gap opening penalty
e - the gap extension penalty

o > g, since starting a gap should be penalized
more than extending it.




* Thinking on 3 levels

¥

NN NN N
NN NN
bottom level NN N N\ \
(insertions) N\, N\, N\ N\,
NN N NN

middle level

(matches/mismatches)

— — <— <« <
“— <“— < <« <
«— <— <— <« <«
“— <« ¢ < <
“— <— <— <« <
“— < <« < <

|

|

|

|

|

|

|

—>

—

—>

—>

upper level
(deletions)

|

|
!

—>

—>

—

—

—>

—>

—

—>

|

|

|

|

|

|
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—( —( —( —( —>

|
|
|
|
|

AYRAVANAVAN
S How can we emulate O OO O
S this path in the 3-level?
INININININY
ININININ N e ree
—> > —> —> —>
€
—> —> —> =) —>

.\\ \\\ - //t ““““““
PR
lower; , ; - € /\< \ \ \ \ g s

lower, ; = max { -

middle,,; - o, - :
- // \; \ \ \/n/\< """"" Llpper, = max {up.per,-,j_l - €
// N N\ SN o 2 middle;; , - o

*
*
*
.
*
*
*
*
"
*

. .
vob A jower,
| e} ot Ll middle;; = max {middle,, ; ;, + score(v,w))
bLbob R
Vbbb

62



 Modelling Affine Gap Penalties by Long Edges

—> —> —> —> —> —> —> —> —> —>

NN Nyyyy
AN NN
l\l\i\l\l

—> —> —> —> —> —> —> —>
—> —> =— —_—) @ —> — — —> — —

—_ > —> —> —> —> —> —> —> —>

double gap: 2 events double gap: 1 event
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Alignment with gaps

n
Current model: a gap of length n incurs penalty nxd vin)
Gaps usually occur in bunches so we use a convex gap
penalty function:

v(n): foralln, y(n + 1) -y(n) =y(n)-y(n—1)

Initialization: same v(n)

Iteration: ﬂ
_ ] “digcount”
( F(I_lr J_l) + S(Xil yj)

F(i,j) =max{ max,., ..F(k,j) —v(i-k)
| MaXy-o i1 F(i,K) —y(j-k)

Termination: same

Running Time: O(N’M) (assume N>M)
Space: O(NM)
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A compromise: affine gaps

y(n)=d+(n—-1) xe y(n)
| |
gap gap e
open  extend d
To compute optimal alignment, at position i,j, need to “remember” best/
score if gap is open and best score if gap is not open /

F(i, j):score of alignment x;...x; to y,...y; if x;aligns toy;
G(i, j):score if x;, ory, aligns to a gap

Initialization: F(i,0)=d+(i—1)xe; F(0,j)=d+(j—1)xe
Iteration:
F(i—=1,j-1) +s(x;, ;)
F(i, j) = max
)} Gli-1i-1)+slx,y)
F(i—1,j)—d
F(i,j—1)—d
.
G(i, j) = max
< G(i,j—1)—e
G(i—1,j)—e
Termination: same \ o




Banded DP: a special case

Assume we know that x and y are very similar; If the optimal alignment of x
and y has few gaps, then the path of the alignment will be close to the

diagonal

Assumption:  # gaps(x,y) <k(N) (say N>M)

X >

| implies |i—j| <k(N)

Yi

Time, Space: O(N x k(N)) << O(N?)

|

+—>

F[i,i+k/2]

\Out of rangeI

Fli+1, i+k/2]

F[i+1, i+k/2 +1]

~—

I

Note that for diagonals,

I-) = constant.
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Banded Dynamic Programming

Initialization:

- X XM F(IIO)I F(OIJ) UndEfinEd fOr i; J > k
> N AN

Iteration:

Fori=1..M

3 For j = max(1, i — k)...min(N, i+k)
COR(i-1, - 10+ s(x, )

: F(i,j)=ma} F(i,j—1)—d, if j>i—k(N)
: I F(i—1,j)—d,ifj<i+k(N)
= \ ~

Termination: same

Easy to extend to the affine gap case
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Example global alignment



match=2

mismatch=-

gap=-1

Gl | | pn W N




match=2
mismatch=-1

gap=-1

0 1 2 3 4 5 6
0 0«1 -1 -2« -3+ -4+~ -5+ -6
1 4 <
ACGCTG
- Y,

Gl | | pn W N




match=2
mismatch=-1

gap=-1

Gl | | pn W N
i
OV




match=2
mismatch=-1

gap=-1

Gl | | pn W N




0|/ 1| 2|3/ 4| 5| 6
0 0.+ -1+ 24— -4~ -4 4~ -5+~ -6
) —
1 -1 -1 1§\( ~
) fz AC
4 -C
3 | -3 /
)
4| -4
4
5 | -5




0/ 1| 2| 3| 4| 5
0 0.+ -1+ -2« -3¢~ -4+~ -5+~ -6
AN
1| -1 | -1 1= 01
t ACG
1 ¥ C
3 | -3 -
)
4| -4
4
5 | -5




match=2

mismatch=-1

gap=-1




0 1| 2| 3 | 4
0 0.+ -1+ D¢ -3+ -4+ -5 -6
1 f1\ 1\1 o\ 1< -2«-3
- - = () = -1 = -2 <«—-
£ —
2| 2| 1«0 | 0
t k)
3 | -3 R
A AC
il iy -CA
5 | -5




match=2

mismatch=-1

gap=-1

A 2




match=2

mismatch=-1

gap=-1




0|/ 1| 2|3/ 4| 5| 6
0 0+ -1
AEAER
- <=
2 \1 \0\1
-
3 \o \1
4 \2 1 \3
—_—
—— }
5 3 «— 2




match=2
mismatch=-1

gap=-1

0 1 2 3 4 S 6
) a N
O 19T W ACGCTG- |
1 157 O | -C-ATGT |
2 -1
3 T
\
4 3
;
S 2




0 | 1 3| 4|5 | 6
_ a I
O 19T W ACGCTG- |
1 ~ —-CA-TGT |
2 0« -1
3 \1
\
4 3
}
5 2




0 3| 4|5 | 6
a I

o |3 ~ACGCTG |

1 -1\ CATG-T- |

2

; R

4 \ 2 1

R
\
5 3« D




Example local alignment



match=1
mismatch=-1
gap=-1

y = TAATA
X = TACTAA

o O O O O O

O|l= P

olNNH

olw N

Ol H

ol P

oo P



Local Alignment Example

match=1
mismatch=-1

gap=-1

y = TAATA
X = TACTAA

X

>

0
T 1
A2
A3
T 4

Ad

o O O O O O

© - O=H

N © oO|hN P

© O OoOo|wAN

T
4
\O
1
0

N\

N O olwnp

- O O



Local Alignment Example

match=1
mismatch=-1

gap=-1

y = TAATA-
X = TACTAA

X T A C T A A

y\0123456

000 0 0 0 0 0 O
w ~\

Tl0 1 0 0 1 0 O

% N %

22/0 0 2 0 0 2 1

\ % N X

a3/0 0 1 1 0 1 3

| t

T4/0 0 0 0 2 0 1
~\ w

A500100@<—’I




Local Alignment Example

match=1
mismatch=-1

gap=-1

y= ——=TAATA
X =TACTAA--

o O O O O oO|o

~

7
©O N O O =~ O|hdH

©O O O O =~ OlaH
7
/7
©O O =~ O O olwaAn
7

7
- O = N O oO|hdNY

7

VA

Ww O = N O olay
b |
—-%w - O oOolom

1

7



Computing Alignment Score with Linear
Memory

Alignment Score
- Space complexity of

n

computing just the score itself gonnn
. ) §
is O(n) N
. ! N 1IN
- We only need the previous n< [ ;:":‘;:ﬁ
L[, '],,
column to calculate the HDd HiLE
I
current column, and we can A

then throw away that previous
column once we're done
using it

88



Computing Prefix(i)
* prefix(i) is the length of the longest path from (0,0)
to (i,m/2)
» Compute prefix(i) by dynamic programming in the
left half of the matrix

rg

A 4

v store prefix(i) column

< ¢ ¢ ¢ ¢
<4
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Computing Suffix(i)

suffix(i) is the length of the longest path from (i,m/2) to (n,m)
suffix(i) is the length of the longest path from (n,m) to (i,m/2)
with all edges reversed

Compute suffix(f) by dynamic programming in the right half

of the “reversed” matrix N

store suffix(i) column

Ir
b
o

JK 3 ¥ =

0 m/2



Length(i) = Prefix(i) + Suffix(i)

» Add prefix(i) and suffix(i) to compute length(i):
- length()=prefix(i) + suffix(i)
* You now have a middle vertex of the maximum
path (i,m/2) as maximum of length(i)

middle point found

0 MM
<7—/\
v @
. %
A %

m/2

<3

© <
3 OO0



Computing Alignment Score: Recycling Columns

Only two columns of scores are saved at any
given time

\

K vaIEI™ 19 lelll®
vlliw < (lelllv VARVEIL 211 .4
vlliw C(lelllv VAIRVEIL 44
4 \VARIA 4 VAIRVAR] B 4 -
v 0 ||w VARV \¢

memory for column 1 memory for column

is used to calculate 2 is used to calculate

column 3 column 4
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Crossing the Middle Line

We want to calculate the longest
m/2 m path from (0,0) to (n,m) that passes

through (i,m/2) where i ranges from
0 to n and represents the i-th row

Define

Prefix(i)

length(/)

as the length of the longest path
b from (0,0) to (n,m) that passes

Suffix(i)

through vertex (i, m/2)
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Crossing the Middle Line

m/2 m

@

Prefix(i)
Suffix(i)

n D
Define (mid,m/2) as the vertex where the longest path crosses the
middle column.

length(mid) = optimal length = max,_; _, length(i)



Middle Column of the Alignment

G A A
: NN
T NN
T NN
c NN
A \>l>l>l
A |

middle column
(middle=ttcolumns/2)



Middle Node of the Alignment

F
H
F

<—
<€<——
<—

<«
<«
«—

<«
<«
<«

e —
H
H

V2V AVAVEE

<«

V7474787874 %

AR TR

middle node
(a node where an optimal alignment path crosses the middle column; note that different longest paths
may have different middle nodes, and a given longest path may have more than one middle nod&)



Divide and Conquer Approach to Sequence Alignment

AlignmentPath(source, sink) i i i
find MiddleNode A NN

; LN

T [N

A _\>l>l>l

A _\)l:\l>l




Divide and Conquer Approach to Sequence Alignment

AlignmentPath(source, sink)
find MiddleNode A
AlignmentPath(source, MiddleNode)

H
%
&

«— <«
«— <
«— <

F
%
%

&
R —

L L L

VAL L

LT

<«




Divide and Conquer Approach to Sequence Alignment

AlignmentPath(source, sink)
find MiddleNode
AlignmentPath(source, MiddleNode)
AlignmentPath(MiddleNode, sink)

e Eer v v

<«

«— <¢— <¢— <— <

VAL L=

R

“— <« — <— <

The only problem left is how to find this middle node in linear space!
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Computing Alignment Score in Linear Space

Finding the longest path in the alignment graph
requires storing all backtracking pointers — O(nm)
memory.

Finding the length of the longest path in the
alignment graph does not require storing any
backtracking pointers — O(n) memory.



Recycling the Columns in the Alignment Graph

A C G G A A

0 0 0 0 0 0 0
A \\.

0 1 1 1 1 1 1
! !

0 1 1 1 1 1 1
! |

0 1 1 1 1 1 1
C \\

Ny

0 1 od4tr o4 oI5 o 2
A \\

0 1 2 2 o> 3 3
A \\

0 1 2 2 2 3 4




Can We Find the Middle Node without
Constructing the Longest Path?

A A

A

T

T

C 4-path that visits the node

(4,middle)
In the middle column

A

A \

i-path — a longest path among paths that visit the j-th node in the middle column



Can We Find The Lengths of All i-paths?

G A A
: NN
' >v>l>l length(i):
T >¢>l>l length of an i-
C \_\)v>l>l path:

) length(0)=2
A \>’l>l>l length(4)=4
: SN
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Can We Find The Lengths of All i-paths?

A NN
T NN
T NN
c t_\)l>l>l
) AT
. | T

104



Can We Find The Lengths of i-paths?

G A A
A AN
i [ e
T NMANAW
C \_\)l>l>l
) AT
. | T

length(i)=fromSource(i)+toSink(i)

length(i):

length of an i-path
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Computing FromSource and toSink
C G G A A

A A C G G A A
2 1 0
2 1 0
2 1 0
2 1 0

1 1 0
fromSource(i) toSink(i)

Computing FROMSOURCE(i) for all i can be done in O(n) space and O(n :m/2) time. Computing
TOSINK(i ) for all i can also be done in O(n) space and O(n -m/2) time; this requires reversing the
direction of all edges and treating the sink as the source. Instead of reversing the edges, we

can reverse the stringsv=v,...v ,andw=w, ... w,and find s midqge iN the alignment graph for

Vo...vyandw,, ...w,.



How Much Time Did It Take to Find the Middle Node ?

A A C G G A A

&

H

20

2%

fromSource(i) toSink(i)

In total, we can compute all values LENGTH(i) = FROMSOURCE(i) + TOSINK(i) in linear
space with runtime proportional to n - m/2 + n - m/2 = n - m, which is the total area of
the alignment graph.
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Laughable Progress: O(nm) Time to Find ONE Node!

G A G C A A T T

e
A \
Qo
C \
Each subproblem
T l can be conquered
in time
T l proportional to
¢ its area:
A \
area/4+area/4=

A area/2
\Q

T N\
T \

How much time would it take to conquer 2 subproblems?



Laughable Progress: O(nm+nm/2) Time to Find THREE Nodes!

G A G C A A T T

—@
A ‘ \
o—0
C \
Each subproblem
T l can be conquered
in time
T l proportional to
— —@ its area:
A \
® area/8+area/8+
A \ area/8+area/8=
® area/4
T \

How much time would it take to conquer 4 subproblems?



O(nm+nm/2+nm/4) Time to Find NEARLY ALL Nodes!

G A G C A A T T

A \
_‘._"\ area+
C
area/2
T | +area/4
T | +area/8
— —‘Q\ +area/16
A
® +ot
A 3 <
o 5.
; \ area

How much time would it take to conquer ALL subproblems?



The Middle Edge (just to save memory a little bit more)

—_— > > > —> — —>» —
—> > ey — —> —> —> —

— — — —  —  — —

e e

l\i\l\l\*\l\i\l\l optimal

alignment path

i\l\l \l\l\l\l\ l\ sta.rting at the

— —  — — —  — —

—>—>—>_>_>>,;

—>—>—>—>—>_>_>,

—> —> —> —> —> — — —
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The Middle Edge Problem

Middle Edge in Linear Space Problem. Find a middle edge
in the alignment graph in linear space.

* Input: Two strings and matrix score.

 Qutput: A middle edge in the alignment graph of
these strings (as defined by the matrix score).



—_—) —> —> —> —> @ — —

l\l\l\l\%\l\l\l\l
l\i\l\l\i\g\l\l\l

—> — —> — . —>

—>—>—>—>—>—>—>—>

—>—>—>—>—>—>—>—>

—>—>—>—>—>—>—>

A middle edge (shown in bold)
starts at the middle node (shown
as a black circle). The optimal
path travels inside the first
highlighted rectangle, passes
the middle edge, and travels
inside the second highlighted
rectangle afterwards.
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md mmd ) U s s e We can eliminate the remaining
l parts of the alignment graph,
which takes up over half of

AN

the area formed by the graph,
\ l \ l from further consideration.
_ s
NN

l Finding middle edges (shown in

bold) within previously identified

' NN \‘\m\m

— e e e———> — —> —
—> —> —> —> —> —> —>

—> —> —> —> —>

—_> > —> —> —>
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Recursive LinearSpaceAlignment

LinearSpaceAlignment(top,bottom,left,right)

if left = right

return alignment formed by bottom-top edges “J,”
middle & | (left+right)/2 |
midNode < MiddleNode(top,bottom,left,right)
midEdge < MiddleEdge(top,bottom,left,right)
LinearSpaceAlignment(top,midNode,left, middle)
output midEdge
if midEdge = “> “ or midEdge = “N”

middle < middle+1
if midEdge = “J, “ or midEdge = “N"”

midNode < midNode+1
LinearSpaceAlignment(midNode,bottom, middle,right)



Linear-Space Sequence Alignment
ml =

oo

— —

A: space complexity

B: time complexity

Total Time: area+area/2+area/4+area/8+area/16+...




Can we compute the edit distance faster than O(nm)?

yes: The Four Russians Technique
Arlazarov, V.; Dinic, E.; Kronrod, M.; Faradzev, I.

The basic idea is to precompute parts of the
computation involved in filling out the dynamic
programming table.

time O(n”2/logn)

Assume the block-function b(A, B, C, X[i+1 .. i+t],
Y[j+1 .. j+t]) has been precomputed for all possible
Inputs.

Article in Russian, easier to look at Aho, Alfred V.;
Hopcroft, John E.; Ullman, Jeffrey D. (1974), The design
and analysis of computer algorithms, Addison-Wesley

NOT EXAMINABLE




Self Alignment

a N i Y
Pairing rules: 7= L all 5y
i m o3
A vl
(in RNAT is replaced by U) L e

Riboswitches

Stem Hairpin Loop  Pseudoknot

| ‘ ; E 4 Y
[K Rlbozymes
inion in Biotechnology

Bulge Internal Loop Multiloop P

https://www.sciencedirect.com/science/article/pii/S0958166916301082#fig0020 118




RNA Secondary Structure: The Nussinov Folding Algorithm
Nussinov, R., Pieczenik, G., Griggs, J. R. and Kleitman, D. ]. (1978). Algorithms
for loop matchings, SIAM ]. Appl. Math

((O9%)) I ((e9H))) ((Cooers [LDD)-- T
dot-bracket representation for a pseudoknot free
structure, as well as the extended pseudoknot
representation for a structure containing a

pseudoknot.

Link to Image Sourt



GGGGGUAUAGCUCAGGGGUAGAGCAUUUGACUGCAGAUCAAGAGGUCCCUGGUUCAAAUCCAGGUGCCCCCU
free energy in kcal/mol

CCCCCCC . CCCCannnnn )DD D I CCCC ... DN .t 2))))))))))). -28.10
CCCCCCC . CCCCannnnn )DDD PN € € § O TP ) DNt 2))))))))))). -27.90
O CCCCannnnn 2))) CCCCCCCCC. . (002 222))) 220220 .0))))....0))))))) . -27.80
CCCCCCCC. CCCCennnnn 2))) CCCCCCCCC. . CCCC..22))))..0)).0)2)))....2))))))) . —-27.80
O . CCCCnnn s DD D INF € ( € UM M. ... ))2))))))))). =27.60
CCCCCCC . CCCCannnnn DD D PN € { GIN GUNFII ). NG 2))))))))))). -27.50
CCCCCCCC. CCCCennnnn 22 CCCCCCCC . CCCCeeadI)edN)INN .. ... )))))))) . -27.20
CCCCCCCC. (et 2))) . CCCCCCCC . CCCCee eI o dNINN e )))))))) . -27.20
CCCCCCCC. CCCCnnnnn DD D I GO DD D I ¢ { G )))))3)))))). =27.20
CCCCCCa .. e ) ) 3 ) I CCCC .. CCCCCannnn e 2)))).0))))). =27.20
CCCCCCC (e CCCannnn 2)).))) ) (e ))2))))))))). -27.10
CCCCCCCC. CCCCennn e )))) CCCCCCCC . . CCCC..220)))...0)).0))))....0))))))) . —-27.00
CCCCCCCC. CCCCnnn e 2))) CCCCCCCC . . CCCC . 220)))...0).0)2))).....)))))))) . =27.00
CCCCCCCC. CCCCnnnnn DDD D I € { § G P ). G 2))3))3))))). -27.00
CCCCCCC. . CCCCannnnn. I CCCCCCa ) IINN e (CCCCennnnn. 2)2))3)))))). -27.00
CCCCCCC . CCCCannnnn DDD D I [ R 2)) CCCCCannnnn. 2))))3)))))). -27.00
CCCCCCa .. CCCCannn e DDD D PN €  § G RN ).0))) e 2))3).)))))). -27.00
CCCCCCCC. CCCCnnnnn 1)) CCCCCCCCC. . (. 2)).02)).00))....0)0))))) . -26.70
CCCCCCCC. CCCCennnnn 2))) CCCCCCCCC. . CCCannnn D)) )N M) . -26.70
CCCCCCCC. et DDD D PN { § UM IR )DD DI ¢ ( § G 2)))))3))))). -26.70
CCCCCCC . CCCCannnnn DD D RN (4§ { I )DD DD I (.. ... 2)3))3)))))). -26.70
CCCCCCa .. CCCCnnnnns DD D I ( { € U 2 (e 2)))).D))))). -26.70

usually the more the links the more the binding energy. Above:
Ensemble of all possible structures for a given RNA sequence,
with the corresponding binding energy. The potential energy is
negative because you need to give energy to break the links

(i.e. the structure), for example by heating.
Link to Image Sourt



RNA Secondary Structure
secondary structure=topology of local segments

Secondary Structure :

— Set of paired positions on interval [i,/]

— This tells which bases are paired in the subsequence from x; to x,
Every optimal structure can be built by extending optimal substructures.
Suppose we know all optimal substructures of length less than j-i+1.
The optimal substructure for [7,/] must be formed in one of four ways:

1. i,j paired

2. i unpaired

3. j unpaired

4. combining two substructures

Note that each of these consists of extending or joining substructures of
length less than j-i+1.

N N <N AN
\o \ Y O\o O\o
i f 5{ f{ SO

j -1 i+1 i j-1

o0 |
= +
e e . ) . H
i,j pair i unpaired j unpaired bifurcation
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Nussinov, R., Pieczenik, G., Gri
for loop matchings, SIAM ]. Appl. Math

RNA Secondary Structure: The Nussinov Folding Algorithm
s, J. R. and Kleitman, D.

. (1978). Algorithms

Example:  GGGAAAUCC

v(i,j) is the maximum number
of base pairs in segment |[i,j]

Initialisation y(1,1-1) =0& y(1,1) =0

Starting with all subsequences of
length 2, to length L:

y(1,]) =

’ y(i+1,))
y(i,j-1)

y(i+1,j-1)+0(,))

max, [y (1, k) +y(k+1, )]

max-

Where d(i,j) = 1 if x; and x;
are a complementary base pair,
and d(i,j) = 0, otherwise.

«—

OO0 NVVVOODO

[
A A
\ /
final structure A—LTI
i (|5_
/G—C
G

j — >

GG G AAA UCC

0

0
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Nussin

ov Folding Algorithm:

After scores for subsequences of length 2

y(1,]) =
y(i+L))
y(1,j-1)
y(i+1,j-1)+6(,])
\maXi<k<j[y 1Lk)+yk+1,))]

max:

[

A A
N/

ATY

_

GG G AAA UCC

O |0
0O |0
0

DO NYYYDDD
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Nussinov Folding Algorithm:
After scores for subsequences of length 3

y(i.j) = o —
y(i+1,j)
y(,j-1) C66 AAAUCC
max. ]/(1+19J'1)+6(1’J) G) 0 0 0
max; [y(Lk)+yk+1,))] G) 0 0 0
) 0 |0 |0
m > o |0 [0 |o
A A
. > o To
_ 0
A=Y >
Cf' lc 0o |0 |0
G=C (@) 2 1O
G O >




Nussinov Folding Algorithm:
After scores for subsequences of length 4

y(,)) =
y(i+1,j) cc 6 AAALCC
fax; y(i+1y§'l-,i;?é(i ) 4 I
| max,,. [y (i, k) + 7 (k +1, )] 8 > g g g g 0
p 0 |0 0 0 @
— > 0 |0 @@1
[ > o (0 |1 |1 |1
N/ lc 0 |0 J0 |9
2_9 o 0 0 0
|
/G-C O 0 0

G Two optimal substructures for same subsequence



Nussinov Folding Algorithm:
After scores for subsequences of length 5

}/(19_])=
y(i+1,)) GG G A AA UCC
v@,J-1) o |lo o [o o
M o) +8() @
max,., [y (LK) +7(k+1,))] @|0 |0 0 |o |o o
@) o (o [0 |o [0 |1
> o (o |o |0 [1 |1
[ )
A A > 0 |o [0 [1 |1 |1
N/ > o (0 |1 |1 |1
A=Y lc o lo [o |o
G|_c '® o |o |o
e '®) 0 |0




Nussinov Folding Algorithm:
After scores for subsequences of length 6

(@, )) =

SGrLi) GG G A AA UCC
yGi-1) o |0 |o [0 |0 |o
T LD 480G, )) g o lo lo lo lo lo |4
max, [y (i, k) +y (k +1, )]
\ @ o (0 [0 |O O |1 |2
> o (o |0 |0 [1 |1 |1
[ > 0 [0 |O |1 |1 |1
A\ }‘\ '> o [0 [1 |1 |1
Ay l = o [0 Jo o
G—C o o |0 |o
F—c '® 0 0

G



Nussinov Folding Algorithm
After scores for subsequences of length 7

r(,]) = j —

y(+1,j)
V(i) GG G A AA UZCC
B i+ 1,i-1)+6G, ) olo |0 (o |o o o |1
\mankq[V (Lk)+yk+1,j)] oo 0 0 0 0 0 1 2
) o (0o [0 |0 |0 |1 |2 |2
™ > o o (o |o [1 |1 |1
A A P o |0 [0 |1 |1 |1
N > o Jo [1 |1 |4
2_9 l C o (0o [0 |oO
|
G—C '® o (0 |0
G @) 0 |0




Nussinov Folding Algorithm
After scores for subsequences of length 8

r(.j) = i —
y(i+1,))
. v(G,j-1) GG G AAA UCC
y(i+1,j-1)+0(,]) o |o |o |0 |o |o |1 |2
max; [y (L, k) +y(k+1,])] @)

‘ ®lo (o |0 [o |o |o [1 |2 |3
@ o (0 [0 |0 [0 |1 |2 |2
> o o |o |o [1 |1 |1

[

A A i:(> o (o [0 [1 [1 |1
\ / > o (0 |1 |1 |1
A=y lc o (0o [0 |oO
8 o o o o
G e 0 |0




Nussinov Folding Algorithm
After scores for subsequences of length 9

y(i+1,J)

. y(G,j-1) GG G AAA UCC
y+Lj-H+oG)) olo [0 oo o |o |1 (2 |3

max,_,_ [y (i, k) +y(k +1,])] o
“ o |o |o [0 |o |o |1 |2 |3
@ o [0 |0 |0 [0 |1 |2 |2
[ > o [o o o [1 [1 [+

A A

\ > o |0 [0 [1 [1 |1
A=Y > 0o [0 |1 [1 |1
G= l C o |o [0 |oO
G=C O o |o |o
G '® 0 |0




Nussinov Folding Algorithm
Traceback

j — >

GG G AAAUCC

M| |-|o|o]o
22@111000
RRRRSHR

o [ofo] |\
GGGA /.->COO
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Nussinov algorithm

(a different

example): fill-stage

Algorithm: Nussinov RNA folding, fill stage

Initialisation:
yi,i—1) =0 fori'=2to L:
AR =) IoRiE=RINTO}
Recursion: starting with all subsequences of length 2, to length 1.
y@+1L,7),
y@,j—1),

VAT TR == QX . ; ‘ i
y(i+1,j—1)+8¢,j),

max; k< [y (i, k) +yk+1, j)].

Scoring system:
o(i,j) = 1 for all RNA Watson-Crick base-
pairs including G-U else o(i,j) = 0.

Blue: addition of unpaired base 3 or 7

Green: addition of paired bases 1,7

Ulu|cC

819

G|1 112(2|2|3(4|4
G|2 111|11(2(2{3|3
C|3 0([0(0|1]1|2(2
Cl4 0[0(0]|1]1|2(2
Al5 0({0|0|1]|2](2
G| 6 Of0f1(1(1
Uf7 0[{0(0(O
Ul8 0(0(O0
C|9 0(0

Pink: joining of substructures 1..4 and 5..8




Algorithm: Nussinov RNA folding, traceback stage

Initialisation: Push (1, L) onto stack.
Recursion: Repeat until stack is empty:
- pop (i, J)-
- if i >= j continue;
else if y(i +1,j) = y(i,j) push (¢ + 1550
else if y(i,j — 1) = v, J) push (i, j — 1);
elseif yE+1,j—D+8i; = y(@,Jj):
- record i, j base pair.
-push G +1,j — 1.
olse for k=i-t1 to j—1:if @, )+ yE&+ L =AUk
- push (k+1, ).

Nussinov algorithm:
trace-back

- push (i,k).
G|1 0|01 2121314l 4 - break.
G2 0|0 11112233
cl3 olollolol1l112ll2 current record stack
1,9
Cl4 001|122 1,9 1.8
AlS ololol1 /M| |18 Uasg| N O
| 1,4 ® G
e o[ oll1] |} 1,4 2,3 5,8 GeC oU
0 /3 2,3 3,2 5,8 Ge( AelU
7 olo|o]o 3,2 5,8 \/J C
uls o|o|o 2r8 5,8 6,7
7 6,7 7,6
Cl9 0|0 7,6
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d Recursive definition of the best score for a sub-sequence i,j looks at four possibilities:

S(i+1,j—1) S(i+1,)

S(ij-1)
S(ik) S(k+1,)

i+1

i i i-1 j ik k1

1. i,j pair 2. i unpaired 3. j unpaired 4. Bifurcation

b Dynamic programming algorithm for all sub-sequences i,j, from smallest to largest:

j— j— j—
G GGAAAUTCTC G GGAAAUTCTC G GGAAAUTCTC
G|O G|0o|O|O|O]|O]|]O]1 2@ G|o|Oo|O|O|O|O]|1]|2|3
G|O0|O G|o|O|O|]O|O|O|1l|2]|3 G|o|jOo|Oo|O|O|O|1|2|(3
i G 0|0 I G 0|]0|0|]0|0]1|2]|2 I G 0|0|O|JO]O]| 1|2 2_
la o|o la olojojof1|1|1 la ojlojofo|(D)|1]|1 2 a
A olo A olofo|1]1]2 A olo|@|1]1]2 \A-Ul
A 0|0 A 0o|jo0|1|1]1 A 0|0)]1]|]1]|1 GeC
U o|lo U ololo]|o U olo|o|o G.C
(o] 0|0 C 0|0]|0 (o] 0|0|0 G
Cc 0|0 C 0|0 Cc 0|0
Initialization; recursive fill; traceback; result.

Figure 1 Dynamic programming algorithm for RNA secondary structure prediction. (a) The four cases
examined by the dynamic programming recursion. Red dots mark the bases being added onto previously
calculated optimal sub-structures (/,j pair, unpaired / or unpaired j). Gray boxes are a reminder that the
recursion tabulates the score of the smaller optimal sub-structures, not the structures themselves.

Example sub-structures are shown in the gray boxes solely as examples. (b) The dynamic programming
algorithm in operation, showing the matrix S(/,)) for a sequence GGGAAAUCC after initialization, after 134
the recursive fill, and after an optimal structure with three base pairs has been traced back.



RNA Secondary Structure: The Nussinov Folding Algorithm
Nussinov, R., Pieczenik, G., Griggs, J. R. and Kleitman, D. ]. (1978). Algorithms
for loop matchings, SIAM J. Appl. Math

Initialisation y(1,1-1) =0& y(1,1) =0

There are O(n?) terms to be
v(i,j) = computed, each requiring calling
y(i+1,]) of O(n) already computed terms
. for the case of bifurcation. Thus
}/(19.]_1) . . 3\ :
max overall complexity is O(n°) in

y(i+1,?-1)+5(i,J) | time and O(n?) in space.
max, ; [y(L,k)+yk+1,7)]




» |Initialise:

» Sequence: GGGAAAUCC, length (L) =9.
> ,-,,-_1=0fori=2—L

» N;jj=0fori=1-1L

G

G

0

0

Q QI C & & > QAR

» Recursion:

» p(i,j) = 1if s; and s; are complementary, otherwise p(i, j) = 0.

G

G

A

A

A

a

Q
Q

G
G
G
A
A
A
U
C
C

N;;j = max

0
0
0

Nit1j-1+ p(is)),
Ni+1,ja

N,'J_
maxick<j[Nik + Niks1,] bifurcation

[en] Reu] Hen) Hen)

1,

[en] Hen) Hen] Hen) Nen)

(o] o) Hen] Hen] Hen) Nen)

[ev] Nen) Hen] N en] Hen) Nen) Nean]

O| O k= =t | | | | =

O OO || =N N N
O OO | | = DN | W

i,j pair
i unpaired
J unpaired

Summary

(note different notation!)

» Traceback:

G
0
0

QO C| > > P> Q20

G
0
0
0

=l R=li=] e

olo|olo|o|h

(== en] en] an] an) an] s

OO0 2|

= =l e e e e e

OO ININNO

olo|o| R v w w A

Example lifted from: Durbin et al. (1998) Biological sequence analysis. Cambridge University Press.



Phylogeny

3\ 51 | species tree by Darwin

Terminal Nodes

Branches or
Lineages

Ancestral Node \/93\‘ / \b
or ROOT of Internal Nodes E O

the Tree

time

((A,(B,C)),(D,E)) =The above phylogeny as nested parentheses 137
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tree of life based on mitochondrial sequences

Figure 1 :
tracing influenza strain variations

Phylogenetic tree
applications

Philippines/2/82
Mississippi/1/85
n n (B

ein

Nanchang/933/95

Influenza
Virus

ru
Anatomy
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Did the Florida Dentist infect his patic Phylogenetic
tree
: DENTIST = =
Phylogenetic tree _ a ||Cat|0ns
of HIV sequences Patient C PP
from the DENTIST, Patient A
rljlli/ F.’a;ler;tsCi |§ Loclal Patient G
-infected People: ] — .
Patient B Yes:
_ The HIV sequences from
o E Patient E these patients fall within
Patient A the clade of HIV sequences
, found in the dentist.
e Patient H
— Local control 2
) L—— | ocal control 3
— Patient F — No
— Local control 9

— Local control 35
‘ Local control 3

Patient D — No

From Ou et al. (1992) and Page & Holmes (1998)



EXAMPLE: Phylogenetic-inspired techniques for reverse engineering
and detection of malware families

o
. : . . o o\
For example, given an execution trace of instructions, s 3}
push ebp ’5’7
mov ebp, esp 1 < o
mov eax, dword ptr [ebp-0x4] 98 Q
Jmp +0x14
.- . . 0c92
it is abstracted as a sequence of mnemonics, i.e.
push, mov, mov, Jjmp
ignoring the operands. Each mnemonic is then mapped to a o7
unique alphabet-pair, e.g. mov = MO, push = PH, jmp N S, b
= JM. The resulting sequence is thus PHMOMOJM. S o
=y
dbg VPHPHPHLEMGMGRPMGMGAD CMHLMGADCMHLMGADCMH YMG I MMG I MADMG I MCMH ZMGGRMGHMMGCMH ZMGCMH ZMGCMH YMGGRMGMGPPPPPPMGPPRE
def [PHMGPHMGMGADCMHLMGADCMHLMGADCMHYMGIMMG IMADMG IMCMHZMGGRMGHMMGCMH ZMGCMH ZMGCMHYMGGRMGMGMGPPRE————————————————————
spd APHMGPHMGLECMHLLECMHLLECMHLMGMGIMIMMGPH IMLECMHZMGCMPPHZCMHZCMHZPPPPGRPPRE——————————————————————————————————
(b)
dbg VPHPHPHLEMGMGRPMGMGAD| “MH I} . IMGAD[” GIMMG[[MADMG————-IMCMH RMGHMMG{_M] CMH C GGRMGMGPPPPP
def [PHMG--PH-——————————— MGMGAD|CMHT] CTMHLMGADL'MHYMGIMG MG————IMCWZMGGRMG:WZMGCM}{YMGCRMGMG —————— PRE
spd i-—PHMGP—————————— HMGLECMHIL - -ECMHIL - -ECMHIMG - -MGLMIMMGPH I MHZMG—-——————~ MPPHZICMHZ- —CMHZ- - ———————- PPPPG%::
(e)
dbg PHMGSVPHPHPHLEMGMGRPMGMGADCMH CMHI] CMHYMG([? IMADMGI IHZMGGRMGHMMGCMH GCMHYMGGRMGMGPPPPPPMGPPRE
def ——---=——————-- P}MGP}{MGMGADCWLMGAD:WLMGADQ‘IHYMG IMADmGGRMGmMGmm mmcpm ——————
spd ——f——————————— PHMGPHMGPHMGLECMHLLECMH CMHLMGMG[[MIMMGPHIMLECMH-————————————— PHZLCMHZCMHZPPPPGRPPRE——————

Sequence alignment (dbg: with debugging symbols, def: default settings, spd:
optimised for speed). (a) Before alignment. (b) After alignment using an identity
substitution matrix. (c) After alignment using a substitution matrix 140



Trees and Phylogeny
Outline

Transforming Distance Matrices into Evolutionary Trees

Toward an Algorithm for Distance-Based Phylogeny Construction
Additive Phylogeny

Using Least-Squares to Construct Distance-Based Phylogenies
Ultrametric Evolutionary Trees

The Neighbor-Joining Algorithm

Character-Based Tree Reconstruction

The Small Parsimony Problem

The Large Parsimony Problem

Back to the alignment: progressive alignment



Constructing a Distance Matrix

D, ; = number of differing symbols between i-th and
Jj-th rows of a “multiple alignment”.

SPECIES ALIGNMENT DISTANCE MATRIX

Chimp Human Seal Whale
Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT

3 0 7 5
Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0




Constructing a Distance Matrix

D, ; = number of differing symbols between i-th and
Jj-th rows of a “multiple alignment”.

SPECIES ALIGNMENT DISTANCE MATRIX

Chimp Human Seal Whale
Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT

3 0 7 5
Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0




Constructing a Distance Matrix

D, ; = number of differing symbols between i-th and
Jj-th rows of a multiple alignment.

SPECIES ALIGNMENT DISTANCE MATRIX
Chimp Human Seal Whale
Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 7/ 5
Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0

How else could we form a distance matrix?




Trees

N\
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worms
TETRAPODS
/ \ yf sh crusta
AMNIOTES

/ \ mph ibians
/ \ ammals
A

es dl
&I d &bd

Tree: Connected
graph containing no
cycles.

Leaves (degree = 1):

present-day species

Internal nodes
(degree > 1):
ancestral species




Trees

N
/N /N

) e

TIME
® 0 O ® 0 O Present Day
Rooted tree: one node is designated as the (most

recent common ancestor)




Distance-Based Phylogeny

Distance-Based Phylogeny Problem: Construct an
evolutionary tree from a distance matrix.

* Input: A distance matrix.
* Output: The unrooted tree “fitting” this distance

matrix.




Constructing a Distance Matrix

D, ; = number of differing symbols between i-th and
Jj-th rows of a “multiple alignment”.

SPECIES ALIGNMENT DISTANCE MATRIX

Chimp Human Seal Whale
Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT

3 0 7 5
Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0




Fitting a Tree to a Matrix

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7/ 0 2
Whale 4 5 2 0
Chimp ‘ Seal
\ 3 /
Human / \ Whale



Return to Distance-Based Phylogeny

Distance-Based Phylogeny Problem: Construct an
evolutionary tree from a distance matrix.

* Input: A distance matrix.
* Output: The unrooted tree fitting this distance

matrix.

Now is this problem well-defined?




Return to Distance-Based Phylogeny

Exercise Break: Try fitting a tree to the following
matrix.

—
o NN o @) ~
U1 K O W .
b © A~ b~ xR
S N Ul W =~




No Tree Fits a Matrix

Exercise Break: Try fitting a tree to the following

matrix.
i j ok
i 0 3 4 3
j 3 0 4 5
k 4 4 0 2
I 3 5 2 0

Additive matrix: distance matrix such that there
exists an unrooted tree fitting it.




More Than One Tree Fits a Matrix

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0



More Than One Tree Fits a Matrix

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0



Which Tree 1s “Better”?
Chimp ‘ ‘ Seal

\ s /
Huma ‘/ \‘ Whale

Simple tree: tree with no nodes of degree 2.

Theorem: There is a unique simple tree fitting an
additive matrix.




Reformulating Distance-Based Phylogeny

Distance-Based Phylogeny Problem: Construct an
evolutionary tree from a distance matrix.

 Input: A distance matrix.
* Qutput: The simple tree fitting this distance

matrix (if this matrix is additive).




An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 / 0 2
Whale 4 5 2 0



An Idea for Distance-Based Phylogeny

Seal and whale are neighbors (meaning they share
the same parent).

Theorem: Every simple tree with at least two nodes
has at least one pair of neighboring leaves.

Chimp ‘\ N 2/ Seal
o S~

Human Whale



An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0
Seal
How do we compute /
the unknown O
distances? \




Toward a Recursive Algorithm

dym=1d,, +d )+, +d.)-(d,, +d . )/2



Toward a Recursive Algorithm

dym=1d,, +d )+, +d.)-(d,, +d . )/2
dp =+ d—d) /2

dip =D+ D =D;j) /2

. d, =Dy~ Dy + Dy~ D, ) /2

d,, =Dy +D;;= D) /2

I/



An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0
Seal

d,, =Dy +D;;= D)) /2

I,



An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0
Seal

d,, =Dy +D;;= D)) /2

I,



An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0

Chimp ‘ -_ d ‘ Seal

- Seal,m
)
-y
_y, ~
-

m

RN

: ‘ Whale

dSeal,m — (DSeaI,Chimp T DSeaI,Whale o DWhaIe,Chimp) /2



An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 4 0 2
Whale 4 5 2 0

Chim Seal
@ P
~ - m \
O @ whale
d =2

Sealm —



An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0
Chim Seal
y ~ m



An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale m

Chimp 0 3 6 4 4

Human 3 0 7 5 5

Seal 6 7 0 2 2

Whale - 5 2 0 0

m 4 5 2 0 0
Chimp ‘ ~<_ \4 2/ Seal



An Idea for Distance-Based Phylogeny

Chimp Human

Chimp 0 3 4

Human 3 0 5

m 4 5 0
Chimp ‘ ~<_ \4 2/‘ Seal



An Idea for Distance-Based Phylogeny

Chimp Human

m

Chimp 0 3 4

Human 3 0 5

m 4 5 0
Chimp ‘ ~<_ \4 2/‘ Seal



An Idea for Distance-Based Phylogeny

Chimp Human

m
Chimp 0 3 4
Human 3 0 5
m 4 5 0
Chimp ‘\? ) Seal
a n /



An Idea for Distance-Based Phylogeny

Chimp Human

m
Chimp 0 3 4
Human 3 0 5
m 4 5 0
Chimp ‘ Seal

dChimp,a — (DChimp,m + DChimp,Human o DHuman,m) /2



An Idea for Distance-Based Phylogeny

Chimp Human

m
Chimp 0 3 4
Human 3 0 5

m 4 5 0
a m
? \
Human ‘ 0



An Idea for Distance-Based Phylogeny

Chimp Human

m
Chimp 0 3 4
Human 3 0 5

m 4 5 0
d m



An Idea for Distance-Based Phylogeny

Chimp Human

m
Chimp 0 3 4
Human 3 0 5
m 4 5 0
Chimp ‘ Seal




An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal §) / 0 2
Whale 4 5 2 0
Chimp ‘\ / Seal
/ \
Human ‘ Whale



An Idea for Distance-Based Phylogeny

Exercise Break: Apply this recursive approach to the
distance matrix below.

i j ok
i 0 13 21 22
j 13 0 12 13
k 21 12 0 13
[ 22 13 13 0



What Was Wrong With Our Algorithm?

i j ok
i 0 13 21 22
j 13 0 12 13
k 21 12 0 13
[ 22 13 13 0



What Was Wrong With Our Algorithm?

i j ok
i 0 13 21 22
j 13 0 12 13
k 21 12 0 13
[ 22 13 13 0

0\” | /e
RN




What Was Wrong With Our Algorithm?

i j ko

i 0 13 21 22

j 13 0 12 13 minimum

kK 21 12 0 13 element is D, ,

I 22 13 13 0

0& | /e
RN




What Was Wrong With Our Algorithm?

i kI

i 0 13 21 22

j 13 0 12 13 minimum

kK 21 12 0 13 element is D, ,

I 22 13 13 0

o
& 4 / J and kare |
0/ xa not neighbors!



From Neighbors to Limbs

Rather than trying to find neighbors, let’s instead try
to compute the length of limbs, the edges attached
to leaves.

.. .®
N




From Neighbors to Limbs

dym=1d,, +d )+, +d.)-(d,, +d . )/2
dp =+ d—d) /2

dip =D+ D =D;j) /2

. d, =Dy~ Dy + Dy~ D, ) /2

d,, =Dy +D;;= D) /2

I/



From Neighbors to Limbs

iy =1d +d )+ (o’/-/m +d, )=, + o/j/m)] /2
d/(,m — (dk + C{j,/( — di,j) / 2

Ay =Dy + Dy = D) /2

" di,m =D — (D + Dj,k — D,-//-) /2 | Assumes that i and
diy =D+ D= D) /2 J are neighbors...




Computing Limb Lengths

Limb Length Theorem: LimblLength(i) is equal to the
minimum value of (D;, + D;; — D, )/2 over all leaves

j and k.

Limb Length Problem: Compute the length of a limb

in the simple tree fitting an additive distance matrix.

* Input: An additive distance matrix D and an
Integer J.

* QOutput: The length of the limb connecting leaf j
to its parent, LimblLength(j).

Code Challenge: Solve the Limb Length Problem.



Computing Limb Lengths

Limb Length Theorem: LimblLength(chimp) is equal
to the minimum value of (D, « + Depimp,j — D; /2
over all leaves j and k.
Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0
(Dchimp, human T Dchimp, seal Dhuman, sea|> /2 — (3 + 6 — 7) /2 =1



Computing Limb Lengths

Limb Length Theorem: LimblLength(chimp) is equal
to the minimum value of (D, + D

chimp,j

.

(D
(D

over all leaves j and k.
Chimp
Chimp 0 3
Human 3 0
Seal 6 7
Whale 4 5
+ D

chimp, human

+ D

chimp, human chimp, whale

chimp, seal Dhuman, sea|>

Human

Seal

/2

6

/
0
2

Whale

S N U

=3+6-7)/2=1

_[)human,whale)/2 =3 +4-5)/2=1



Computing Limb Lengths

Limb Length Theorem: LimblLength(chimp) is equal
to the minimum value of (D, « + Depimp,j — D; /2
over all leaves j and k.

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0
(Dchimp, human + Dchimp, seal Dhuman, sea|> /2 — (3 + 0 — 7) /2 =1

(Dchimp, human + Dchimp, whale Dhuman, Whale) /2 = (3 + 4 — 5) /2 =1
(Dchimp, whale T Dchimp, seal thale, seal) /2 =(6+4-2)/2=4



Computing Limb Lengths

Limb Length Theorem: Limblength(chimp) is equal
to the minimum value of (D, + Depimp,j — D; 1)/2
over all leaves j and k.

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0
(Dhuman, chimp + Dchimp, seal Dhuman, sea|> /2 = (3 + 6 — 7) /2 =1

(Dhuman, chimp + Dchimp, whale Dhuman, Whale) /2 = (3 + 4 — 5) /2 =1
(thale, chimp + Dchimp, seal thale, seal) /2 = (6 + 4 — 2) /2 =4



Computing Limb Lengths

Limb Length Theorem: LimblLength(chimp) is equal
to the minimum value of (D, « + Depimp,j — D; /2
over all leaves j and k.

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0
Chimp ‘ ) ‘ Seal

N
o

Human Whale




AdditivePhylogeny In Action

i kI
TREE(D)
I O 13 21 22

13 0 12 13 \ 4 /
D J
k 21 12 0 13 0/ Xo

I 22 13 13 O




AdditivePhylogeny In Action

i k|
I O 13 21 22

D J

k 21 12 0 13

13 0 12 13

I 22 13 13 O

1. Pick an arbitrary leaf j.




AdditivePhylogeny In Action

i k|
I O 13 21 22

D J

k 21 12 0 13

13 0 12 13

I 22 13 13 O

LimblLength(j) = 2

2. Compute its limb length, LimbLength()).




AdditivePhylogeny In Action

| TREE(Dbald)
I o 11 21 22

Pbald j 11 0 10 11 \ /
k 21 10 0 13 \
/

22 11 13 0 o

3. Subtract LimblLength(j) from each row and column
to produce DPad in which j is a bald limb (length 0).




AdditivePhylogeny In Action

i k |
i 0 21 22
Dtrim
k 21 O 13
I 22 13 0

4. Remove the j-th row and column of the matrix to
form the (n = 1) x (n = 1) matrix Dfm,




AdditivePhylogeny In Action

I kK 1
I 0 21 22
Dtrim
kK 21 0O 13
I 22 13 0

5. Construct Tree(Dtm),




AdditivePhylogeny In Action

TREE(Dbald)
I o 11 21 22

Pbald j 11 0 10 11 \ /
k 21 10 0 13 \
/

22 11 13 0 o

6. Identify the point in Tree(D"™) where leaf j should
be attached.




AdditivePhylogeny In Action

i kI
TREE(D)
I O 13 21 22

13 0 12 13 \ 4 /
D J
k 21 12 0 13 0/ Xﬂ

I 22 13 13 O

LimblLength()) =

7. Attach j by an edge of length LimblLength()) in
order to form Tree(D).




AdditivePhylogeny

AdditivePhylogeny(D):

1.
2.
3.

4.

U1

Pick an arbitrary leaf .

Compute its limb length, LimbLength(j).

Subtract LimbLength(j) from each row and column to
produce DPad in which j is a bald limb (length 0).
Remove the j-th row and column of the matrix to
form the (n = 1) x (n = 1) matrix Dwm,

Construct Tree(Dtm),

Identify the point in Tree(D™™) where leaf j should be
attached.

Attach j by an edge of length LimbLength(j) in order
to form Tree(D).




AdditivePhylogeny

AdditivePhylogeny(D):

1.
2.
3.

4.

U1

Pick an arbitrary leaf .

Compute its limb length, LimbLength(j).

Subtract LimbLength(j) from each row and column to
produce DPad in which j is a bald limb (length 0).
Remove the j-th row and column of the matrix to
form the (n = 1) x (n = 1) matrix Dwm,

Construct Tree(Dtm),

Identify the point in Tree(D"'™) where leaf j should
be attached.

Attach j by an edge of length LimbLength(j) in order
to form Tree(D).




Attaching a Limb

i j kI |
TREE(DTM)

i 0 11 21 22 e

6
j 11 0 10 11 15 /
Dbald 0
k 21 10 0 13 X

I 22 11 13 O 0

Limb Length Theorem: the length of the limb of j is
equal to the minimum value of (DP9, + Dbald, | —
pbald, )/2 over all leaves i and k.




Attaching a Limb

i j kI .
TREE(DTM)

i 0 11 21 22 e

6
j 11 0 10 11 15 /
Dbald 0
k 21 10 0 13 X

I 22 11 13 O 0

Limb Length Theorem: the length of the limb of j is
equal to the minimum value of (DP9, + Dbald, | —
pbald, )/2 over all leaves i and k.

<Dbaldi,j 4+ Dbaldj,k _ Dbaldi/ /2 =0



pbald J 1

k 21

Attaching a Limb

i ko
11 21 22
0 10 11
10 0 13

117 13 0

(Dbald, 4 pbald.
pbald, + pbald,

TREE(DtIM)

15 /
¢ \0

Dbald )/2 0
Dbald



Attaching a Limb

i i k|
l TREE(Dbald)

i 0 11 21 22 () (k)

11 6
pbald 4 1101011 g
k 21 10 0 13 - X

l\/,"
I 22 11 13 O 0

The attachment point for j is found on the path between
leaves i and k at distance D", from i.

bald bald ~— [Hbald
Da I//+Da//k—Da I,/(



AdditivePhylogeny

AdditivePhylogeny(D):

1.
2.
3.

4.

U1

Pick an arbitrary leaf .

Compute its limb length, LimbLength(j).

Subtract LimbLength(j) from each row and column to
produce DPad in which j is a bald limb (length 0).
Remove the j-th row and column of the matrix to
form the (n = 1) x (n = 1) matrix D"m,

Construct Tree(D"™).

Identify the point in Tree(D™™) where leaf j should be
attached.

Attach j by an edge of length LimbLength(j) in order
to form Tree(D).

Implement AdditivePhylogeny.




Sum of Squared Errors

Discrepancy(T, D) = Z,.; _i <, (d; (T) = D, )?
=12+ 12=2

\ s /
NG,

i j kI i J k

I 3 4 3 I 3 4

4 5 ] -
D J d J
k 2 k
I /

N o B



Sum of Squared Errors

Exercise Break: Assign lengths to edges in T in order
to minimize Discrepancy(I, D).

l
T _
/ ?
@ N

i j k1 i j k 1
i 0O 3 4 3 I 22 2
4 5 ¢

D/ dl
k 2 k 4

/ /




Least-Squares Phylogeny

Least-Squares Distance-Based Phylogeny Problem:

Civen a distance matrix, find the tree that minimizes

the sum of squared errors.

* Input: An n x n distance matrix D.

*  Output: A weighted tree T with n leaves
minimizing Discrepancy(T, D) over all weighted
trees with n leaves.

Unfortunately, this problem is NP-Complete...




Ultrametric Trees

edge weights: correspond
to difference in ages on the
nodes the edge connects.

Rooted binary tree: an
unrooted binary tree with

a root (of degree 2) on 33
10\

one of its edges. Ultrametric tree: distance

€ from root to any leaf is the
10 ™. same (i.e., age of root).
33 6\
23 <
‘I/ 6
2
6
ZRN
o o o o o o ®
Squirrel Baboon Orangutan Gorilla  Chimpanzee  Bonobo Human

Monkey




Ultrametric Trees

Ultrametric tree: distance
33 from root to any leaf is the
10\ same (i.e., age of root).
23
10\ 13
33 . 6\ 7
/ 1> 6
2
6
PZEAN
- - - - - -
Squirrel Baboon  Orangutan Gorilla  Chimpanzee  Bonobo

Monkey




UPGMA: A Clustering Heuristic

1. Form a cluster for each present-day species, each
containing a single leaf.

i j ok I
i 0 3 4 3
j 3 0 4 5
k 4 4 0 2
| 3 5 2 0 00 00 600 O




UPGMA: A Clustering Heuristic

2. Find the two closest clusters C; and C, according
to the average distance

DpeCr, C) =201, jinc2 Dy / [GIRNI®Y

avg
where |C| denotes the number of elements in C.

Q0o 0o OG0 O

~
w h~r W O =
U1 AN -) W =,
N O »~ B~ =
S N U1 W =




UPGMA: A Clustering Heuristic

3. Merge C, and G, into a single cluster C.

{k, 1}

-~
w W O -
U1 AN -) W =,
N O ~ b~ =R
SO N Ul W =

Q0o 0o OO0 O




UPGMA: A Clustering Heuristic

4. Form a new node for C and connect to C, and C,
by an edge. Set age of C as D_(C;, C,)/2.

avgl

N O© A B~ ==
O N Ul W =

-
o AN o -) =
U1 AN -) W =,




UPGMA: A Clustering Heuristic

5. Update the distance matrix by computing the
average distance between each pair of clusters.

i j kD
i 0 3 35

1
j 3 0 45 1/ \
(k,1} 35 45 0

Q0o o OO0 O o

{k, 1}




UPGMA: A Clustering Heuristic

6. Iterate until a single cluster contains all species.

U, J'}
P ke 1.5

i 0 3 3.5 :
1 1
(k13 35 45 0 / \

Q0o o OO0 O o




UPGMA: A Clustering Heuristic

6. Iterate until a single cluster contains all species.

i)}
{’/]} {k, I} 1.5

L O 4 :

Q0o o OO0 O o




UPGMA: A Clustering Heuristic

6. Iterate until a single cluster contains all species.

2
P
W kD 1.5 \
L O Z :
1.5 1.5
/\

(k13 4 0 /\

Q0o o OO0 O o




UPGMA: A Clustering Heuristic

6. Iterate until a single cluster contains all species.

2N
AT

Q0o o OO0 O o




UPGMA: A Clustering Heuristic

UPGMA(D):

1.

2.

o

Form a cluster for each present-day species, each
containing a single leaf.
Find the two closest clusters C; and C, according to the
average distance

Do(Ci, C3) =200 1, jinc2 Dy / |G| o |G
where |C| denotes the number of elements in C
Merge C, and G, into a single cluster C.
Form a new node for C and connect to C; and C, by an
edge. Set age of C as D, ,(C;, G,)/2.
Update the distance matrix by computing the average
distance between each pair of clusters.
Iterate steps 2-5 until a single cluster contains all species.




UPGMA Doesn’t “Fit” a Tree to a Matrix

2
i j ok y
i 0 3 4 3 \
j 3 0 4 5
k 4 4 0 2 /\ /\
I 3 5 2 0

o ®o © o



UPGMA Doesn’t “Fit” a Tree to a Matrix

2

i j kI y
i 0 3 4 3 \
j 3 0 4 5
k 4 4 0 2 /\ /\
I 3 5 2 0

o ®o O o



In Summary...

 AdditivePhylogeny:
— good: produces the tree fitting an additive matrix
— bad: fails completely on a non-additive matrix

 UPGMA:

— good: produces a tree for any matrix
— bad: tree doesn’t necessarily fit an additive matrix

— good: produces the tree fitting an additive matrix
— good: provides heuristic for a non-additive matrix



Neighbor-Joining Theorem

Given an n x n distance matrix D, its neighbor-joining
matrix is the matrix D* defined as

D*; ;= (n = 2)*D,; - TotalDistancep(i) — TotalDistance ;)

where TotalDistance(i) is the sum of distances from i
to all other leaves.

i j k | TotalDistance, i j k |
I 0 13 21 22 56 I 0 -68 -60 -60
j 13 0 12 13 38 ] -68 0 -60 -60
D D*
k 21 12 0 13 46 k -60 -60 0 -68

22 13 13 0 48 I -60 -60 -68 O



Neighbor-Joining Theorem

Neighbor-Joining Theorem: If D is additive, then the
smallest element of D* corresponds to neighboring

leaves in Tree(D).

i j  k / TotalDistance,
i 0 13 21 22 56
j 13 0 12 13 38
D kK 21 12 0 13 46

22 13 13 0 48

D*

| -68
-60
I -60

-68

-60
-60

-60
-60

-68

-60
-60
-68




Neighbor-Joining in Action

ik / TotalDistance,
i 0 -68 -60 -60 56
D* j -68 0 -60 -60 38
k -60 -60 O -68 46
I -60 -60 -68 O 48

1. Construct neighbor-joining matrix D* from D.




Neighbor-Joining in Action

ik / TotalDistance,
i 0 -68 -60 -60 56
D* j -68 0 -60 -60 38
k -60 -60 O -68 46
-60 -60 -68 O 48

2. Find a minimum element D*;; of D*.

7




Neighbor-Joining in Action

ik / TotalDistance,
i 0 -68 -60 -60 56
D* j -68 0 -60 -60 38
k -60 -60 O -68 46
-60 -60 -68 O 48

2. Find a minimum element D*;; of D*.

7




Neighbor-Joining in Action

ik / TotalDistance,
i 0 -68 -60 -60 56
pD* Jj -68 0 -60 -60 38 Ai,/' = 56-38)/4-2)
k -60 -60 0 -68 46 =9
I -60 -60 -68 0 48

3. Compute 4;; = (TotalDistancep|i) -
TotalDistancef(j)) / (n — 2).




Neighbor-Joining in Action

ik / TotalDistance,
i 0 13 21 22 56
D j 13 0 12 13 38 A,-//-:(56—38)/(4—2)
k 21 12 0 13 46 =9
I 22 13 13 0O 48

LimbLength(i) = 2(13 + 9) = 11
Limblength(i) = /2(13 —9) = 2

4. Set LimbLength(i) equal to 2(D;; + 4;) and
LimbLength(j) equal to 2(D,; - 4, ).




Neighbor-Joining in Action

m k / TotalDistance,
m O 10 11 21
[’ k 10 0 13 23
I 11 13 0 24

5. Form a matrix D’ by removing i-th and j-th row/
column from D and adding an m-th row/column
such that forany k, D, ,, = (D, + D; =D, /2.




Flashback: Computation of d, ,

iy =1d +d )+ (o’/-/m +d, )=, + o/j/m)] /2
d/( _(d'k+6{j,k_di,j)/2

,M I,

dk,m — (Di,k + D/,/( — Di,j) / 2



Neighbor-Joining in Action

mo ko1 M Tree(D") 6
m 0 10 11 @ 4 /

[’ k 10 0 13

I 11 13 0 X

l/ g
1
\\_/

6. Apply NeighborJoining to D’ to obtain Tree(D").




Neighbor-Joining in Action

m

k1 0 11 Tree(D)
10 11 4

D’ k 10 0 13 /

I 11 13 0 0 2

LimbLength(i) = 2(13 + 9) = 11
Limblength(i) = /2(13 —9) = 2

m 0

6

0
e

7. Reattach limbs of / and j to obtain Tree(D).




Neighbor-Joining in Action

m

m 0

k1 ﬁ 11 Tree(D)
10 11 4

D’ k 10 0 13 /

I 11 13 0 0 2

6

0
e

7. Reattach limbs of / and j to obtain Tree(D).




Neighbor-Joining

NeighborJoining(D):

1.
2.
3.

4.

N en

Construct neighbor-joining matrix D* from D.

Find @ minimum element D*; ; of D*.

Compute 4,; = (TotalDistancep(i) — TotalDistancepj)) / (n
—2).

Set LimbLength(i) equal to "2(D;; + 4, ) and LimbLength(j)
equal to "2(D;; - 4;)).

Form a matrix D’ by removing i-th and j-th row/column
from D and adding an m-th row/column such that for any
K, Dy = (Dy; + Dy;— D) /2.

Apply NeighborJoining to D’ to obtain Tree(D").
Reattach limbs of / and j to obtain Tree(D).

Implement Neighborjoining.




Neighbor-Joining

Exercise Break, check the following: Neighbor
joining on a set of r taxa requires r-3 iterations.
At each step one has to build and search a D*
matrix. Initially the D* matrix is size r?, then the
next step it is (r -1)?, etc. This leads to a time
complexity of O(r 3).




Neighbor-Joining

Exercise Break: Find the tree returned by

NeighborJoining on the following non-additive
matrix. How does the result compare with the tree

produced by UPGMAY?

i j k| y ’
i 0 3 4 3 75 \
j 3 0 4 5
Dov a4 0 2 1‘/ \1‘5 1/
I 3 5 2 0

Qo0 O o

O o

UPGMA
tree

1
1

O o




Distance matrix

Step 1

S calculations

S, = (sumall DJN - 2),
where N is the # of
OTUs in the set.

Step 2
Calculate pair with
smallest (M), where

M,"- - D,’ — S; — Sl'

Step 3

Create a node (U) that
joins pair with lowest
M;; such that
qu = D.;IZ + (s, - S,]/Z

Step 4

Join i and j according to §

above and make all
other taxa in form of

a star. Branches in black

are of unknown length.
Branches in red are of
known length.

Step 5

Calculate new distance
matrix of all other taxa
to U with
Dw = D+ D,',.— D;f,
where jand j are those
selected from above.

Example (different notation)

A B C D E
B |5

cCl4 7
D|7 10 7
E|6 9 6 5
FI18 11 8 9 8

SAa=(5+4+7+6+8)/4 =7.5

Sz = (5+7+1049+11)4 = 10.5
Sc=(4+7+7+6+8)/4 =8
Sp=(7+10+7+5+9)/4 = 9.5
5S¢ = (6+9+6+5+8)4 = 8.5

S = (8+11+8+9+8)/4 = 11

Smallest are
Mypg=5=-75-105==13
Mpe=5-95-85=-13

Choose one of these (AB here).

U, joins A and B:
Sauy = Dasf2 +(Sa - Sp)2 =1
Spuy = Dasf2 + (S5 = SpV2 =4

Uug € D E
C|3
Dle 7
E|5 6 3
FI17 8 9 8

Sup = B3+645+7M3 =7
Sc=(3+7+6=8)/3 =8
Sp=(6+7+5+9Y3 =9
S =(5+6+5+8)3 =8

S¢ = (7+8+9+8)/3 = 10.6

Smallest is

My, =3-7-8=-12
My=5-9-8==12
Choose one of these {(DE here).

U, joins D and E:
Spup = Dpe2 +(Sp- 52 =3
Seua = Dpgl2 + (S - So¥2 =2

U € U
Cl3
U, | 3 4
Flz 8 6

Suy = 3+3+47)2 = 6.5
S-=(3+4+8)2=7.5

SU2 = (3+4+6)2 = 6.5
S = (7+8+6)2 =105

Smallest is
Mcy, =3-6.5-7.5=-11

U, joins Cand U,:
SCU3 = Dy 22 + (Sc - S, V2 =2

Surus = Deuy2 + (S =502 =1

Su; = (2+6)1 =8
Sy =(2+6¥1 =8
5= (6+6)1 =12

Smallest is

Myr=6=-8-12=-14
My=6-8-12=-14
My =2-8-8=-14

Choose one of these (M,,,, here).

U, joins U, and U;:

Suzus = Buyua2 + (Suz — SuaV2 = 1

Fls

Because N-2 =0,
we cannot do this
calculation.

For last pair, connect
U, and F with branch

Susua = Duyuy2 + (Syz = SyM2 = 1. length = 5.

Comments

Note this is the same
tree we started with
{drawn in unrooted
form here).



Weakness of Distance-Based Methods

Distance-based algorithms for evolutionary tree
reconstruction say nothing about ancestral states at
internal nodes.

We [ost information when we converted a multiple
alignment to a distance matrix...

SPECIES ALIGNMENT DISTANCE MATRIX
Chimp Human Seal Whale
Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 7 5
Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0



An Alignment As a Character Table

SPECIES ALIGNMENT
Chimp ACGTAGGCCT -
Human ATGTAAGACT ,
> N species
Seal TCGAGAGCAC
Whale TCGAAAGCAT “
H_J

m characters



Toward a Computational Problem

Chimp ACGTAGGCCT -«
Human ATGTAAGACT .
> N specles
Seal TCGAGAGCAC
Whale TCGAAAGCAT “
H_J

m characters



Toward a Computational Problem

Chimp ACGTAGGCCT
Human ATGTAAGACT

Seal TCGAGAGCAC
Whale TCGAAAGCAT

P22 °227?7

2222222222 2222222222
ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

Chimp Human Seal Whale



Toward a Computational Problem

ACGAAAGCCT

ACGTAAGCCT TCGAAAGCAT
ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

Chimp Human Seal Whale



Toward a Computational Problem

Parsimony score: sum of Hamming distances along

each edge.
CGAAAGCCT
/ \
ACGTAAGCCT CGAAAGCAT
ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

Chimp Human Seal Whale




Toward a Computational Problem

Parsimony score: sum of Hamming distances along
each edge.

Parsimony Score: 8
CGAAAGCCT
/ \
ACGTAAGCCT CGAAAGCAT
ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

Chimp Human Seal Whale




Toward a Computational Problem

Small Parsimony Problem: find the most
parsimonious labeling of the internal nodes of a

rooted tree.
* Input: A rooted binary tree with each leaf labeled

by a string of length m.
* Output: A labeling of all other nodes of the tree
by strings of length m that minimizes the tree’s

parsimony score.




Toward a Computational Problem

Small Parsimony Problem: find the most

parsimonious labeling of the internal nodes of a

rooted tree.

* Input: A rooted binary tree with each leaf labeled
by a string of length m.

* Output: A labeling of all other nodes of the tree
by strings of length m that minimizes the tree’s
parsimony score.

Is there any way we can simplify this problem
statement?




Toward a Computational Problem

Small Parsimony Problem: find the most
parsimonious labeling of the internal nodes of a

rooted tree.
* Input: A rooted binary tree with each leaf labeled

by a single symbol.

* Output: A labeling of all other nodes of the tree
by single symbols that minimizes the tree’s
parsimony score.




Toward a Computational Problem



A Dynamic Programming Algorithm

d he sub f
I
ANVAN:

Define s,(v) as the minimum /\ /\ ./\.

parsimony score of |, over ®
all labelings of 7, assuming /\
that v is labeled by K.

The minimum parsimony score for the tree is equal to
the minimum value of s,(root) over all symbols k.



A Dynamic Programming Algorithm

N

F bols i and j, defi V
e ANV

. 5/.//.:1 otherwise. /\ /\
® o ® O

/A
Q/ \Q

Exercise Break: Prove the following recurrence
relation:

s (v) = min (Daughter(v)) + 6,,} + min {s(Son(v)) + &}

all symbols i {Si all symbols i




A Dynamic Programming Algorithm

/\
7N\ 7N\
AN ANNVAN

A CGT A CGT A CGT A CGT ACGT A CGT A CGT A CGT
c© () oo oo c© () oo oo 0 oo oo oo o () oo oo co oo () oo co oo () oo co oo oo () c© () oo oo
Sk(v) = rninaII symbols i {Si(Daughter( v)) + 4 k} + mlnall symbols i {S,-(SOI?(V)) + 5j/k}



A Dynamic Programming Algorithm

/ \
D NN

/\ /\ /\ “2‘/\
A CGT A CGT A CGT A CGT A CGT A CGT A CGT A CGT
co () oo oo o () oo oo ) oo oo oo co () oo oo co oo () oo co oo () oo co oo oo () oo () oo oo

Sk(v) = rninaII symbols i {Si(Daughter( v)) + 4 k} + mlnall symbols i {S,-(SOI?(V)) + 5j/k}



A Dynamic Programming Algorithm

A coG T / \ o
2 1 3 3 / 3 2 2 2
A CGT /Ak A CGT A\

2022/\ 1122/\ 2202/\ 2121/\
A CGT A CGT A CGT A CGT A CGT A CGT A CGT A CGT
© () oo oo c© () oo oo 0 o0 oo oo c© () oo oo co oo () oo co oo () oo co oo oo () o () oo oo

5, (v) = min {s{Daughter(v)) + &,,} + min {s(Son(v)) + 0;,}

all symbols i all symbols i



A Dynamic Programming Algorithm

A CGT
5 3 4 4

/ ~
A CGT /Ak A CGT Ax

2 .0 2 2 2 1 2 1

A CGT A CGT A C G T A CGT A C G T A CGT A CGT A CGT
co () oo oo © () oo oo ) oo oo oo o () oo oo co oo () oo c© o0 () oo co oo oo () o () oo oo

Sk(v) = rninaII symbols i {Si(Daughter( v)) + 4 k} + mlnall symbols i {S,-(SOI?(V)) + 5j/k}



A Dynamic Programming Algorithm

A CGT
5 3 4 4

/ ~
A CGT /Ak A CGT A\

2022/\ /\ /\ 2121/\
A CGT A CGT A C G T A CGT A C G T A CGT A CGT A CGT
co () oo oo © () oo oo ) oo oo oo o () oo oo co oo () oo c© o0 () oo co oo oo () o () oo oo

Exercise Break: “Backtrack” to fill in the remaining
nodes of the tree.




A Dynamic Programming Algorithm

A CG T
5 3 4 4

A c e / \
2 1 3 3 /
A CGT /Ak A CGT Ax

2 0 2 2 21 2 1

A CGT A CGT A C G T A CGT A CGT A CGT A CGT A CGT
© () oo o c© () oo oo ) oo oo oo c© () oo oo o oo () oo oo oo () oo co oo oo () c© () oo oo

Solve the Small Parsimony
Problem.



Parsimony

Exercise Break, check the following: Complexity: if
we want to calculate the overall length (cost) of a
tree with m species, n characters, and k states, the
Parsimony algorithm is of complexity O(mnk?).

David Sankoff




Parsimony

Exercise Break, check the following: Complexity: if
we want to calculate the overall length (cost) of a
tree with m species, n characters, and k states, the
Parsimony algorithm is of complexity O(mnk?).

COMMENT: if each mutation costs the same then a
simplified, earlier version of this algorithm from Walter
Fitch gives a run time complexity of O(mnk). If Each
mutation a¢>b costs differently you have a weighted
edit distance (particularly for amino acid sequences) then
your complexity is likely to be O(mnk?)



Simple example

R =
T
/\ .
AGT
cT GT
| || |
c T G T A T

using this scoring
matrix

260

{Rj AR, if R,NR, =¢

R, UR, otherwise

|

|

!

simple case Sankoff

equivalent to
computing this

AT
A

0

G
111
011
110
111

O|® |-

O|l== =210




Bottom-UP phase . R,NR if R,NR, =¢
T i R, UR, otherwise
/\ T
AGT
CT GT
C T G T AT

Top-down phase

|

s, if s, €ER,

arbitrary state€ R, otherwise

Complexity: O(mnk)

score = 3

| T
T
AGT
N ]
C T G T A T

|



How to compare amino acids: scoring matrices

C}fS || 12 Very small

(0]
D
=
<
2

...............................

......................................

.....................................................

..............................................................

Glu |-5 |0 (0 i-1:0 0 |1 :3 :4

......................................................................

His =3 |-1 i=-1:0: :=1:=2 ]2 1 : ;3

.....................................................................................

Arg -4 lo i-1i0 i2:3|0 i-1i-1i1 |2 i6

.................................................................................................

el | Follciiwl bz | Fn) R vl el Re] | K@
e
=
~

E
<]
%]
|
Uh
L]
o
|
—
|
—
I
)
—
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}
Lh
|
()
I
—
1
[
}
—
}
)
I
[
|
L)
I
()
I
p—t
I
[
[l | RN
O,

...............................................................................................................

T el D W oy W g P O T N B R S R g

...............

—

.....................................................................................................

E I&n)as |52 7 53 5.7 i |3 R 12 2.5 |20 B2 12 |de 17 2%

............................................................................................................................

Y Ral -2 | L S0 LT B0 il |2 22 2.2 2.9 |22 522 B2 |2 B4, B2 il
F Phe |24 |23 1.3 5.5 .5 1.5 |4 126 £5 i85 | =2 04 D25 |00 21 3T

(v Tyr J0 ]3035 3150204440 Tara)9 oD

WTp [-8]-2:-5:-6i-6i-7]|-4:-7:-7:-5|-3:2 :-3|-4:-5:-2{-6
lc|s|T|P|A|G|N[D|E|Q|H|R([K|M|I |L [V

17
Y [W

Hl|lS N W
L

example: Y (Tyr) often mutates into F (score +7) but rarely mutates into P (score25)



Top-down phase Sankoff” s Algorithm

Pick states for each internal node

Select minimal cost character for root (s minimizing R, (s))

Do pre-order (from root to leaves) traversal of tree:
- For internal node j, with parent i, select state that produced
minimal cost at i (use pointers kept in 15t stage)

mins,{Rj (s') + S(S',S)}
+
mins.{Rk (s")+S(s',s

Ri(S) =

Complexity: O(mnk?)

263
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The Worst Case Complexity of Maximum Parsimony

AMIR CARMEL, NOA MUSA-LEMPEL, DEKEL TSUR, and MICHAL ZIV-UKELSON Si m p I e ve rS u S m O re
stacr general case

One of the core classical problems in computational biology is that of constructing the most
parsimonious phylogenetic tree interpreting an input set of sequences from the genomes of
evolutionarily related organisms. We reexamine the classical maximum parsimony (MP)
optimization problem for the general (asymmetric) scoring matrix case, where rooted
phylogenies are implied, and analyze the worst case bounds of three approaches to MP: The
approach of Cavalli-Sforza and Edwards, the approach of Hendy and Penny, and a new
agglomerative, ‘‘bottom-up” approach we present in this article. We show that the second
and third approaches are faster than the first one by a factor of ©(,/n) and ©(n), respec-
tively, where n is the number of species.

Key words: maximum parsimony, large parsimony, phylogeny, phylogenetic reconstruction,
asymmetric scoring matrix, dendograms.

Measuring SP and MP complexity in terms of basic opérations. SP and MP algorithms work by com-
puting some information for every internal vertex of the/input phylogeny. This information, as wgll as the
complexity of its computation, depend on the scoring scheme employed by the parsimony algorithm. Thus,
in what follows, we will use the term basic operatioh to denote the work invested in the computation of the
information of a single vertex of a considered phylogeny for a specific scoring scheme. For examplg, in the
Fitch SP algorithm (Fitch, 1971), which computes a minimal Hamming distance SP score, an O(m)-time
basic operation is applied, while in the Sankoft algorithm (Sankoff, 1975), which optimizes an SP score of
minimal weighted edit distance, an O(mX?)-time basic operation is applied, where > denotes the size of the
alphabet spelling the input sequences.



Recreating a Functional Ancestral Archosaur
Visual Pigment @

Belinda S. W. Chang, Karolina Jonsson, Manija A. Kazmi, Michael J. Donoghue,
Thomas P. Sakmar

Molecular Biology and Evolution,Volume 19, Issue 9, 1 September 2002, Pages
1483-1489, https://doi.org/10.1093/oxfordjournals.molbev.a004211

archosaur

Why is
interesting to
know internal
node’s
composition?

American alligator ‘ 499
k3 * _: domestic pigeon l 502-505
chicken ¥ 503-507

zebra finch W 501-507

ancestor

grean anole =% 491

. humanﬂ 495
crab-eating macagque &~ 451
; l : —— dog WK
European rabbit &g 502
cow gt 500

house mouse @& 498

Norway rat M 500

Chinese hamster @

~— northern leopard frog wp 502
— common frog ¥ 501

— European toad & 502

—— giant toad Wy 502

African clawed frog B 502

tiger salamander “ 500

—': goldfish A 452

common carp e

zebralish - 00

Mexican characin s

-

sand goby e 507

soldierfish P

little skate
[ Japanese lamprey &=
508 lampray ==~ 500

European eel ~~_ 482

!
e cONgEr 08| e, 487

500



Small Parsimony for Unrooted Trees

Small Parsimony in an Unrooted Tree Problem: Find

the most parsimonious labeling of the internal nodes

of an unrooted tree.

* Input: An unrooted binary tree with each leaf
labeled by a string of length m.

* Output: A position of the root and a labeling of
all other nodes of the tree by strings of length m
that minimizes the tree’s parsimony score.

Solve this problem.




Finding the Most Parsimonious Tree

ACGAAAGCCT
/ \
ACG AAGCCT TCGAAAGCAT
ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT
Chimp Human Seal Whale

Parsimony Score: 8



Finding the Most Parsimonious Tree

ACGTAAGCAT
/ \
ACGTAAGCAT ACGTAAGCAT
/ x / X
ACGTAGGCCT TCGAGAGCAC ATGTAAGACT TCGAAAGCAT
Chimp Seal Human Whale

Parsimony Score: 11



Finding the Most Parsimonious Tree

ACGTAAGCCT
/ \
ACGTAAGCCT ACGTAAGCCT
ACGTAGGCCT TCGAAAGCAT ATGTAAGACT TCGAGAGCAC
Chimp Whale Human Seal

Parsimony Score: 14



Finding the Most Parsimonious Tree

Large Parsimony Problem: Given a set of strings,

find a tree (with leaves labeled by all these strings)

having minimum parsimony score.

 Input: A collection of strings of equal length.

e Qutput: A rooted binary tree T that minimizes
the parsimony score among all possible rooted
binary trees with leaves labeled by these strings.




Finding the Most Parsimonious Tree

Large Parsimony Problem: Given a set of strings,

find a tree (with leaves labeled by all these strings)

having minimum parsimony score.

 Input: A collection of strings of equal length.

e Qutput: A rooted binary tree T that minimizes
the parsimony score among all possible rooted
binary trees with leaves labeled by these strings.

Unfortunately, this problem is NP-Complete...




A Greedy Heuristic for Large Parsimony

Note that removing an internal edge, an edge
connecting two internal nodes (along with the
nodes), produces four subtrees (W, X, Y, Z).




A Greedy Heuristic for Large Parsimony

Note that removing an internal edge, an edge
connecting two internal nodes (along with the
nodes), produces four subtrees (W, X, Y, Z).




A Greedy Heuristic for Large Parsimony

Note that removing an internal edge, an edge
connecting two internal nodes (along with the
nodes), produces four subtrees (W, X, Y, Z).




A Greedy Heuristic for Large Parsimony

Rearranging these subtrees is called a nearest
neighbor interchange.




A Greedy Heuristic for Large Parsimony

Nearest Neighbors of a Tree Problem: Given an

edge in a binary tree, generate the two neighbors of

this tree.

* Input: An internal edge in a binary tree.

* Output: The two nearest neighbors of this tree
(for the given internal edge).

Solve this problem.



A Greedy Heuristic for Large Parsimony

Nearest Neighbor Interchange Heuristic:
1. Set current tree equal to arbitrary binary rooted
tree structure.
2. Go through all internal edges and perform all
possible nearest neighbor interchanges.

. Solve Small Parsimony Problem on each tree.
4. If any tree has parsimony score improving over
optimal tree, set it equal to the current tree.

Otherwise, return current tree.

Co

Implement the nearest-neighbor
interchange heuristic.



Tree validation: the bootstrap algorithm

If there are m sequences, each with n nucleotides, a phylogenetic tree can
be reconstructed using some tree building methods.

From each sequence, n nucleotides are randomly chosen with
replacements, giving rise to m rows of n columns each. These now
constitute a new set of sequences.

A tree is then reconstructed with these new sequences using the same
tree building method as before.

Next the topology of this tree is compared to that of the original tree.
Each interior branch of the original tree that is different from the
bootstrap tree is given a score of 0; all other interior branches are given
the value 1.

This procedure of resampling the sites and tree reconstruction is repeated
several hundred times, and the percentage of times each interior branch is
given a value of 1 is noted. This is known as the bootstrap value. As a
general rule, if the bootstrap value for a given interior branch is 95% or
higher, then the topology at that branch is considered "correct".

278




Pseudosample 1

Tree validation: the bootstrap algorithm
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EXAMPLE: Phylogenetic-inspired techniques for reverse engineering
and detection of malware families

For example, given an execution trace of instructions,
push ebp

mov ebp, esp PhYIOgeHEtiC tree

mov eax, dword ptr [ebp-0x4]

jmp +0x14 applications in
it is abstracted as a sequence of mnemonics, i.e. com p Ute B SCie nce

push, mov, mov, Jjmp

ignoring the operands. Each mnemonic is then mapped to a
unique alphabet-pair, e.g. mov = MO, push = PH, jmp
= JM. The resulting sequence is thus PHMOMOJM.

-y

dbg VPHPHPHLEMGMGRPMGMGAD CMHLMGADCMHLMGAD CMH YMG I MMG I MADMG I MCMH ZMGGRMGHMMGCMH ZMGCMH ZMGCMH YMGGRMGMGPPPPPPMGPPRE
def [PHMGPHMGMGADCMHLMGADCMHLMGADCMHYMGIMMG I MADMG I MCMHZMGGRMGHMMGCMH ZMGCMH ZMGCMH YMGGRMGMGMGPPRE - ———————————————————

spd JPHMGPHMGLECMHLLECMHLLECMHLMGMGIMIMMGPH IMLECMHZMGCMPPHZCMHZCMHZPPPPGRPPRE — —— — —— — = — — = — = = — — — e

(b)

dbg VPHPHPHLEMGMGRPMGMGAD[CMH] “MHTMGAD[® IMMG[TMRDMG - ——— IMCHH . = . PPPP

def [PHMG--PH-——————————- MGMGAD| MHT| WLMGADCWYMGINMG DMG———— IMCMH ZMGGRMG : " MH ZMGYCMH YMGGRMGMG— —— ——— PRE
spd -PHMGP-————————— HMGLECMHIL- -ECMHIL - -ECMHIMG - -MGILMIMMGPH I CMHZMG-——————~— MPPHZICMHZ-—[CMHZ-————————— PPPP

()

dbg PHMGSVPHPHPHLEMGMGRPMGMGADCMH - CMHYMG| IMADMGI ZMGGRMGHMMGCMH YMGGRMGMGPPPPPPMGPPRE
def —————————————- PHMGPHMGMGAD CMHLMGAD|"MH T MGADCMHYMG| IMADMGI ZMGGRMGHMMGCMH %WWCPPRE ——————

spd —————————————- PHMGPHMGPHMGLECMHLLECMHLLECMHLMGMGILMIMMGPH IMLECMH - ————————————— PHZ ZCMHZPPPPGRPPRE-—————

Sequence alignment (dbg: with debugging symbols, def: default settings, spd:
optimised for speed). (a) Before alighment. (b) After alignment using an identity
substitution matrix. (c) After alignment using a substitution matrix 280
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More species increases power to detect conserved
sequence elements: the phylogeny becomes a weight

Base Fosition Seaaaa| 1800000| 15800808|
Refseq Genes

TES Hi

cAvV2 f
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sT7 SOE0E080 .
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| AT T A T

Fags |
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j{: Tetraodon |

I
L1l

Data from Eric Green at NGHRI, alignments by Webb Miller




Generalizing Pairwise to Multiple Alignment

* Alignment of 2 sequences is a 2-row matrix.
* Alignment of 3 sequences is a 3-row matrix

A - GCG -
A-CGT-A
A CAC-A

* Our scoring function should score alignments with
conserved columns higher.
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Alignments = Paths in 3-D

* Alignment of ATGC, AATC, and ATGC

#symbols up to a given position

=== |-
N

SN KN IFEHI BN
w

allsfllals
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Alignments = Paths in 3-D

* Alignment of ATGC, AATC, and ATGC

(0,0,0)—(1,1,0)—(1,2,1) —=(2,3,2) —=(3,3,3) —=(4,4,4)

ol ol s o
' w
allasllaolalloll o

| I I I (I




2-D Alignment Cell versus 3-D Alignment Cell

(i-1,j-1,k-1) (i-1,j.k-1)

2-D
(ilj-ll k-l)
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Multiple Alignment: Dynamic Programming

rSi1j1k1+§(vi7 “k)
1111k+5( )
Si_ 1jk1+5(vi9_9uk)
S..k=maX<SU1k1+5( uk)
Si1jk+5( Vis™s )
51]1k+5( Wi, )

Si k-1 +5( ) 9uk)

* Ox, y, z) is an entry in the 3-D scoring matrix.



Multiple Alignment: Running Time

* For 3 sequences of length n, the run time is
proportional to 7n3

* For a k-way alighment, build a k-dimensional
Manhattan graph with
— n¥ nodes
— most nodes have 2K -1 incoming edges.
— Runtime: O(2%n¥)



Multiple Alignment Induces Pairwise Alighnments

Every multiple alignment induces pairwise alignments:
AC-GCGG-C
AC-GC-GAG
GCCGC-GAG

!

ACGCGG-C AC-GCGG-C AC-GCGAG
ACGC-GAC GCCGC-GAG GCCGCGAG
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ldea: Construct Multiple from Pairwise Alignments

Given a set of arbitrary pairwise alignments, can
we construct a multiple alignment that induces
them?

AAAATTTT---- -—-—--AAAATTTT TTTTGGGG——---
-—-—--TTTTGGGG GGGGAAAA---- ----GGGGAAAA

290



Progressive alignment

Progressive alignment methods are heuristic in nature.
They produce multiple alignments from a number of
pairwise alignments. Perhaps the most widely used
algorithm of this type is the software CLUSTAL (https://

www.ebi.ac.uk/Tools/msa/clustalo/)

Pairwise Alignment Guide Tree lterative Multiple Alignment
1+2 —
1+3 <
1+4 . 3;
- 4
2+3 ~9

2+4
— 1

3+4 — 4




Progressive Alignment

Clustalw:

1. Given N sequences, align each sequence against
each other.

2. Use the score of the pairwise alignments to
compute a distance matrix.

3. Build a guide tree (tree shows the best order of

progressive alignment).

4. Progressive Alignment guided by the tree.




Progressive Alignment

Not all the pairwise alignments build well into a
multiple sequence alignment (compare the
alignments on the left and right)

TAGT TGG—-
/// T-GT -GGAT
4
TAGT TAGT _TGa TGG—-
TA-T ——-AT
» o
\\\ T-GT GGAT g




Progressive Alignment

The progressive alignment builds a final alignment by
merging sub-alignments (bottom to top) with a guide tree

AC--A
ACG-A
CC--A
A-GTA
A-G-A
Merging of
Subaltgnments
AC-A AGTA
ACGA AG-A
CC-A /S(‘equencc 1:\
* Sequence Alignment
Sequence fo
s-mmm\ AGTA AGA
ACA ACGA

CCA

Sequence to
Sequence Altgnment

ACA CCA




Progressive alignment (Clustal). Input: a set of sequences in Fasta format (also
thousands).

Output: alignment of the set of sequences: multi sequence alignment (MSA). Interest:
find conserved patterns (across sequences, i.e. columns retaining similar patterns)
may indicate functional constraints. In other words, if the same pattern is conserved in
multiple sequences from different species, the substring could have an important
functional role.

Main question in this lecture: how similar is this group of sequences?

Amino Acid or Protein Sequences

420 430 440 . 450 460

Dresephilafl1-1093
Danief1-1048
Sus/1-1077
Qryctelagus/1-1073
Gallus/1-1076
Qtelemur/1-935
Loxedoenta/1-1073
Allurepedas/l-1073
Mus/1-1074
Rattus/1-1074
Callithrix /1-984
Spermophilus/1-999
Bes/1-1079
Qvis/1-108¢
Felis/1-1071
Canisf1-1073

—_EHAZ =

Global Alignment
Generation

Conservation

1564 4966632585568 889 J 1114 1333455456-6

* D.G. Higgins, J D Thompson, and T.J. Glbson Ust‘CLUSTAL for
multiple sequence alignments. Methods in Enzymology, 266:383402,
96. 295

Multiple Sequence Alignment

from wikipedia




Example of complexity in alignment:

bacterial genomes
ﬁ’lﬂﬂ' -LW\ ’» T e

Y. pestis 91 001

Y. pestls KIM /‘ \
_ 7 \ ——
PO
.= 4600000
I,II J| vl
/7 /
200000 40 000660 4000003600000 8001 !‘ﬂu"i‘\l’ OOO 4 OO 0 4400800

= .
YpestlsCO92 7 ——— -
Y. pestis 15-70 Pest0|des F —

7 \\'
' \\»\1/
Vallgens
= i
200000 oooo 600000 300000 1003060— uu“ 060 ; ﬂ.é.:sﬁrﬁ\:_Ai‘ \ \,: .
& “te ' m‘ﬁ\‘\-ﬂ -.'
Ypestls Nepal516 N

SO0 R0U000=—4000000—4200000 4400000 4600000

..f.

3 AR0000—3B0000¢

A e . _ I INAAArCA

Source: By Aaron E. Darling, Istvan Miklds, Mark A. Ragan - Figure 1 from Darling AE, Miklds I, Ragan MA (2008).
"Dynamics of Genome Rearrangement in Bacterial Populations". PLOS Genetics. DOI:10.1371/journal.pgen.1000128., CC BY 2.5,




Genome Sequencing

* What Is Genome Sequencing: Exploding Newspapers
analogy

* The String Reconstruction Problem

e String Reconstruction as a Hamiltonian Path Problem

e String Reconstruction as an Eulerian Path Problem

e De Bruijn Graphs

* Euler’s Theorem

* Assembling Read-Pairs

* De Bruijn Graphs Face Harsh Realities of Assembly
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Why Do We Sequence Personal Genomes?

e 2010: Nicholas Volker became the first human
being to be saved by genome sequencing.

— Doctors could not diagnose his condition; he went
through dozens of surgeries.

— Sequencing revealed a rare mutation in a XIAP gene
linked to a defect in his immune system.

— This led doctors to use immunotherapy, which saved the
child.
* Different people have slightly different genomes:

on average, roughly 1 mutation in 1000
nucleotides.



The Newspaper

Y7/ A

7
J
Vv,
|

|l
v

{{U

stack of NY Times, June 27, 2000

N A
§\ =257 N
N—= =
N = oy — — = _ -
E\% == ===
e b Y — >SN = —»>
-‘X_;_:? L — =D)—_="O

=\
N
W
{
‘|
O
[I‘
l

stack of NY Times, June 27, 2000
on a pile of dynamite

Y
J

o N
?5\/%?-3' ==
AN

ﬂ
;

this is just hypothetical

% - — o,
- TR ™ -~
e - \Q &:,b
- O = s <A S
> e = —:‘ so, what did the June 27, 2000 NY
4‘%" b PO Times say?
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The Newspaper Problem as

di

Overlapping Puzzle

1100(
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The Newspaper Problem as an
Overlapping Puzzle
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Multiple Copies of a Genome (Millions of them)

N
N
\
N
\\

stack of NY Times, June 27, 2000

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC
CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC
CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

Breaking the Genomes at Random Positions

~

CTGATdﬁﬁGGACTACG CTAC z ikcCTGTATTNﬁ@ATCAGCTACCﬂ;ATCGTAGCTﬁﬁ@ATG TTAGq&ﬂGCTATCGﬁ?TCAGCTACﬂ@CAﬁE?TAGC

CTGA TGGAC GCTACTAC TAGCTGTA CGATCAG CCACATCG CTACGATGC TAGCAAGC TCGGATCA TACCACATIGTAGC
CTGATG GGACTACG ACTACTGCTA TGTATTA TCAGCTARCACATCGTAG ‘Q?GCATT CAAGCTATIGGATCAGC CACATCGTAGC

CTGATGATG CTACGCTA CTGCTAGC ATTACGAT GCTACCACE%EGTAGCTACG GCATTAGCANGCTATCG CAGCTACCA)ATCGTAGC



Generating “Reads”

CTGATGA TGGACTACGCTAC TACTGCTAG CTGTATTACG ATCAGCTACCACA TCGTAGCTACG ATGCATTAGCAA GCTATCGGA TCAGCTACCA CATCGTAGC
CTGATGATG GACTACGCT ACTACTGCTA GCTGTATTACG ATCAGCTACC ACATCGTAGCT ACGATGCATTA GCAAGCTATC GGATCAGCTAC CACATCGTAGC

CTGATGATGG ACTACGCTAC TACTGCTAGCT GTATTACGATC AGCTACCAC ATCGTAGCTACG ATGCATTAGCA AGCTATCGG A TCAGCTACCA CATCGTAGC
CTGATGATGGACT ACGCTACTACT GCTAGCTGTAT TACGATCAGC TACCACATCGT AGCTACGATGCA TTAGCAAGCT ATCGGATCA GCTACCACATC GTAGC

“Burning” Some Reads

CTGATGA TACTGCTAG CTGTATTACG TCGTAGCTACG ATGCATTAGCAA GCTATCGGA TCAGCTACCA CATCGTAGC
CTGATGATG GACTACGCT ACTACTGCTA ATCAGCTACC ACATCGTAGCT GCAAGCTATC GGATCAGCTAC CACATCGTAGC
CTGATGATGG TACTGCTAGCT GTATTACGATC AGCTACCAC ATCGTAGCTACG ATGCATTAGCA AGCTATCGG A CATCGTAGC

CTGATGATGGACT ACGCTACTACT TACGATCAGC TACCACATCGT AGCTACGATGCA ATCGGATCA GCTACCACATC GTAGC



No Idea What Position Every Read Comes From
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From Experimental to Computational Challenges

Multiple (unsequenced) genome copies

b1 L] readencraton

l l l 1 1 Genome assembly
Assembled genome

..GGCATGCGTCAGAAACTATCATAGCTAGATCGTACGTAGCC...
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What Makes Genome Sequencing Difficult?

* Modern sequencing machines cannot read an
entire genome one nucleotide at a time from
beginning to end (like we read a book)

* They can only shred the genome and generate
short reads.

* The genome assembly is not the same as a jigsaw
puzzle: we must use overlapping reads to
reconstruct the genome, a giant overlap puzzle!

Genome Sequencing Problem. Reconstruct a genome from reads.
Input. A collection of strings Reads.
Output. A string Genome reconstructed from Reads.



What Is k-mer Composition?

Composition; (TAATGCCATGGGATGTT)=
TAA
AAT
ATG
TGC
GCC
CCA
CAT
ATG
TGG
GGG
GGA
GAT
ATG
TGT
GTT
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k-mer Composition

Composition,; (TAATGCCATGGGATGTT) =
TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT

e.g., lexicographic order (like in a dictionary)
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Reconstructing a String from its Composition

String Reconstruction Problem. Reconstruct a string from
its k-mer composition.

* Input. A collection of k-mers.

* QOutput. A Genome such that Composition, (Genome) is
equal to the collection of k-mers.



A Naive String Reconstruction Approach

ATG ATG CAT CCA GAT GCC GGA GGG GTT TGC TGG TGT
TAA
AAT
ATG ATG CAT CCA GAT GCC GGA GGG TGC TGG
TAA
AAT
ATG

TGT

GTT 310




Representing a Genome as a Path

Composition; (TAATGCCATGGGATGTT) =

Ca e e S A A C A S A CAC A O

Can we construct this genome path without knowing the genome TAATGCCATGGGATGTT, only
from its composition?

Yes. We simply need to connect k-mer, with k-mer, if  suffix(k-mer,)=prefix(k-mer,).
E.g. TAA > AAT



A Path Turns into a Graph

TAATGCCATGGGATGTT

‘®®(QW@@\ EE-OR-E

Yes. We simply need to connect k-mer, with k-mer, if  suffix(k-mer,)=prefix(k-mer,).
E.g. TAA > AAT



A Path Turns into a Graph

TAATGCCATGGGATGTT

@@6@@@\ SO -

Can we still find the genome path in this graph?
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Where Is the Genomic Path?

A Hamiltonian path: a path that visits each node in a graph
exactly once.

TA TGCCATGGGATGTT

What are we trying to find in this graph?



Does This Graph Have a Hamiltonian Path?

Hamiltonian Path Problem. Find a Hamiltonian path in a graph.
Input. A graph.

Output. A path visiting every node in the graph exactly once.
14

William
¥ Hamilton

17 @
Undirected graph

lcosian game (1857)
315



TA TGGGATGCCATGTT

S 7




A Slightly Different Path

TAATGCCATGGGATGTT

Ca e S S AT A C A S CACAC A O

3-mers as nodes

TAA AAT ATG TGC _GCC CCA CAT ATG _TGG _GGG _GGA GAT _ATG_TGT _GTT

3-mers as edges

How do we label the starting and ending nodes of an edge?

TAA

prefix of TAA @—’@ suffix of TAA
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Labeling Nodes in the New Path

TAATGCCATGGGATGTT

Ca e S S AT A C A S CACAC A O

3-mers as nodes

TAA AAT ATG TGC _GCC CCA CAT ATG _TGG _GGG _GGA GAT _ATG_TGT _GTT

RoAcEceRcRoss kR e RN R iR

3-mers as edges and 2-mers as nodes
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Labeling Nodes in the New Path

TAA AAT ATG TGC _GCC CCA CAT ATG _TGG _GGG _GGA GAT _ATG_TGT _GTT

RoAcEceRcRoss kR e RN R iR

3-mers as edges and 2-mers as nodes
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Gluing Identically Labeled Nodes

TAA AAT ATG TGC GCC CCA CAT ATG _TGG _GGG _GGA GAT _ATG_TGT _GTT

RoAcEceReRols KRR e RN R iR

6@
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Gluing Identically Labeled Nodes

TAATGCCATGGGATGTT

321



Gluing Identically Labeled Nodes

TAATGCCATGGGATGTT
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Gluing Identically Labeled Nodes

TAATGCCATGGGATGTT

CAT
TAA _AAT 4
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Gluing Identically Labeled Nodes

TAATGCCATGGGATGTT

CAT
TAA _AAT 4

324



De Bruijn Graph of TAATGCCATGGGATGTT

ccA/ oo
C G
16c]
.
.

CA

e (s —(D—@) Where is the Genome
AT6 3 o

ATG hiding in this graph?

AT
TGG
G
GGA GGG

G
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It Was Always There!

TA TGCCATGGGATGTT

An Eulerian path in a

@*@—» @TGT»@ — ) graph is a path that

visits each edge exactly
once.




Eulerian Path Problem

Eulerian Path Problem. Find an Eulerian path in a graph.

 |nput. A graph.

 OQutput. A path visiting every edge in the graph exactly once.
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Eulerian Versus Hamiltonian Paths

Eulerian Path Problem. Find an Eulerian path in a graph.
 |nput. A graph.

 OQutput. A path visiting every edge in the graph exactly once.

Hamiltonian Path Problem. Find a Hamiltonian path in a graph.
 |nput. A graph.

* Output. A path visiting every node in the graph exactly once.

Find a difference!
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What Problem Would You Prefer to Solve?

l — N\ ——,
¢ T T =
G &9 (@ GRS © © @ @ & 9
‘§“¥“, — 7 e 7—
\\ //’
Hamiltonian Path Problem Eulerian Path Problem

While Euler solved the Eulerian Path Problem
(even for a city with a million bridges), nobody
has developed a fast algorithm for the
Hamiltonian Path Problem yet.




NP-Complete Problems

 The Hamiltonian Path Problem belongs to a
collection containing thousands of

computational problems for which no fast
algorithms are known.

That would be an excellent argument, but the
guestion of whether or not NP-Complete

problems can be solved efficiently is one of
seven Millennium Problems in mathematics.

NP-Complete problems are all equivalent: find an
efficient solution to one, and you have an
efficient solution to them all.



Eulerian Path Problem

Eulerian Path Problem. Find an Eulerian path in a graph.

 |nput. A graph.

 OQutput. A path visiting every edge in the graph exactly once.

We constructed the de Bruijn
graph from Genome, but in
reality, Genome is unknown!
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What We Have Done: From Genome to de Bruijn Graph

TAATGCCATGGGATGTT

C
C G
1

CAT

|
A/ Gcc
TGC
TAA _AAT | &
B0~k ek
ATG

AT
TGG
G
GGA GGG

()
TGTVQED ’<:>

L 2%

GTT

G
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What We Want: From Reads (k-mers) to Genome

TAATGCCATGGGATGTT
+

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT
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What We will Show: From Reads to de Bruijn Graph to Genome

TAATGCCATGGGATGTT

GGA GGG

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT
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Constructing de Bruijn Graph when Genome Is Known

TAATGCCATGGGATGTT

TAA AAT _ATG TGC GCC CCA CAT ATG _TGG GGG _GGA GAT _ATG__TGT _GTT

BB B-C-Cr- OB~

335



Constructing de Bruijn when Genome Is Unknown

TAA ATG GCC CAT TGG GGA ATG GTT

AAT TGC CCA ATG GGG GAT TGT

Composition;(TAATGCCATGGGATGTT)
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Representing Composition as a Graph Consisting of Isolated Edges

TAA ATG GCC CAT TGG GGA ATG GTT

AAT TGC CCA ATG GGG GAT TGT

Composition;(TAATGCCATGGGATGTT)
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Constructing de Bruijn Graph from k-mer Composition

BB G- @0 -0 G0 -0 F-© @0
0 -0 -0 &0 B G-

Composition;(TAATGCCATGGGATGTT)
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Gluing Identically Labeled Nodes

@ % &0 ¢ T %6 B O
T I & &0 B %



@T Ah @A AT .ATGETG@GC CC A CA @A T TE@GE@GGh GA.A%@\EZG—T»@
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We Are Not Done with Gluing Yet

@T Ah @A AT .ATGETG@GC CC A CA @A T TE@G_G@GGh GA.AI.(:?@'IE;@%
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Gluing Identically Labeled Nodes

TAA AAT ATG TGC GCC CCA CAT ATG _TGG _GGG _GGA GAT _ATG_TGT _GTT

RoAcEceReRols KRR e RN R iR

6@
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Gluing Identically Labeled Nodes

TAATGCCATGGGATGTT
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TAATGCCATGGGATGTT
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Gluing Identically Labeled Nodes

CAT

-

%P

>

>

>

@I

) 2%

-
(0]
-

GA

TAATGCCATGGGATGTT

%@
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The Same de Bruijn Graph:
DeBruin(Genome)=DeBruin(Genome Composition)

CC
C
T

4

CA

A/ Gec
G
16c]
@'AA AAT AIG
N\ N\ .
—’@D* T T "GT, (TT
@9 16T ¥ GTT O
ATG
GAT
1GG
G
GGA .
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Constructing de Bruijn Graph

De Bruijn graph of a collection of k-mers:

— Represent every k-mer as an edge between its prefix
and suffix

— Glue ALL nodes with identical labels.

DeBruijn(k-mers)
form a node for each (k-1)-mer from k-mers
for each k-mer in k-mers
connect its prefix node with its suffix node by an edge



From Hamilton to Euler

Universal String Problem (Nicolaas de Bruijn, 1946). Find a circular string containing each binary k-mer

exactly once.

000 001 010 011 100 101 110 111
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From Hamilton

Universal String Problem (Nicolaas de Bruijn, 1946). Find a circular string containing each binary k-mer

exactly once.

000 001 100 101 110 111
@O 00 ©® © OV 0P O-© O OO
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From Hamilton to Euler

350



De Bruijn Graph for 4-Universal String

0011

0110

1100

Does it have an Eulerian cycle? If yes, how can we find it?



Eulerian CYCLE Problem

Eulerian CYCLE Problem. Find an Eulerian cycle in a graph.
 |nput. A graph.

 Output. A cycle visiting every edge in the graph exactly once.
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A Graph is Eulerian if It Contains an Eulerian
Cycle.

Is this graph Eulerian?



A Graph is Eulerian if It Contains an Eulerian
Cycle.

Is this graph Eulerian?

1in, 2 out

A graph is balanced if indegree = outdegree for each node



Euler’'s Theorem

* Every Eulerian graph is balanced

* Every balanced™ graph is Eulerian
0011

1001 0110

1100

(*) and strongly connected, of course! 355



Recruiting an Ant to Prove Euler’s Theorem

Let an ant randomly walk through the graph.
The ant cannot use the same edge twice!




If Ant Was a Genius...
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A Less Intelligent Ant Would Randomly Choose a
Node and Start Walking...

Can it get stuck? In what node?




The Ant Has Completed a Cycle BUT has not
Proven Euler’s theorem vyet...

The constructed cycle is not Eulerian. Can we enlarge it?




Let’s Start at a Different Node in the Green Cycle

Let’s start at a node with still unexplored edges.

e’/

“Why should | start at a different node?
Backtracking? I’'m not evolved to walk

backwards! And what difference does it
make???”

~



An Ant Traversing Previously Constructed Cycle

Starting at a node that has an unused edge, traverse the already
constructed (green cycle) and return back to the starting node.

[ ./ 2
=
“Why do | have to walk along the
same cycle again??? Can | see 3 A4
something new?” 1



| Returned Back BUT... | Can Continue Walking!

Starting at a node that has an unused edge, traverse the already
constructed (green cycle) and return back to the starting node.

After completing the cycle, start random exploration of still
untraversed edges in the graph.




Stuck Again!

No Eulerian cycle yet... can we enlarge the green-blue cycle?

The ant should walk along the constructed cycle starting at
yvet another node. Which one?




| Returned Back BUT... | Can Continue Walking!

“Hmm, maybe these
instructions were not
that stupid...”
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| Proved Euler’s Theorem!

EulerianCycle(BalancedGraph)
form a Cycle by randomly walking in BalancedGraph (avoiding already visited edges)
while Cycle is not Eulerian
select a node newStart in Cycle with still unexplored outgoing edges
form a Cycle’ by traversing Cycle from newStart and randomly walking afterwards
Cycle & Cycle’
return Cycle

0011

0010 1011

1001

0101
1010

0100 1101

1100
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From Reads to de Bruijn Graph to Genome

TAATGCCATGGGATGTT

GGA GGG

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT
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Multiple Eulerian Paths

TA TGCCATGGGATGTT TA TGGGATGCCATGTT
A A

CCA GCC

. G

16c]
CAT

ATG

O Te=00

ATG
GAT

TGG

G
GGA GGG
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Breaking Genome into Contigs

TA TGCCATGGGATGTT

A

TAAT

GGG
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DNA Sequencing with Read-pairs

Multiple identical copies of genome

e ———————————————————————————

Randomly cut genomes into large equally
sized fragments of size InsertLength

Generate read-pairs:
two reads from the

ends of each fragment

— = (separated by a fixed
200 bp 200bpdistance)

InsertLength
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From k-mers to Paired k-mers

Read 1 Read 2
q q
Genome ATCAGATTACGTTCCGAG..
oo Distance d=11 --------- >

A paired k-mer is a pair of k-mers at a fixed distance d apart in Genome.
E.g. TCA and TCC are at distance d=11 apart.

Disclaimers:

1. In reality, Readl and Read2 are typically sampled from different strands:
....... < ratherthan — ....... &)

2. In reality, the distance d between reads is measured with errors.
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What is PairedComposition(TAATGCCATGGGATGTT)?

TAA GCC
AAT CCA
ATG CAT
TGC ATG
GCC TGG
CCA GGG
CAT GGA
ATG GAT
TGG ATG
GGG TGT
GGA GTT

: : : . TAA
Representing a paired 3-mer TAA GCC as a 2-line expression: GCC

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA
GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT
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TAA
GCC

AAT
CCA

AAT
CCA

ATG
CAT

ATG
CAT

ATG
GAT

PairedComposition(TAATGCCATGGGATGTT)

TAA GCC
AAT CCA
ATG CAT
TGC ATG
GCC TGG
CCA GGG
CAT GGA
ATG GAT
TGG ATG
GGG TGT
GGA GTT

TGC GCC CCA CAT ATG TGG GGG
ATG TGG GGG GGA GAT ATG TGT

CAT CCA GCC GGA GGG TAA TGC
GGA GGG TGG GTT TGT GCC ATG

Representing PairedComposition in lexicographic order

GGA
GTT

TGG
ATG

372



String Reconstruction from Read-Pairs Problem

String Reconstruction from Read-Pairs Problem. Reconstruct
a string from its paired k-mers.

* Input. A collection of paired k-mers.
 Output. A string Text such that PairedComposition(Text) is
equal to the collection of paired k-mers.

How Would de Bruijn Assemble Paired k-mers?



Representing Genome TAATGCCATGGGATGTT as a Path

TAA GCC
AAT CCA
ATG CAT
TGC ATG
GCC TGG
CCA GGG
CAT GGA
ATG GAT
TGG ATG
GGG TGT
GGA GTT

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA

C>GCC :CCA:CAT : ATG:TGG :GGG :GGA : GAT: ATG: TGT : GTT :

CCA
GGG

CCA
paired prefix of — 88% — @ of GGG
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Labeling Nodes by Paired Prefixes and Suffixes

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA
GCC__CCA__CAT _ ATG~TGGC GGG GGA GAT ~ATGTGT ~GTT

@-@-0-@-@-0-0-B6-G—-E-6—-@

CCA
GGG

CCA
paired prefix of — 88% — @ of GGG
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Glue nodes with identical labels

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA
GCC_CCA__CAT_ATG__TGG _GGG _GGA _GAT __ ATG__ TGT __ GTT

E-E~-0-B-O-0-0-0-@-—-G—-@

GCC CCA CAT

TAA AAT ATG
GCC__CCcAa_CA

@-E

TGG GGG GGA
ATG TGT GTT
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Glue nodes with identical labels

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA
GCC_CCA__CAT_ATG__TGG _GGG _GGA _GAT __ ATG__ TGT __ GTT

E-E~-0-B-O-0-0-0-@-—-G—-@

GCC CCA CAT
TGG__GGG __ GGA

TAA AAT ATG
GCC__CCA_CA

@-E

TGG GGG GGA
ATG TGT GTT

Paired de Bruijn Graph from the Genome
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Constructing Paired de Bruijn Graph

&-® -0 -0 @B B GO

TGC CCA ATG GGG

-0 F-® -0 B 0

CCA
GGG

CCA
paired prefix of — 88% — @ of GGG
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Constructing Paired de Bruijn Graph

GGA

Fo o T G e O

TGC CCA ATG GGG

d‘f@

* Paired de Bruijn graph for a collection of paired k-mers:

— Represent every paired k-mer as an edge between its
paired prefix and paired suffix.

— Glue ALL nodes with identical labels.



Constructing Paired de Bruijn Graph

TAA ATG GCC CAT TGG GGA
e @B @ T F6
&~ ®-© @ @ —~@®

e T o do o

We Are Not Done with Gluing Yet

AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA
GCC CCA__ CAT_ATG__TGG GGG _GGA __GAT__ ATG__ TGT __ GTT

@-B-6-@--0-0-0-0--6-6
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Constructing Paired de Bruijn Graph

GCC CCA CAT
TGG_GGG __ GGA

15 -@~0-@-@

AAT ATG
Goe_CCA_CAT ATG
@~-E-& @
GGG GGA
TGT GTT

Paired de Bruijn Graph from read-pairs

* Paired de Bruijn graph for a collection of paired k-mers:

— Represent every paired k-mer as an edge between its
paired prefix and paired suffix.

— Glue ALL nodes with identical labels.



Which Graph Represents a Better Assembly?

Unique genome reconstruction Multiple genome reconstructions
TAATGCCATGGGATGTT TAATGCCATGGGATGTT
TAATGGGATGCCATGTT

GCC CCA CAT
TGG_ GGG __ GGA

%

ATG

GAT

TGG GGG GGA
ATG TGT GTT

GCC__CCA

Paired de Bruijn Graph De Bruijn Graph

382



Some Ridiculously Unrealistic Assumptions

Perfect coverage of genome by reads (every k-mer
from the genome is represented by a read)

Reads are error-free.
Multiplicities of k-mers are known

Distances between reads within read-pairs are
exact.



Some Ridiculously Unrealistic Assumptions

Imperfect coverage of genome by reads (every k-
mer from the genome is represented by a read)

Reads are error-prone.
Multiplicities of k-mers are unknown.

Distances between reads within read-pairs are
inexact.

Etc., etc., etc.
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15t Unrealistic Assumption: Perfect Coverage

atgccgtatggacaacgact
atgccgtatg
gccgtatgga
gtatggacaa
gacaacgact

250-nucleotide reads generated by Illlumina
technology capture only a small fraction of 250-
mers from the genome, thus violating the key
assumption of the de Bruijn graphs.



Breaking Reads into Shorter k-mers

atgccgtatggacaacgact
atgccgtatg
gccgtatgga
gtatggacaa
gacaacgact

atgccgtatggacaacgact
atgcc
tgccg
gccgt
ccgta
cgtat
gtatg
tatgg
atgga
tggac
ggaca
gacaa
acaac
caacg
aacga
acgac

cgact
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2"d Unrealistic Assumption: Error-free Reads

atgccgtatggacaacgact
atgccgtatg
gccgtatgga
gtatggacaa
gacaacgact
cgtaCggaca

Erroneous read
(change of t into C)

atgccgtatggacaacgact
atgcc
tgccg
gccgt
ccgta
cgtat
gtatg
tatgg
atgga
tggac
ggaca
gacaa
acaac
caacg
aacga
acgac
cgact
cgtaC
gtaCg
taCgg
aCgga
Cggac

387



De Bruijn Graph of ATGGCGTGCAATG...
Constructed from Error-Free Reads

ATGCC TGCCG GCCGT CCGTA CGTAT GTATG TATGG __ ATGGA TGGAC GGACA

Errors in Reads Lead to Bubbles in the
De Bruijn Graph

ATGCC TGCCG GCCGT CCGTA CGTAT GTATG TATGG __ ATGGA TGGAC GGACA

GCCGC “Bubbe! CATG

CCGCA CGCAT GCATG



Bubble Explosion

‘.AA

P
A’A a /Y]
vﬁv’

A single error in a read results in a bubble of length k in a de Bruijn graph constructed from
k-mers. Multiple errors in various reads may form longer bubbles, but since the error rate in

reads is rather small (less than 1% per nucleotide in Illumina reads), most bubbles are
small.
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De Bruin Graph of N. meningitidis
Q{Genome AFTER Removing Bubbles

C R A
72&;, , h‘f A - 1KY
| y: o) |

Red edges represent repeats
390



Example and RECAP

Input: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Copy: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Fragment: GGCGTCTA TATCTCGG CTCTAGGCCCTC ATTTTTT
GGC GTCTATAT CTCGGCTCTAGGCCCTCA TTTTTT
GGCGTC TATATCT CGGCTCTAGGCCCT CATTTTTT
GGCGTCTAT ATCTCGGCTCTAG GCCCTCA TTTTTT

CTAGGCCCTCAATTTTT
CTCTAGGCCCTCAATTTTT
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGCCCTCA 177 nucleotides
TATCTCGACTCTAGGCC
TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT 35 nucleotides

Average coverage =177 /35 =7x
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Example and RECAP

“k-mer”is a substring of length k

5 GGCGATTCATCG

mer: from Greek meaning “part”

A 4-mer of S: ATTC
All 3-mers of S:  GGC
GCG
CGA
GAT
ATT
TTC
TCA
CAT
ATC
TCG

I'll use “k-1-mer” to refer to a substring of length k- 1

AAA, AAB, ABB, BBB, BBA

AAB is a k-mer (k= 3). AAis its left k-1-mer, and AB is its right k-1-mer.

AAB 3-mer

/\

AA AB
L R

AAB'’s left 2-mer  AAB’s right 2-mer




Example and RECAP

a \ v
A ATGGCGT
> » [NEEN
GGCGTGC
(@] 11 I I ’I ;
"""" » =it
9 9] Short-read TGCAATG
€ 5 ? sequencing CAATGGC
LI |
ATGGCGT
Genome: ATGGCGTGCAATGGCGT
Vertices are k-mers A s.._ \Vertices are (k-1)-mers
Edges are pairwise alignments _ .-~ *-.. Edges are k-mers
47 RN
v
ATG
11
TGG
11
GGC
[
GCG
11
CGT
.............. > 11 M s Eieies & wlere
k-mers from vertices GT(,; k-mers from edges
TGC
11
GCA
|
CAA
11
AAT
(|
ATG
Genome: ATGGCGTGCAATG
Hamiltonian cycle Eulerian cycle
Visit each vertex once Visit each edge once

(harder to solve) (easier to solve)




Example and RECAP

The de Bruijn graph for k = 4 and

a 2-character alphabet composed
of the digits 0 and 1.

This graph has an Eulerian cycle

since each node has indegree
and outdegree equal to 2.
Following the blue numbered
edges inorder 1, 2, ..., 16 gives
an Eulerian cycle 0000, 0001,
0011, 0110, 1100, 1001, 0010,
0101, 1011, 0111, 1111, 1110,
1101, 1010, 0100, 1000,

which spells the cyclic superstring
0000110010111101

0110




Example and RECAP

AAABBBA
take all 3-mers: AAA, AAB, ABB, BBB, BBA

7 /1 TN NN

form L/R 2-mers: AA, AA, AA, AB, AB, BB, BB, BB, BB, BA
L R L R L R L R L R

Let 2-mers be nodes in a new graph. Draw a directed edge from each left
2-mer to corresponding right 2-mer:

AB
Each edge in this graph

@M /@ corresponds to a length-3
input string
BB




Example and RECAP

An edge corresponds to an overlap (of length k-2) between two k-1 mers.
More precisely, it corresponds to a k-mer from the input.

BBB

If we add one more B to our input string: AAABBBBA, and rebuild the

De Bruijn graph accordingly, we get a multiedge. 996




Example and RECAP

Node is balanced if indegree equals outdegree

Node is semi-balanced if indegree differs from outdegree by 1

Graph is connected if each node can be reached by some other node

Eulerian walk visits each edge exactly once

Not all graphs have Eulerian walks. Graphs that do are Eulerian.
(For simplicity, we won't distinguish Eulerian from semi-Eulerian.)

i

Ol

Is it Eulerian? Yes

AB

C

BA

AA,AA,AA, AB, AB, BB, BB, BB, BB, BA

L

AAA, AAB, ABB, BBB, BBA

7 /1 NN

R L R L R L R L

Argument 1: AA—- AA - AB - BB - BB —» BA

Argument 2: AA and BA are semi-balanced, AB and BB are balanced

R

397




Example and RECAP

De Bruijn graph

A procedure for making a De Bruijn graph
fora genome

Assume perfect sequencing where each length-k
substring is sequenced exactly once with no errors

Pick a substring length k: 5

Start with each read: a_long_long_long_time

Take each k mer and split ‘l/on\g‘_
into left and right k-1 mers long ong

Add k-1 mers as nodes to De Bruijn graph
(if not already there), add edge from left k-1
mer to right k-1 mer




Example and RECAP

RS SIANREIEE

First 8 k-mer additions, k=5
a_long long long time




Example and RECAP

Last 5 k-mer additions, k=5
a_long long long time




De Bruijn graph

Example and RECAP

With perfect sequencing, this procedure always

yields an Eulerian graph. Why?

Node for k-1-mer from left end is semi-balanced
with one more outgoing edge than incoming *

Node for k-1-mer at right end is semi-balanced
with one more incoming than outgoing *

Other nodes are balanced since # times k-1-mer occurs
as a left k-1-mer = # times it occurs as a right k-1-mer

* Unless genome is circular




De Bruijn graph Example and RECAP

Assuming perfect sequencing, procedure yields
graph with Eulerian walk that can be found
efficiently.

We saw cases where Eulerian walk corresponds to
the original superstring. Is this always the case?




Example and RECAP

How much work to build graph?

For each k-mer, add 1 edge and up to 2 nodes

Reasonable to say this is O(1) expected work

Assume hash map encodes nodes & edges

Assume k-1-mers fit in O(1) machine words,
and hashing O(1) machine words is O(1) work

Querying / adding a key is O(1) expected work

O(1) expected work for 1 k-mer, O(N) overall
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Example and RECAP

In typical assembly projects, average coverage is ~ 30 - 50

Same edge might appear in
dozens of copies; let’s use
edge weights instead

20

Weight = # times
k-mer occurs

Using weights, there’s
one weighted edge for
each distinct k-mer

Before: one
edge per k-mer

After: one weighted
edge per distinct k-mer

References: https://ocw.mit.edu/courses/biology/7-91j-foundations-of-computational-and-systems-
biology-spring-2014/lecture-slides/MIT7_91JS14_Lecture6.pdf
http://nbviewer.jupyter.org/github/BenLangmead/comp-genomics-class/blob/master/notebooks/

CG_deBruijn.ipynb 404




Example and RECAP

—Errors at end of read

e Trim off ‘dead-end’ tips A A )
- - e —|—a»— e ——
B
—Errors in middle of read y
* Pop Bubbles A C A B* c
@ T = — @O @ e — e
B
. . A B A B
—Chimeric Edges e e— - —
* Clip short, low coverage nodes N
C D




Example and RECAP

“It was the best of times, it was the worst of
times, it was the age of wisdom, it was the

age of foolishness, it was the epoch of belief,

‘

it was the epoch of incredulity,.... °

Dickens, Charles. A Tale of Two Cities. 1859. London: Chapman Hall

itwasthebestoftimesitwastheworstoftimesitwastheageof wisdomitwastheageoffoolishness...

' How do we assemble?

fincreduli geoffoalis itwasthebe ltwasthebe geofwisdom itwastheep epochofinc timesitwas stheepocho nessitwast wastheageo theepochof stheepocho
hofincredu estoftimes eoffoolsh Ishnessit hofbeliefi pochofingr itwasthewo twastheage toftimesit domitwasth ochofbelie eepochofbe eepochofbe
asthewaorst chofincred theageofwi iefitwasth ssitwasthe astheepoch efitwasthe whdomitwa ageoffooli twasthewor ochofbelle sdomitwast sitwasthea
eepochofbe ffoolkhne eofwisdomi hebestofti stheageoff twastheepo eworstofti stoftimesi theepochof esitwasthe heepochofi theepochof sdomitwast
astheworst rstoftimes worstoftim stheepocho geoffoolis ffoolshne timesitwas lishnessit stheageoff eworstofti orstoftime fwisdomitw wastheageo
heageofwhs increduit shnessitw twastheepo wasthewors astheepoch heworstoft ofbeliefit wastheageo heepochofi pochofincr heageofwis stheageofw
fincreduli astheageof wisdomitwa wastheageo astheepoch olkshnessi astheepoch itwastheep twastheage wisdomitwa fbeliefitw bestoftime epochofbel
theepochof sthebestof Ishnessit hofbeliefi twasthebe ishnessitw sitwasthew ageofwisdo twastheage esitwasthe twastheage shnessitwa fincreduli
foeliefitw theepochof mesitwasth domitwasth ochofbelie heageofwis oftimesitw stheepocho bestoftime twastheage foolishnes ftimesitwa thebestoft
itwastheag theepochof itwasthewo ofbeliefit bestoftime mitwasthea imesitwast timesitwas orstoftime estoftimes twasthebes stoftimesi sdomitwast
wisdomitwa theworstof astheworst sitwasthew theageoffo eepochofbe

...etc. to 10’s of millions of reads 406




Step 1:
Convert reads into “Kmers”
Kmer: a substring of defined length

Example and RECAP

Reads: theageofwi sthebestof astheageof

Kmers : the sth

e ast
(k=3) " hea the sth
éag heb the
age ebe hea
geo bes eag
eof est age
ofw sto geo
Step 2:

worstoftim

wor
ors
rst
sto
tof
oft
fti

Build a De-Bruijn graph from the kmers

/the —> hea > eag —> age —>geo —> eof
ast =>sth 7 the =>hea > eag —>age —> geo —> eof = ofw —=>fwi

" sth = the \

wor —>ors —>rst /

\

heb —>ebe —> bes —> est =>sto — tof

sto — tof

oft — fti —> tim

N

R

A
A

407




Example and RECAP

Step 3:
Simplify the graph as much as possible:

//,_/ R — m— T »H\\‘\\

_//"‘/ s ———— \'

K/—// A De Bruijn Graph » times /

—* be - e ey isdom

\\( // WOr — 4 — 7'/\'\"' of "

X It was the| —<<_ o N it fOO!lshness \
/ o age i N belief —__ |
U\ 1 > epoch — incredulity \\ )

De Bruijn assemblies ‘broken’ by repeats longer than kmer

T was the ppoch of belief, [[LWas the ppoch of incredulity, ...
;

~\

best of times [T Was the]worst of times Tt was (h¢ age of wisdom, [T Was theJage of foolishness,

-/

408




Example and RECAP

The final assembly (k=3)

wor times itwasthe foolishness st wisdom

incredulity age epoch be of belief

‘ Repeat with a longer “kmer” length
A better assembly (k=20)

itwasthebestoftimesitwastheworstoftimesitwastheageofwisdomitwastheageoffoolis...

Why not always use longest ‘k’ possible?

Sequencing errors: h Mostly unaffected
» sth the ebe ent tof kmers
y heb ben nto
sthebentof
k=1
sthebentof 100% wrong kmer

Slides from Presentation by Alicia Clum genomebiology.jgi-psf.org/Content/MGM-13.Sep2012/.../3.clum.ppt



Clustering Algorithms

* Clustering as an optimization problem

* The Lloyd algorithm for k-means clustering
* From Hard to Soft Clustering

* From Coin Flipping to k-means Clustering

* Expectation Maximization
* Soft k-means Clustering
 Hierarchical Clustering

* Markov Clustering Algorithm
» Stochastic Neighbor Embedding
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Measuring 3 Genes at 7 Checkpoints

Measure expression of various yeast genes at 7 checkpoints:

l | I | | l l
-6h -4h -2h 0 +2h +4h +6h
diauxic shift

YLR258W 1.1 1.4 1.4 3.7 4.0 10.0 5.9
Ypr.O012w 1.1 0.8 0.9 0.4 0.3 0.1 0.1
yPRO55W 1.1 1.1 1.1 @.1) 1.1 1.1 1.1
e; = expression level of
gene j at checkpoint j
10 —_//\ 10 10
5 5 5
2 2 2
1 1 1
0.5 0.5 _\ 0.5
0.2 0.2 0.2
0.1 0.1 0.1 i1




Analyze Sequence Function Literature

Community

C@gb YLR258W yeast Q

Tutti Immagini Shopping Video Maps Altro Impostazioni Strumenti

Protein Gene Ontology Phenotype Interactions Regulation Expression Literature

Circa 4.730 risultati (0,40 secondi)

GSY2 / YLR258W Sequence © Sequence Help @

GSY2 | SGD
https://www.yeastgenome.org/locus/S000004248 v Traduci questa pagina . .
30 ago 2005 - Standard Name: GSY2; Systematic Name: YLR258W; SGD ID: SGD: .... of yeast >rotein Product: glycogen (starch) synthase GSY2
glycogen synthase-2 by COOH-terminal phosphorylation. “eature Type: ORF, Verified

Jescription: Glycogen synthase; expression induced by glucose limitation, nitrogen starvation, heat shock, and stationary
YLR258W - SGD-Wiki phase; activity regulated by cAMP-dependent, Snf1p and Pho85p kinases as well as by the Gac1p-Glc7p
https://wiki.yeastgenome.org/index.php/YLR258W ¥ Traduci questa pagina phosphatase; GSY2 has a paralog, GSY1, that arose from the whole genome duplication; relocalizes from

23 gen 2012 - Description of YLR258W: Glycogen synthase, similar to Gsy1p; expression ... of yeast
glycogen synthase-2 by COOH-terminal phosphorylation.

cytoplasm to plasma membrane upon DNA replication stress 1 2345678910

2aralog: GSY110
GSY2 Protein | SGD ZC Number: 24111
https://www.yeastgenome.org/locus/S000004248/protein ¥ Traduci questa pagina
... Database (SGD) provides comprehensive integrated biological information for the budding yeast .
Saccharomyces cerevisiae. ... GSY2 / YLR258W Protein. Reference Strain: S288C @ View in: JBrowse

GSY2 - Glycogen [starch] synthase isoform 2 - Saccharomyces ...
https://www.uniprot.org/uniprot/P27472 v Traduci questa pagina GSY2 Location: Chromosome X1l 660716..662833

Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast). Status .... BioCyc', _.— [2) +

YEAST:YLR258W-MONOMER ... Ordered Locus Names:YLR258W.

1 ATGTCCCGTG ACCTACAAAA CCATTTGTTA TTCGAGACTG CGACTGAGGT TGCTAATAGG ™~
61 GTTGGTGGTA TTTACTCCGT GCTAAAATCG AAGGCTCCCA TTACGGTTGC CCAGTATARA -] Q ® @ https://www.ncbi.nim.nih.gov/geo/
121 GACCATTACC ACTTGATAGG GCCCTTAAAT AAAGCCACTT ATCAAAATGA AGTTGATATA _/
181 CTAGATTGGA AGAAGCCTGA AGCCTTTTCC GATGARATGA GGCCAGTGCA GCATGCCCTG - - -
<2 NCBI  Resources () How To )
241 CAAACAATGG AATCTAGAGG AGTTCATTTT GTTTATGGGA GGTGGCTGAT TGAAGGTGCT - - -
301 CCAAAAGTAA TACTTTTTGA CTTGGATTCT GTGAGAGGTT ATTCGAATGA ATGGAAGGGT : H
‘ GEO Home Documentation ¥ | Query & Browse ¥ | Email GEO

361 GATTTATGGT CATTAGTAGG AATTCCCTCT CCTGAGAATG ATTTCGAGAC GAATGATGCT
421 ATCCTATTGG GGTATACAGT CGCTTGGTTT CTAGGCGAAG TGGCTCATCT CGATTCACAA
481 CACGCAATTG TTGCGCACTT TCACGAATGG TTGGCCGGTG TTGCGTTACC ATTATGCCGT
541 AAAAGGCGTA TCGATGTAGT TACCATTTTC ACCACTCATG CTACTTTATT GGGACGGTAT
601 TTATGCGCCT CCGGCAGITT CGATTTTTAC AATTGTTTAG AATCTGTTGA TGTTGATCAC G ene E X p ress i on O mn i b us
661 GAAGCTGGCA GATTTGGCAT ATACCATCGT TATTGTATAG AGAGAGCGGC GGCTCATTCT
721 GCAGACGTGT TCACTACGGT GTCACAAATA ACTGCTTTTG AAGCGGAACA TCTTTTGAAA

R GIEEITEETO LS5 Ng ey (SR d NS (SIS R T b o) (10 e (o709 GEO is a public functional genomics data repository supporting MIAME-compliant data submissions. Array- and

841 GAGTTCCAAA ATTTGCATGC TTTGAAAAAA GAAAAAATCA ATGACTTTGT AAGAGGCCAT . .

TR, e T (e s (e e s Aeiretart) G sequence-based data are accepted. Tools are provided to help users query and download experiments and curated
961 TATGAGTATA AAAATAAGGG TGCTGACATG TTTATTGAGG CTCTAGCGCG TTTGAACTAC gene expression pr0ﬁ|es_

1021 AGATTAAAAG TATCCGGATC CAAAAAAACT GTGGTAGCGT TTATTGTCAT GCCCGCCAAA

1081 AATAATTCCT TCACTGTTGA AGCATTGAAG GGCCAGGCTG AGGTGAGGGC GTTAGAAAAT

1141 ACTGTACATG AAGTGACTAC TTCAATTGGT AAAAGAATAT TCGATCATGC TATCAGGTAC

1201 CCCCACAATG GACTGACGAC GGAATTACCA ACCGATTTGG GTGAATTACT AAAGAGTTCG

1261 GATAAAGTTA TGTTAAAGAG ACGTATTTTG GCTTTGAGAA GGCCGGAGGG ACAGTTACCC

1321 CCAATAGTTA CACACAATAT GGTCGATGAC GCTAATGACC TGATTTTAAA TAAAATCAGA H

1381 CAAGTTCAAT TGTTCAATAG CCCAAGTGAT CGTGTTAAAA TGATCTTCCA TCCAGAATTT Gettlng Started T°°Is
1441 TTGAACGCTA ATAATCCGAT CCTTGGTTTA GATTATGATG AGTTCGTTCG TGGTTGCCAT

1501 TTGGGTGTTT TCCCTTCATA CTACGAGCCT TGGGGTTACA CACCTGCAGA ATGTACAGTA OVerV|eW SearCh for StUdIes at GEO Datasets
1561 ATGGGTGTTC CCTCCATCAC GACAAATGTC TCTGGTTTCG GTGCCTATAT GGAAGACTTG .
1621 ATCGAAACCA ACCAAGCGAA AGATTACGGT ATTTATATTG TGGATCGTCG TTTCAAGGCA FAQ SearCh for Gene ExpreSS|on at GEO PrOﬁIeS
1681 CCTGATGAAT CTGTGGAACA ATTAGTTGAC TACATGGAAG AATTTGTAAA AAAGACAAGA .
1741 AGGCAAAGAA TTAATCAAAG AAATAGAACT GAAAGACTCT CCGACTTACT GGACTGGAAG AbOUt GEO Datasets SearCh GEO Documentatlon
1801 AGAATGGGTC TCGAATACGT CAAGGCAAGG CAGTTAGCAT TAAGAAGAGG CTATCCTGAT .
1861 CAGTTCAGAG AGCTCGTTGG TGAAGAACTA AATGATTCCA ACATGGATGC TTTAGCAGGC AbOUt GEO PrOﬁIes Analyze a StUdy W|th GEOZR
1921 GGAAAGAAAT TGAAAGTTGC AAGACCGCTT AGTGTACCTG GCTCACCAAG AGATTTGAGA . . . .
1981 TCAAACAGCA CAGTCTACAT GACCCCTGGT GATTTGGGTA CTCTGCAGGA GGTTAATAAC AbOUt GEOZR AnaIYSIS StUdIes WIth Gencme Data Vlewer TraCKS
2041 GCGGACGATT ATTTTTCATT AT CCTGCAGCTG ACGATGACGA CGATGGCCCA .
e T e How to Construct a Query Programmatic Access
How to Download Data FTP Site

& Download Sequence (.fsa) Custom Sequence Retrieval
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! taking logarithms (base-2)
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Gene Expression Matrix

YLR361C
YMR290C
YNRO65C
YGR043C
YLR258W
YPLO12W
YNL141W
YJLOZ28W
YKLOZ26C
YPROS5W

0.14
0.12
-0.10
-0.43
0.11

0.03
-0.23
-0.14
-0.73

0.43

-0.06
-0.24
-0.03
-0.06

0.45

0.07
-1.16
-0.06
-0.11

1.89

-0.01
-1.40
-0.07
-0.16

2.00

-0.06
-2.67
-0.14
3.47
3.32

-0.01
-3.00
-0.04
2.64
2.56

0.09

-0.28

-0.15

-1.18

-1.59

-2.96

-3.08

-0.16
-0.28
-0.19

0.15

-0.04
-0.23
-0.15

0.15

-0.07
-0.19
0.03
0.17

-1.26
-0.19
0.27
0.09

-1.20
-0.32
0.54
0.07

-2.82
-0.18
3.64
0.09

-3.13
-0.18
2.74
0.07

gene expression
vector
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Gene Expression Matrix

YLR361C
YMR290C
YNRO65C
YGR043C
YLR258W
YPLO12W
YNL141W
YJLOZ28W
YKLOZ26C
YPROS5W

0.14
0.12

-0.10
-0.43

0.11
0.09

-0.16
-0.28
-0.19

0.15

0.03

-0.23
-0.14
-0.73

0.43

-0.28
-0.04
-0.23
-0.15

0.15

-0.06
-0.24
-0.03
-0.06

0.45

-0.15
-0.07
-0.19

0.03
0.17

0.07 -0.01T -0.06
-1.16 -1.40 -2.67
-0.06 -0.07 -0.14
-0.11 -0.16 3.47
1.89 2.00 3.32
-1.18 -1.59 -2.96
-1.26 -1.20 -2.82
-0.19 -0.32 -0.18
0.27 0.54 3.64
0.09 0.07 0.09

-0.01
-3.00
-0.04

2.64
2.56

-3.08
-3.13
-0.18

2.74
0.07

1997: Joseph deRisi
measured expression
of 6,400 yeast genes
at 7 checkpoints
before and after the
diauxic shift.

6,400 x 7 gene
expression matrix

Goal: partition all yeast genes into clusters so that:
* genes in the same cluster have similar behavior
* genes in different clusters have different behavior




Genes as Points in Multidimensional Space

YLR361C
YMR290C
YNRO65C
YGR043C
YLR258W
YPLO12W
YNL141W
YJLOZ28W
YKLOZ26C
YPROS5W

0.14
0.12
-0.10
-0.43
0.11
0.09
-0.16
-0.28
-0.19
0.15

0.03
-0.23
-0.14
-0.73

0.43
-0.28
-0.04
-0.23
-0.15

0.15

-0.06
-0.24
-0.03
-0.06

0.45
-0.15
-0.07
-0.19

0.03

0.17

0.07
-1.16
-0.06
-0.11

1.89
-1.18
-1.26
-0.19

0.27

0.09

-0.01
-1.40
-0.07
-0.16

2.00
-1.59
-1.20
-0.32

0.54

0.07

-0.06
-2.67
-0.14
3.47
3.32
-2.96
-2.82
-0.18
3.64
0.09

-0.01
-3.00
-0.04
2.64
2.56
-3.08
-3.13
-0.18
2.74
0.07

(8,7)
°

nxm
gene expression
matrix

\4

n points in

m-dimensional

space
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Gene Expression and Cancer Diagnhostics

MammaPrint: a test that evaluates the likelihood of
breast cancer recurrence based on the expression
of just 70 genes.

But how did scientists discover these 70 human genes?

417




Toward a Computational Problem

Good Clustering Principle: Elements within the
same cluster are closer to each other than
elements in different clusters.



Toward a Computational Problem

e distance between elements in the same cluster < A
e distance between elements in different clusters > A
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Clustering Problem

Clustering Problem: Partition a set of expression
vectors into clusters.

* Input: A collection of n vectors and an integer k.
* Output: Partition of n vectors into k disjoint
clusters satistying the Good Clustering Principle.

Any partition into
«*e two clusters does not
AT satisfy the Good
oo Clustering Principle!




What is the “best” partition into three clusters?

! !
? ? 421




Clustering as Finding Centers

Goal: partition a set Data into k clusters.

Equivalent goal: find a set of k points Centers that

will serve as the “centers” of the k clusters in Data.

422




Clustering as Finding Centers

Goal: partition a set Data into k clusters.

Equivalent goal: find a set of k points Centers that
will serve as the “centers” of the k clusters in Data

and will minimize some notion of distance from
Centers to Data .

What is the “distance” from Centers to Data?

® o"\'

~oC

o
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Distance from a Single DataPoint to Centers

The distance from DataPoint in Data to Centers is
the distance from DataPoint to the closest center:

d(DataPoint, Centers) = min d(DataPoint, x)

all points x from Centers

‘ 424



Distance from Data to Centers

MaxDistance(Data, Centers) =

max d(DataPoint, Centers)

all points DataPoint from Data

" 425



k-Center Clustering Problem

k-Center Clustering Problem. Given a set of points

Data, find k centers minimizing MaxDistance(Data,

Centers).

» Input: A set of points Data and an integer k.

* QOutput: A set of k points Centers that minimizes
MaxDistance(DataPoints, Centers) over all
possible choices of Centers.
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k-Center Clustering Problem

k-Center Clustering Problem. Given a set of points

Data, find k centers minimizing MaxDistance(Data,

Centers).

» Input: A set of points Data and an integer k.

* QOutput: A set of k points Centers that minimizes
MaxDistance(DataPoints, Centers) over all
possible choices of Centers.
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k-Center Clustering Heuristic

FarthestFirstTraversal(Data, k)
Centers « the set consisting of a single DataPoint from Data
while Centers have fewer than k points
DataPoint <« a point in Data maximizing d(DataPoint, Centers)
among all data points
add DataPoint to Centers

. 428




k-Center Clustering Heuristic

FarthestFirstTraversal(Data, k)
Centers « the set consisting of a single DataPoint from Data
while Centers have fewer than k points
DataPoint <« a point in Data maximizing d(DataPoint, Centers)
among all data points
add DataPoint to Centers
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L4
L
o
L]
e
e

«‘ 429




What Is Wrong with FarthestFirstTraversal?

FarthestFirstTraversal selects Centers that minimize
MaxDistance(Data, Centers).

But biologists are interested in typical rather than
maximum deviations, since maximum deviations may
represent outliers (experimental errors).

human eye

FarthestFirstTraversal

/ ~N
\*/
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Modifying the Objective Function

The maximal distance between Data
and Centers:

MaxDistance(Data, Centers)=
MaX ,,:0point from Data dlDAtaPoINt, Centers)

A single data point contributes
to MaxDistance

o o *+—©
O

The squared error distortion
between Data and Centers:

Distortion(Data, Centers) =

" Datapoint from Data d(DataPoint, Centers)?/n

All data points contribute to
Distortion




k-Means Clustering Problem

k-Center Clustering Problem: k-Means Clustering Problem:
Input: A set of points Data and an | Input: A set of points Data and an
integer k. integer k.
Output: A set of k points Centers Output: A set of k points Centers
that minimizes that minimizes
MaxDistance(DataPoints,Centers) Distortion(Data, Centers)
over all choices of Centers. over all choices of Centers.

NP-Hard for k > 1

o ow® ¢ o**®
.
o "~
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k-Means Clustering for k=1

Center of Gravity Theorem: The center of gravity of
points Data is the only point solving the 1-Means
Clustering Problem.

The center of gravity of points Data is
Zall points DataPoint in Data DataPoint / #pOiﬂtS In Data

5 O i-th coordinate of the center of
gravity = the average of the i-th
e O coordinates of datapoints:

(2+4+6)/3, 3+1+5)/3 ) = (4, 3)
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The Lloyd Algorithm in Action

Select k arbitrary data points as Centers




The Lloyd Algorithm in Action
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assign each data point to its nearest center




The Lloyd Algorithm in Action
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The Lloyd Algorithm
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The Lloyd Algorithm in Action
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The Lloyd Algorithm in Action
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The Lloyd Algorithm

Select k arbitrary data points as Centers and then
iteratively performs the following two steps:

* Centers to Clusters: Assign each data point to the
cluster corresponding to its nearest center (ties
are broken arbitrarily).

 Clusters to Centers: After the assignment of data
points to k clusters, compute new centers as
clusters’ center of gravity.

The Lloyd algorithm terminates when the centers
stop moving (convergence).




Must the Lloyd Algorithm Converge?

If a data point is assigned to a new center
during the Centers to Clusters step:

— the squared error distortion is reduced
because this center must be closer to

the point than the previous center was.

If a center is moved during the Clusters to
Centers step:

— the squared error distortion is reduced
since the center of gravity is the only
point minimizing the distortion (the
Center of Gravity Theorem).
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Clustering Yeast Genes

Cluster 1 Cluster 2 Cluster 3

-2 4 2
4 4

Cluster 4 Cluster 5 Cluster 6
4- 4




Soft vs. Hard Clustering

The Lloyd algorithm assigns the midpoint either to
the red or to the blue cluster.
« “hard” assignment of data points to clusters.
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Midpoint: A point approximately
halfway between two clusters.
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Soft vs. Hard Clustering

* The Lloyd algorithm assigns the midpoint either to
the red or to the blue cluster.
« “hard” assignment of data points to clusters.
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* Can we color the midpoint half-red and half-blue?
« “soft” assignment of data points to clusters.
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Soft vs. Hard Clustering

(0.9/8, 0.02)
o ° .
@ .0 ® 9
o ©® o 0
S 0% e (001,099
(0.48,0.52) o ®® ¢

Hard choices: points are
colored red or blue depending
on their cluster membership.

Soft choices: points are assigned
“red” and “blue” responsibilities

'blue and Ied (rblue+ Ired :1) 446




Flipping One Biased Coin

« We flip a loaded coin with an unknown bias®@
(probability that the coin lands on heads).
* The coin lands on heads i out of n times.

 For each bias, we can compute the probability of the
resulting sequence of flips.

Probability of generating the given sequence of flips is

Pr(sequence|0) = 6" * (1-8)™

This expression is maximized at = i/n (most likely bias)




Flipping Two Biased Coins

Data
HTTTHTTHTH 0.4
HHHHTHHHHH 0.9
HTHHHHHTHH 0.8
HTTTTTHHTT 0.3
THHHTHHHTH 0.7

Goal: estimate the probabilities@, and0,

448



If We Knew Which Coin
Was Used in Each Sequence...

Data HiddenVector

HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

Goal: estimate Parameters = (9, ,6,)
when HiddenVector is given

449



If We Knew Which Coin
Was Used in Each Sequence...

Data HiddenVector

HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0
THHHTHHHTH 0.7 0

6, = fraction of heads generated in all flips with coin A =
(4+3)/(10+10) = (0.4+0.3) / 2 = 0.35

6, = fraction of heads generated in all flips with coin B =
(9+8+7) / (10+10+10) = (0.9+0.8+0.7) / (1+1+1) = 0.80
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Parameters as a Dot-Product

Data HiddenVector Parameters=(6, 0,)
HTTTHTTHTH 0.4 1

(0.35, 0.80)

* ok % oF

HTTTTTHHTT 0.3

*

6, = fraction of heads generated in all flips with coin A =
= (4+3)/(10+10) = (0.4+0.3) / 2 = 0.35

(0.4*1+0.9*%0+0.8*0+0.3*1+0.7*0)/ (1+0+0+1+0) = 0.35
> all data points Data*HiddenVector; /Y . data boints HiddenVector= 0.35

Data * HiddenVector / (1,1,...*1)HiiddemVector =0.35
1 refers to a vector (1,1, ... ,1) consisting of all T¢



Parameters as a Dot-Product

Data HiddenVector Parameters=(0, 0)

HTTTHTTHTH 0.4 % 1
HHHHTHHHHH 0.9 =+ O
HTHHHHHTHH 0.8 % O (0.35, 0.80)
HTTTTTHHTT 0.3 =+ 1
THHHTHHHTH 0.7 * O

6, = fraction of heads generated in all flips with coin B
(9+8+7)/ (10+10+10) = (0.94+0.8+0.7) /( 1+1+1) = 0.80

(0.5*0+0.9*14+0.8*14+0.4*0+0.7*1) / (O+1+1+40+1) = 0.80
D all points i Data; * (1- HiddenVector;) / 3. 1- HiddenVector,)=

all points / (

Data * (1-HiddenVector) / 1 * (1 - HiddenVector) s



Parameters as a Dot-Product

Data HiddenVector Parameters=(0, 6,)

HTTTHTTHTH 0.4 % 1
HHHHTHHHHH 0.9 =+ O
HTHHHHHTHH 0.8 % O (0.35, 0.80)
HTTTTTHHTT 0.3 =+ 1

THHHTHHHTH 0.7 = 0

6 , = fraction of heads generated in all flips with coin A
= (0.4+0.3)/2=0.35
= Data * HiddenVector / 1 * HiddenVector

6, = fraction of heads generated in all flips with coin B
= (0.94+0.8+0.7)/3=0.80
= Data * (1-HiddenVector) / 1 * (1 - HiddenVector)



Data, HiddenVector, Parameters

Data HiddenVector Parameters=(9,,0),)

0.4 1
0.9 0
0.8 0 —> (0.35, 0.80)
0.3 1
0.7 0

HiddenVector Parameters
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Data, HiddenVector, Parameters

Data HiddenVector Parameters=(0,, 0),)
?

<€— (0.35, 0.80)

o O O OO
~N W 00 O
) ) ) o0 o

HiddenVector |€&— Parameters
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From Data & Parameters to HiddenVector

Data HiddenVector Parameters=(9,, 0;)

0.4 ?
0.9 ?
0.8 ? €&—— (0.35,0.80)
0.3 ?
0.7 ?

Which coin is more likely to generate the
15t sequence (with 4 H)?

Pr(1t sequence|8,)=0,* (1-0,)° = 0.35* ¢ 0.65° = (0.00113 >
Pr(1st sequence|B; )= B5%(1-65)° = 0.80* ¢ 0.20° = 0.00003
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From Data & Parameters to HiddenVector

Data HiddenVector Parameters=(9,,0 )

0.4 1
0.9 ?
0.8 ? €&—— (0.35,0.80)
0.3 ?
0.7 ?

Which coin is more likely to generate the
15t sequence (with 4 H)?

Pr(1t sequence|8,)=0,* (1-0,)° = 0.35* ¢ 0.65° = (0.00113 >
Pr(1st sequence|B; )= B5%(1-65)° = 0.80* ¢ 0.20° = 0.00003
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From Data & Parameters to HiddenVector

Data HiddenVector Parameters=(0,, 0),)

0.4 1
0.9 ?
0.8 ? €&—— (0.35, 0.80)
0.3 ?
0.7 ?

Which coin is more likely to generate the
2nd sequence (with 9 H)?

Pr(2"d sequence|B,)= 0,7 (1-6,)'=0.35%¢0.65' = 0.00005 <
Pr(2nd sequence|B;)= 857 (1-65)! =0.80° ¢0.20' =~ 0.02684
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From Data & Parameters to HiddenVector

Data HiddenVector Parameters=(0,, 0),)

0.4 1
0.9 0
0.8 ? €&—— (0.35, 0.80)
0.3 ?
0.7 ?

Which coin is more likely to generate the
2nd sequence (with 9 H)?

Pr(2"d sequence|6,)= 0,7 (1-6,)'=0.35%¢0.65" = 0.00005 <
Pr(2nd sequence|B;)= 857 (1-65)! =0.80° ¢0.20' =~ 0.02684
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Hidden\Vector Reconstructed!

Data HiddenVector Parameters=(0 4 Bp)
1

<€— (0.35, 0.80)

© O 00O
~N W 00V
O = OO
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Reconstructing HiddenVector and Parameters

HiddenVector Parameters




Reconstructing HiddenVector and Parameters

HiddenVector Parameters’




Reconstructing HiddenVector and Parameters

Parameters’



Reconstructing HiddenVector and Parameters

Iterate!

HiddenVector’ Parameters’



From Coin Flipping to k-means Clustering:
Where Are Data, HiddenVector, and Parameters?

Data: data points Data = (Data,,...,Data,)
Parameters: Centers = (Center,,...,Center,)

HiddenVector: assignments of data points to k centers
(n-dimensional vector with coordinates varying from 1 to k).

¢ ¢
e
0\:/’
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Coin Flipping and Soft Clustering

Coin flipping: how would you select between coins A and B if
Pr(sequence|0,) = Pr(sequence|0,)?

k-means clustering: what cluster would you assign a data point it
to if it is @ midpoint of centers C, and C,?

- o
’———- —~§\ —___--l——_~~
- -~y

s @
/o0 00® P 000 0
°c e \ s® oo
[ o®0g @ (@ o0 g0 |
o0 ( ] / O
\ " oa0® @0 /
\.... /)'\ .... 7’
~ - ~ (S

e - - - — . =
e o oam = = e o omm =

Soft assignments: assigning C, and C, “responsibility” =0.5 for
a midpoint. o




From Data & Parameters to HiddenVector

Data HiddenVector Parameters = (6,,0),)

0.4 ?
0.9 ?
0.8 ? < (0.60, 0.82)
0.3 ?
0.7 ?

Which coin is more likely to have generated the first
sequence (with 4 H)?

Pr(1st sequence|8,)=0,> (1-6,)°> = 0.60* ¢ 0.40° =~ 0.000531 >
Pr(1st sequence|B; )= 65°(1-8;)°> = 0.82% ¢ 0.18° = 0.000015
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Memory Flash:
From Data & Parameters to HiddenVector

Data HiddenVector Parameters = (6,,0),)

0.4 1
0.9 ?
0.8 ? < (0.60, 0.82)
0.3 ?
0.7 ?

Which coin is more likely to have generated the first
sequence (with 4 H)?

Pr(1st sequence|8,)=0,> (1-6,)°> = 0.60* ¢ 0.40° =~ 0.000531 >
Pr(15t sequence|B; )= 0,5(1-8,)5 = 0.824 ¢ 0.18° = 0.000015
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From Data & Parameters to HiddenMatrix

Data HiddenMatrix  Parameters = (0 ,,0,)

<€ (0.60, 0.82)

What are the responsibilities of coins for this sequence?

Pr(1t sequence|B,) = 0.000531 >
Pr(1st sequence|Bg ) = 0.000015

0.000531 /(0.000531 + 0.000015) = 0.97
0.000015 /(0.000531 + 0.000015) = 0.03 469



From Data & Parameters to HiddenMatrix

Data HiddenMatrix  Parameters = (6, O,

0.4 0.97 0.03

0.9 0.12 0.88

0.8 < (0.60, 0.82)
0.3

0.7

What are the responsibilities of coins for the 2"? sequence?

Pr(2"d sequence|B,) = 0.0040 <
Pr(2nd sequence|B; ) = 0.0302

0.0040 / (0.0040 + 0.0302) =0.12
0.0342 /(0.0040 + 0.0342) = 0.88 470



HiddenMatrix Reconstructed!

Data HiddenMatrix Parameters = (0,,0),)

0.4 0.97 0.03
0.9 0.12 0.88
0.8 0.29 0.71<€— (0.60, 0.82)
0.3 0.99 0.01
0.7 0.55 0.45
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Expectation Maximization Algorithm

HiddenMatrix Parameters



E-step

HiddenMatrix Parameters




M-step

HiddenVector Parameters’




Memory Flash: Dot Product
Data HiddenVector Parameters=(6, 6;)

HTTTHTTHTH 0.4 * 1
HHHHTHHHHH 0.9 = 0
HTHHHHHTHH 0.8 =* 0 22
HTTTTTHHTT 0.3 * 1
THHHTHHHTH 0.7 * 0
0,=Data * HiddenVector /1 * HiddenVector

6,= Data * (1-HiddenVector) /1 * (1-HiddenVector)
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From Data & HiddenMatrix to Parameters
Data HiddenVector Parameters=(6,,6),)

HTTTHTTHTH
HHHHTHHHHH
HTHHHHHTHH
HTTTTTHHTT

THHHTHHHTH
0,=Data *

O,= Data * (1-HiddenVector)

© O O O
W 00 WV

0.7
Hidden\Vector

HiddenVector= (1 0

1

O = OO

0

/1 * HiddenVector

/1 * (1-HiddenVector)

T 0)

What is HiddenMatrix corresponding to this HiddenVector?
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From Data & HiddenMatrix to Parameters

HTTTHTTHTH
HHHHTHHHHH
HTHHHHHTHH
HTTTTTHHTT

THHHTHHHTH
0,=Data *

Data HiddenVector Parameters=(6,,6),)

0.4 1
0.9 0
0.8 0
0.3 1
0.7 0
HiddenVector /' 1 * HiddenVector

6, = Data * 1t row of HiddenMatrix / 1*15' row of HiddenMatrix

0,= Data * (1-HiddenVector) /1 * (1-HiddenVector)

0, = Data * 2" row of HiddenMatrix / 1*2"4 row of HiddenMatrix

HiddenVector= (1 0 0 1T 0)

Hidden Matrix = 0 0 1 0= HiddenVector

0 T 1 0 1=1-HiddenVector*”



From Data & HiddenMatrix to Parameters
Data HiddenMatrix Parameters=(6,,6),)

HTTTHTTHTH
HHHHTHHHHH
HTHHHHHTHH
HTTTTTHHTT

THHHTHHHTH
0,=Data *

0.4 0.97
0.9 0.12
0.8 0.29
0.3 0.99
0.7 0.55
HiddenVector

0.03
0.88
0.71
0.01

0.45
/1

6, = Data * 1t row of HiddenMatrix / 1*15' row of HiddenMatrix

O,= Data * (1-HiddenVector)

/1

Hidden Matrix =

(1

O O

1

97 .03 .29 .99 .55
03 .97 .71

.01 .45

HiddenVector

(1-HiddenVector)

0, = Data * 2" row of HiddenMatrix / 1*2"4 row of HiddenMatrix
HiddenVector =

0)



From HiddenVector to HiddenMatrix

Data: data points Data = {Data,, ... ,Data,}
Parameters: Centers = {Center,, ... ,Center,}
HiddenVector: assignments of data points to centers

A B C D E F G
HiddenVector " 2 1 3 2 1 3 3
1 0 0 0
HiddenMatrix 9 1 0 1
31 0 0 0 1 0 0 1
o bl

1 @j
3 3
479



From HiddenVector to HiddenMatrix

Data: data points Data = {Data,, ... ,Data,}
Parameters: Centers = {Center,, ... ,Center,}
HiddenMatrix;;: responsibility of center / for data point

A B C D E F G
11707 | o 1 0 0
HiddenMatrix 2| 0.2 1 1
31 Y1 o 0 0 0 1

o—g °



From HiddenVector to HiddenMatrix
Data: data points Data = {Data;,,

Parameters: Centers = {Center,,

... ,Data,}
... ,Center,}

HiddenMatrix; ;: responsibility of center

1
HiddenMatrix 9

3

A

C

D

data point j

0.70

0.73

0.40

0.80

0.05

0.05

0.20

0.17

0.20

0.10

0.05

0.20

0.10

0.10

0.40

0.10

0.90

0.75




Responsibilities and the Law of Gravitation

planets

0.70 | 0.15 | 0.73 | 0.40 | 0.15 | 0.80 | 0.05 | 0.05
stars 0.20 | 0.80 | 0.17 | 0.20 | 0.80 | 0.10 | 0.05 | 0.20
0.10 | 0.05 | 0.10 | 0.40 | 0.05 | 0.10 | 0.90 | 0.75

responsibility of star / for a planet j is proportional to the
pull (Newtonian law of gravitation):

force, =1/distance(Data;, Center;)?

HiddenMatrix;: =

Force;; /' X Force; ;

all centers j




Responsibilities and Statistical Mechanics

data points
0.70 | 0.15 | 0.73 | 0.40 | 0.15 | 0.80 | 0.05 | 0.05
centers| 020 | 0.80 | 0.17 | 0.20 | 0.80 | 0.10 | 0.05 | 0.20
0.10 | 0.05 | 0.10 | 0.40 | 0.05 | 0.10 | 0.90 | 0.75

responsibility of center / for a data point j is proportional to

— -B-distance(Dataj, Centeri)
force;; = e B J

where B is a stiffness parameter.

HiddenMatrix;: =
FOFCG,-//- / Z FOI’Ce,// 483

all centers j




How Does Stiffness Affect Clustering?

Hard k-means
clustering

Soft k-means
clustering
(stiffness B=1)

Soft k-means
clustering
(stiffness B= 0.3)
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Stratification of Clusters

Clusters often have subclusters, which have
subsubclusters, and so on.
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Stratification of Clusters

Clusters often have subclusters, which have sub-
subclusters, and so on.
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From Data to a Tree

To capture stratification, the hierarchical clustering
algorithm organizes n data points into a tree.

! |

86 |
gz. 810 g, g, _|

84

)
|

e 6 6 o6 o o o o
83 85 83 87 81 86 810 82 84 89 487




From a Tree to a Partition into 4 Clusters

To capture stratification, the hierarchical clustering
algorithm organizes n data points into a tree.

4 |
87
g);() o | Line
— crossing
4 R A A P I
% .30 i & _I the tree
81 at 4 points
¢ |_ _
83 _|
. —
;@ @55
l-_l ® 6 6 6 o o o o

83 85 8s 87 81 86 810 82 84 89
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From a Tree to a Partition into 6 Clusters

To capture stratification, the hierarchical clustering
algorithm first organizes n data points into a tree.

A |

Line

2, I . - —I Crossing
@* o 2 L the tree
N

S Y A

6 Clusters

e 6 6 6 o o o o
8s 87 81 86 810 82 84 89

_at 6 points
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Constructing the Tree

Hierarchical clustering starts from a transformation of n x

expression matrix into n x n similarity matrix or distance matrix.

® 81
g 8 g fo g

8
84 ’
84

85

8
83 °
o 87

83
89

810

81

Distance Matrix

82 83 84 8s 86 87
8.1 9.2 7.7 9.3 2.3 5.1

12.0 09 12.0 9.5 10.1

11.2 0.7 11.1 8.1
112 92 95

11.2 8.5

5.6

8s 89 810
10.2 6.1 7.0

128 2.0 1.0
1.1 105 11.5
120 1.6 1.1
1.0 106 11.6
121 7.7 85
91 83 93

11.4 124

1.1
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{85, 851

]

g

g

Constructing the Tree

Identify the two closest clusters and merge them.

s 87 81 86 8o 82

84

89

81

82 83 84 8s 86
8.1 9.2 7.7 9.3 2.3

12.0 09 12.0 95

87
5.1

10.1

8.1

9.5

8.5

5.6

8s 89 810
10.2 6.1 7.0

128 2.0 1.0
1.1 105 11.5
120 1.6 1.1
1.0 106 11.6
121 7.7 85
91 83 93

11.4 124

1.1
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Constructing the Tree

Recompute the distance between two clusters as
average distance between elements in the cluster.

81 82 838 8s 86 87 8s

8 8.1 92 77 23 51 102

8, 120 09 95 10.1 12.8

83 85 1.2 111 81 1.0

84 9.2 95 120

86 56 12.1

{g3; g5} 8, 9.1

® © 6 6 6 ¢ 6 o 0 O
85 85 8s 8 81 86 810 82 84 89

8 8o
6.1 7.0
20 1.0
10.5 11.5
1.6 1.1

7.7 8.5

83 93
114 124

1.1
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{83, 85}

]

Constructing the Tree

Identify the two closest clusters and merge them.

81
8

83 85
{g2/ 84} 84
- 86

87
8s

g &

8s

87

81

86

10 8> 84 89 s

81

82 838 &8s 86
8.1 9.2 7.7 2.3

12.0 09 9.5

11.2 111

9.2

87
5.1

10.1

8.1
9.5

5.6

8s
10.2

12.8

12.0
12.1

9.1

8 8o
6.1 7.0
20 1.0
10.5 11.5
1.6 1.1

7.7 8.5

83 93
114 124

1.1

493



Constructing the Tree

Recompute the distance between two clusters (as
average distance between elements in the cluster).

81 828+ 8385 86 87 8s 89 810

g 77 92 23 51 102 6.1 7.0
82 84 112 92 95 120 1.6 1.0

g3 8 1.1 81 1.0 105 11.5

{8, 84} 8 56 121 77 85

B 87 9.1 83 93

183/ 85! 8s 11.4 12.4

|- -‘ 89 1.1
810

O 6 ¢ 6 6 6 ¢ 6 0o ©
8y 85 8s 87 81 86 8o 82 84 89
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Constructing the Tree

Identify the two closest clusters and merge them.

81

{83, 85/ 85! 8 8

r @—

o—

83 85
{gZ/ g4} 8o
- 87
8s
89

810

® 6 6 6 ¢ ¢ 0 ©
8s 87 81 86 810 82 81 89

81 8281 838 8
7.7 9.2 2.3

11.2 9.2

11.1

87
5.1

9.5

8.1

5.6

83 89 810
10.2 6.1 7.0

120 1.6 1.0
1.0 105 115
121 7.7 85
9.1 83 93

11.4 124

1.1
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Constructing the Tree

Iterate until all elements form a single cluster (root).

e
U T

e 6 6 6 o o o o o
83 85 8s 87 81 86 810 82 84 89
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Constructing a Tree from a Distance Matrix D

HierarchicalClustering (D, n)
Clusters < n single-element clusters labeled 1 to n
I < a graph with the n isolated nodes labeled 1 to n
while there is more than one cluster
find the two closest clusters C; and C,
merge C; and C; into a new cluster C,,, with |G| + |G| elements
add a new node labeled by cluster C,, to T
connect node C,,,, to C; and C by directed edges
remove the rows and columns of D corresponding to C; and C,
remove C; and C; from Clusters
add a row and column to D for the cluster C
D(C, .. ,C) for each cluster C in Clusters
add C, ., to Clusters
assign root in T as a node with no incoming edges

return 7

by computing

new

new /




Different Distance Functions Result in Different
Trees

Average distance between elements of two clusters:

Davg(CW C2) = <Z all points / and ; in clusters C1 and C2, respectively Di,j)/ (|C1 |*|C2 |)

Minimum distance between elements of two clusters:

Dmin(C / C2> = MIN 4, points / and j in clusters C1 and C2, respectively Di,j




Clusters Constructed by HierarchicalClustering

Cluster 1 Cluster 2 Cluster 3
4, 4 . -
2,
01:
-2{| Surge in expression -2 1 -2 1
at final checkpoint
4 -4 - 4
Cluster 4 Cluster 5 Cluster 6
4 4- 4
24
0

A0
TJ




Markov Clustering Algorithm

Unlike most clustering algorithms, the MCL (micans.org/
mcl) does not require the number of expected clusters to be
specified beforehand. The basic idea underlying the
algorithm is that dense clusters correspond to regions with a
larger number of paths.

You can find the code at micans.org/mcl

Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of
protein families. Nucleic Acids Res. 2002 30:1575-84.




Markov Clustering Algorithm

We take a random walk on the graph described by the
similarity matrix, but after each step we weaken the links
between distant nodes and strengthen the links between
nearby nodes.

A random walk has a higher probability to stay inside the
cluster than to leave it soon. The crucial point lies in
boosting this effect by an iterative alternation of expansion
and inflation steps. An inflation parameter is responsible
for both strengthening and weakening of current, i.e.
Strengthens strong currents, and weakens already weak
currents. An expansion parameter, r, controls the extent of
this strengthening / weakening. In the end, this influences
the granularity of clusters.
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Markov Clustering Algorithm

Matrix representation

0000000110101ﬁ00000
0 0 0 0 0 0 OEEINNIEEDEEINES 0 0 0 0 0 O
0 0 0 0 0 0 OEEINIEEINIEN 0 0 0 0 0 0
000 O0OOODOTOTM11T110O0UO0OUO0TO0TO0TO
OOOOOOOOOHOOO
000 00O0OOOTUOODOU OO
000 O0OOUOOUODODOODOO
000 O0OOUOOUOODOODOO
000 0 O0OOOTUOODOU OO

000 O0OOUOOUODODOODOO
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Markov Clustering Algorithm

@ Input is an un-directed graph, with power parameter e (usually =2), and inflation
parameter r (usually =2).

© Create the associated adjacency matrix

Mpq
Zi qu

@ Expand by taking the e-th power of the matrix; for example, if e = 2 just multiply
the matrix by itself.

© Normalize the matrix; M, =

(Mpq)'

@ Inflate by taking inflation of the resulting matrix with parameter r : Mg = S (Mg

QO Repeat steps 4 and 5 until a steady state is reached (convergence).
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Markov Clustering Algorithm
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Markov Clustering Algorithm

The number of steps to converge is not proven, but
experimentally shown to be 10 to 100 steps, and
mostly consist of sparse matrices after the first few
steps.

The expansion step of MCL has time complexity O(n3).
The inflation has complexity O(n?). However, the
matrices are generally very sparse, or at least the vast
majority of the entries are near zero. Pruning in MCL
involves setting near-zero matrix entries to zero, and
can allow sparse matrix operations to improve the speed

of the algorithm vastly.




Markov Clustering Algorithm

Input : A weighted undirected graph G = (V, E), expansion parameter e, inflation
parameter r

Output : A partitioning of V' into disjoint components

M — M(G)

while M is not fixpoint do

M — M*°

forall: € V do

forall ; € V do
[ M[i][j] — M[s][5]"
forall j € V do
M) —
keV

H « graph induced by non-zero entries of M
C « clustering induced by connected components of H
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Stochastic Neighbor Embedding : key points

A popular method for exploring high-dimensional data is
something called t-SNE, introduced by van der Maaten and
Hinton in 2008. The technique has become widespread in the
field of machine learning, since it has an almost magical ability
to create compelling two-dimensonal “maps” from data with
hundreds or even thousands of dimensions.

The goal is to take a set of points in a high-dimensional
space and find a faithful representation of those points in
a lower-dimensional space, typically the 2D plane. The
algorithm is non-linear and adapts to the underlying data,
performing different transformations on different regions.
Those differences can be a major source of confusion.



Stochastic Neighbor Embedding : key points

A second feature of t-SNE is a tuneable parameter,
“perplexity,” which says (loosely) how to balance
attention between local and global aspects of your
data. The parameter is, in a sense, a guess about the
number of close neighbors each point has. The
original paper says, “The performance of SNE is fairly
robust to changes in the perplexity, and typical
values are between 5 and 50.” But the story is more
nuanced than that. Getting the most from t-SNE may

mean analyzing multiple plots with different
perplexities.



Stochastic Neighbor Embedding : key points

‘fewm

scikit-learn v0.20.0
Other versions

Please cite us if you use
the software.

t-SNE: The effect of various
perplexity values on the shape

Note: Click here to download the full example code

t-SNE: The effect of various perplexity values on the shape

An illustration of t-SNE on the two concentric circles and the S-curve datasets for different perplexity values.

We observe a tendency towards clearer shapes as the preplexity value increases.

The size, the distance and the shape of clusters may vary upon initialization, perplexity values and does not always convey

a meaning.

As shown below, t-SNE for higher perplexities finds meaningful topology of two concentric circles, however the size and the
distance of the circles varies slightly from the original. Contrary to the two circles dataset, the shapes visually diverge from
S-curve topology on the S-curve dataset even for larger perplexity values.

For further details, “How to Use t-SNE Effectively” http:/distill.pub/2016/misread-tsne/ provides a good discussion of the

effects of various parameters, as well as interactive plots to explore those effects.

Perplexity=5

Perplexity=30

Perplexity=50

Perplexity=100

D

o)

Perplexity=5

Perplexity=30

Perplexity=50

Perplexity=100

'3
¢« v
‘Y

)

Perplexity=5

Perplexity=30

Perplexity=50

Perplexity=100

X




Stochastic Neighbor Embedding : key points

First convert each high-dimensional similarity into
the probability that one data point will pick the other
data point as its neighbor. To evaluate a map:

— Use the pairwise distances in the low-dimensional

map to define the probability that a map point will pick
another map point as its neighbor.

— Compute the Kullback-Leibler divergence between the
probabilities in the high-dimensional and low-
dimensional spaces.

— Each point in high-Dimension has a conditional
probability of picking each other point as its neighbor.

— The distribution over neighbors is based on the high-
Dimension pairwise distances.



Stochastic Neighbor Embedding

aoeds uolsuaswip ybiy

Evaluate this representation by seeing how well the low-Dimension probabilities

model the high-Dimension ones.

2oeds uoIsuswiIp MO|



Stochastic Neighbor Embedding

Stochastic Neighbor Embedding (SNE) is the process
of constructing conditional probabilities representing
the similarity between high dimensional data points
using their Euclidean distances. The conditional
probability p; ; for points x; and x; is defined by the
equation

e —v .12
exp( ||x216?1’| )

—|lxi—x; |7

Zk#i exp( 2(71-2 )

Pji =




Stochastic Neighbor Embedding

Similarity is ultimately the probability that x; would define x ;
as a neighbor, in which a neighborhood is defined by a
Gaussian probability density centered at x,. where g, is the
variance of the x.-centered distribution.

A large JIAE indicative of close, or similar, data points, and a
very small p;; means that x ; is not likely a neighbor of x;.

Instead of using a Gaussian distribution, t-SNE assumes the
closely-related Student-t distribution to compute the
pairwise conditional probabilities in a low-dimensional space
more efficiently.



Stochastic Neighbor Embedding

The t-SNE algorithm improves upon the original SNE
algorithm by implementing a cost function with a
simpler gradient that uses the Kullback-Leibler
divergence (DKL) between the high-dimensional joint
probability distribution P and a low-dimensional
Student-t based joint probability distribution Q
(Equation 2) . The gradient is explicitly defined in
Equation 3.

O [ —x») ™
Yirr (1 [y =yl ?)~!

equation 2 qij

. oC -
equation 3 W:4Z(p,‘j—CIij)(yi—)’j)(1—|-Hyi_)’jH2) 1
J




Stochastic Neighbor Embedding

With higher-dimensional data, one runs the risk of
overcrowding the projection such that dissimilarities
between points cannot be faithfully plotted due to a
lack of space in the two-dimensional map to reduce
the high-dimensional data.

The use of the heavy-tailed Student-t distribution
mitigates this issue because it converts the moderate
distances that, when mapped to a two-dimensional
plane tend to be too close to x, to probabilities that

map the points an appropriately greater distance
away.



Stochastic Neighbor Embedding

Algorithm 1: Standard t-distributed Stochastic Neighbor Embedding Algorithm.

Data: : data set X = x1,x7,...,x,,

cost function parameters: perplexity Perp:

opti

mization parameters: number of iterations T, learning rate 1), momentum (¢ );

Result: low-dimensional data representation Z/(7) =y, y, v,

beg

end

in
compute pairwise affinities p; with perplexity Perp (Equation 1)

PjitPij .
2n

sample initial solution /() =y, vy, y, from A (0,10_40);

fort=1toT do

compute low-dimensional affinities ¢;; (Equation 2)
adiont 0C ot

compute gradient 57 (Equation . 3)

et @10 =711 1 5 L gfo)(@~Y) - 912));

set pij =

end
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References on t-SNE

 t-SNE main paper:, LJ.P. van der Maaten and G.E. Hinton. Visualizing

High-Dimensional Data Using t-SNE. Journal of Machine Learning Research
9(Nov):2579-2605, 2008

* useful video: https://lvdmaaten.github.io/tsne/)https://youtu.be/
RJVL80Gg3IA?list=UUtXKDgv1AVoG88PLI8nGXmw)

* how to use: https://distill.pub/2016/misread-tsne/

How to Use t-SNE Effectively

Although extremely useful for visualizing high-dimensional data, t-SNE plots can
sometimes be mysterious or misleading. By exploring how it behaves in simple

ases, we can learn to use it more effectively.
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Burrows — Wheeler Transform

Burrows (left), Wheeler (right)
both at the Computer Laboratory

TIE Bowtie

An ultrafast memory-efficient short read aligner

Home

Introduction BWA:

SF project page

BWA is a software package for mapping low-divergent sequences against a large
SF download page

reference genome, such as the human genome. It consists of three algorithms:

BWA-backtrack, BWA-SW and BWA-MEM. The first algorithm is designed for Malling list
lllumina sequence reads up to 100bp, while the rest two for longer sequences BWA rr.1aual age
ranged from 70bp to 1Mbp. BWA-MEM and BWA-SW share similar features such as Repository

long-read support and split alignment, but BWA-MEM, which is the latest, is
generally recommended for high-quality queries as it is faster and more accurate. .
BWA-MEM also has better performance than BWA-backtrack for 70-100bp lllumina Links:

reads. SAMtools



Burrows Wheeler Transform

Three steps: 1) Form a N*N matrix by cyclically rotating (left) the
given text to form the rows of the matrix. Here we use ’S’ as a
sentinel (lexicographically greatest character in the alphabet and
occurs exactly once in the text but it is not a must). 2) Sort the matrix
according to the alphabetic order. Note that the cycle and the sort
procedures of the Burrows-Wheeler induces a partial clustering of
similar characters providing the means for compression. 3) The last
column of the matrix is BWT(T) (we need also the row number where
the original string ends up).

$acaacg $acaacg
aacg$ac aacg$ac
acaacg?$ acaacg?$
acaacg$ —>acgSaca — acg$aca—»gc$aaac
. caacg$a caacg$a BWT(T)
cg$acaa cg$acaa

g$acaac g$acaac



BWT

Property that makes BWT(T) reversible is LF Mapping:
the ith occurrence of a character in Last column is
same text occurrence as the ith occurrence in the
First column (i.e. the sorting strategy preserves the
relative order in both last column and first column).

$acaacg)
Rank.Z\‘aacg$ac

ajcaacgs$

E}caacg$ acg$aca » swi(
.

caacgS$a
cg$acaa | Rak 2
g$acaac

520



BWT

To recreate T from BWT(T), repeatedly apply the rule:] T = BWT[ LF(i) ] + T; i = LF(i)
where LF(i) maps row i to row whose first character corresponds to i”s last per LF
Mapping. First step: S =2; T = $. Second step: s = LF[2] =6; T = g$%. Third step: s =
LF[6] =5; T = cg$.

g
$ g $a
A A C a
a $ a
a a a s
caacgdba c A
cgfacaa C:
gl?i:*“:‘c glf
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Burrows-Wheeler Transform (BWT)

l_ BWT

Sacaac
aacgsSa
acaacg
acaacg$ m) acg$a§ m) gcSaaac
caacg
cgsaca
gSacaa

Burrows-Wheeler Matrix (BWM)



Burrows-Wheeler Matrix

Sacaac
aacgsSa
acaacg
acgsac
caacgs
cgsaca
gsSacaa



Burrows-Wheeler Matrix

S

aacgs

acaacgs
aC g’ $ See the suffix array?

caacgs
Cg?
g5



Key observation

LS
a1 C1 aZaSCZQ 1 $1
23
“last first (LF) mapping” 1
a
The i-th occurrence of character X in the 3 a
last column corresponds to
the same text character as the i-th 1
occurrence of X in the first column. C
e



Burrow Wheeler Transform
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Genome Assembly

* Why do we map reads?

e Using the Trie

 From a Trie to a Suffix Tree

e String Compression and the Burrows-Wheeler Transform
* |nverting Burrows-Wheeler

* Using Burrows-Wheeler for Pattern Matching

* Finding the Matched Patterns

e Setting Up Checkpoints

* |nexact Matching

927



Toward a Computational Problem

* Reference genome: database genome used
for comparison.

* Question: How can we assemble individual
genomes efficiently using the reference?

T C A Individual

G A T Reference



Why Not Use Assembly?

Multiple copies of

a genome
/NN /
Shatter the /\\\\\ /\\/ - // _/ \ \—/\
genome into ’ ’/ \/\/ \\// . \/\/\ ?l ~
reads . \// /\// \// \/\/ |/,
Sequence the AGAATATCA| |TGAGAATAT| |[GAGAATATC

Assemble the
genome with
overlapping reads

. . . TGAGAATATCA. ..



Why Not Use Assembly?

e Constructing a de Bruijn graph gﬁ%

takes a lot of memory. At Toc]
ATG
P
* Hope: a machine in a clinic ATG
that would collect and GAT TGG)
I : G GGA G
map reads in 10 minutes. Gac

* |dea: use existing structure of reference

genome to help us sequence a patient’s
genome.



Read Mapping

 Read mapping: determine where each read
has high similarity to the reference genome.

CTGAGGATGGACTACGCTACTACTGATAGCTGTTT Reference
GAGGA CCACG TGA-A Reads



Why Not Use Alignment?

* Fitting alignment: aligh each read Pattern to
the best substring of Genome.

* Has runtime O(|Pattern| * |Genome|) for
each Pattern.

* Has runtime O(|Patterns| * |Genome|) for a
collection of Patterns.



Exact Pattern Matching

* Focus on a simple question: where do the
reads match the reference genome exactly?

* Single Pattern Matching Problem:
— Input: A string Pattern and a string Genome.

— Output: All positions in Genome where Pattern
appears as a substring.



Exact Pattern Matching

* Focus on a simple question: where do the
reads match the reference genome exactly?

* Multiple Pattern Matching Problem:

— Input: A collection of strings Patterns and a string
Genome.

— Output: All positions in Genome where a string
from Patterns appears as a substring.



A Brute Force Approach

* We can simply iterate a brute force approach
method, sliding each Pattern down Genome.

panamabananas Genome
nana Pattern

* Note: we use words instead of DNA strings for
convenience.



Brute Force Is Too Slow

* The runtime of the brute force approach is too
high!
— Single Pattern:  O(|Genome| * |Pattern|)
— Multiple Patterns: O(|Genome| * | Patterns|)
— | Patterns| = combined length of Patterns



Processing Patterns into a Trie

* |dea: combine reads into a graph. Each
substring of the genome can match at most
one read. So each read will correspond to a

unique path through this graph.

* The resulting graph is called a trie.



Patterns

banana
pan

and

nab
antenna
bandana
ananas
nana
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Using the Trie for Pattern Matching

* TrieMatching: Slide the trie down the
genome.

* At each position, walk down the trie and see if
we can reach a leaf by matching symbols.

* Analogy: bus stops
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Success!

 Runtime of Brute Force:
— Total: O(|Genome | * | Patterns|)

* Runtime of Trie Matching:
— Trie Construction: O(|Patterns|)

— Pattern Matching: O(| Genome| * |
LongestPattern|)



Memory Analysis of TrieMatching

et
* Son completely forgot
| a b n 0
about memory! ~ VORI
O O O
* QOur trie: 30 edges, a4 n b| o n
| Patterns| = 39 QOO0 O O OC
n e a d a
) @ O @
* Worst case: # edges a O O O
= O(| Patterns|) | 5 0 &
O @ 542



Preprocessing the Genome

What if instead we create a data structure
from the genome itself?

Split Genome into all its suffixes. (Show
matching “banana” by finding the suffix
“bananas”.

How can we combine these suffixes into a
data structure?

Let’s use a trie!
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The Suffix Trie and Pattern Matching

* For each Pattern, see if Pattern can be spelled
out from the root downward in the suffix trie.
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Memory Trouble Once Again

: : Suffixes
e \Worst case: the suffix trie
panamabananas$

holds O(|Suffixes|) nodes. anamabananas$
namabananas$

amabananas$

mabananas$

abananas$

* For a Genome of length n, bananas$
ananas$

| Suffixes| = n(n—1)/2 = O(n?) nanas$
anas$

nas$

as$

s$

$



Compressing the Trie

e This doesn’t mean that our idea was bad!

* To reduce memory, we can compress each
“nonbranching path” of the tree into an edge.
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 This data structure is called a suffix tree.

* For any Genome, # nodes < 2|Genome|.
— # leaves = |Genome|;
— # internal nodes < |Genome| — 1
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Runtime and Memory Analysis

* Runtime:
— O(|Genome|?) to construct the suffix tree.
— O(|Genome| + | Patterns|) to find pattern matches.

* Memory:
— O(|Genome|?) to construct the suffix tree.
— O(|Genome|) to store the suffix tree.



Runtime and Memory Analysis

* Runtime:
— O(|Genome|) to construct the suffix tree directly.
— O(|Genome| + | Patterns|) to find pattern matches.
— Total: O(| Genome| + | Patterns|)

* Memory:
— O(|Genome|) to construct the suffix tree directly.
— O(|Genome|) to store the suffix tree.
— Total: O(| Genome| + | Patterns|)



We are Not Finished Yet

* | am happy with the suffix tree, but | am not
completely satisfied.

* Runtime: O(| Genome| + | Patterns|)
e Memory: O(|Genome|)

* However, big-O notation ignores constants!

* The best known suffix tree implementations
require ~ 20 times the length of | Genome].

e Can we reduce this constant factor?



Genome Compression

* |dea: decrease the amount of memory
required to hold Genome.

e This indicates that we need methods of
compressing a large genome, which is
seemingly a separate problem.



ldea #1: Run-Length Encoding

* Run-length encoding: compresses a run of n
identical symbols.

Genome
GGGGGGGGGGCCCCCCCCCCCAAAAAAATTTTTTTTTTTTTTTCCCCCG

|

10G11C7A15T5C1G
Run-length encoding

* Problem: Genomes don’t have lots of runs...



Converting Repeats to Runs

e ..but they do have lots of repeats!

Genome

How do we do this step? l Convert repeats to runs

Genome*

l Run-length encoding

CompressedGenome™



The Burrows-Wheeler Transform

panamabananass$ $ p a
Spanamabananas
sSpanamabanana S n
a a
n m

Form all cyclic rotations of
“panamabananas$”

a

Burrows, Michael and Wheeler, David J. (1994), A block sorting lossless data compression
algorithm, Technical Report 124, Digital Equipment Corporation

Li, H and Durbin, R (2009) Fast and accurate short read alignment with Burrows-\Wheeler
transform. Bioinformatics 25:1754-60.



The Burrows-Wheeler Transform

panamabananass$ $ p a
Spanamabananas

sSpanamabanana S
as$Spanamabanan
nas$panamabana
anasSpanamaban
nanasS$Spanamaba
ananasS$Spanamab
bananas$panama
abananas$panam n
mabananasS$pana
amabananasS$Span
namabananas$pa a
anamabananasS$p

Form all cyclic rotations of
“panamabananas$”



The Burrows-Wheeler Transform

Form all cyclic rotations of
“panamabananas$”

Spanamabananas
abananas$panam
amabananas$pan
anamabananasS$p
ananas$panamab
anasS$Spanamaban
asSpanamabanan
bananas$panama
mabananasS$Spana
namabananasS$pa
nanasSpanamaba
nas$Spanamabana
panamabananass$
sSpanamabanana

Sort the strings
lexicographically
($ comes first)



The Burrows-Wheeler Transform

O O oD o R Bs s OB 3 0

Form all cyclic rotations of Burrows-Wheeler
“panamabananas$” Transform:
Last column =
smnpbnnaaaaa$a



BWT: Converting Repeats to Runs

Genome

Burrows-Wheeler Transforni! Convert repeats to runs

BWT(Genome)

l Run-length encoding

Compression(BWT(Genome))
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How Can We Decompress?

Genome

IS IT POSSIBLE? I l Burrows-Wheeler Transform

BWT(Genome)

EASYT l Run-length encoding

Compression(BWT(Genome))



Reconstructing banana

Sb a as Sb
as n na as
an n na an
an b — ba — an
ba $ 2-mers $Sb Sort ba
na a an na
na a an na

* We now know 2-mer composition of the
circular string bananas$

* Sorting gives us the first 2 columns of the
matrix.



Sba
asSb
ana
ana
ban
nas$
nan

* We now know 3-mer composition of the

Reconstructing banana

D O o BB Y

3-mers

asShb
nas
nan
ban
Sba
ana
ana

circular string bananas$

* Sorting gives us the first 3 columns of the

matrix.

Sort

Sba
asShb
ana
ana
ban
nas$
nan

o564



Reconstructing banana

Sban a aSba Sban
aSba n naShb aSbb
anas$ n nana anaa
anan b —_— bana — anaa
banana$ 4-mers Sban Sort bann
naSb a anas$ naSb
nana a anan nana

* We now know 4-mer composition of the
circular string bananas$

* Sorting gives us the first 4 columns of the
matrix.
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Reconstructing banana

Sbanana aSban Sbana
aSbanan naSba aSbbn
anaSban nanas$ anaab
ananasShb —_— banan B anaaa
banana$ 5-mers $bana Sort bannn
naSbana anas$h naSba
nanaSha anana nanas$

* We now know 5-mer composition of the
circular string bananas$

* Sorting gives us the first 5 columns of the
matrix.
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Sbana
aSban
ana$hb
anana
banan
naSba
nanas$

D O o BB Y

Reconstructing banana

6-mers

aSbana
naSban
nana$hb
banana
Sbanan
anaS$Sba
ananas$

—>

Sort

Sbanan
aSbbna
anaaba
anaaas$
bannna
naS$Sban
nanaShb

* We now know 6-mer composition of the
circular string bananas$

* Sorting gives us the first 6 columns of the

matrix.



Sbanana

Reconstructing banana

aSbanan
anaSban

ananaSh
banana$

—_—
6-mers

naSbana
nanaSba

aSbana
naSban
nanaShb
banana
Sbanan
anaS$Sba
ananas$

—>

Sort

Sbanan
aSbbna
anaaba
anaaas$
bannna
naSban
nanaSb

* We now know 6-mer composition of the
circular string bananas$

* Sorting gives us the first 6 columns of the

matrix.
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Reconstructing banana

Sbanana

e We now know the entire matrix!

* Taking all elements in the first row (after $)
produces banana.



More Memory Issues

e Reconstructing Genome from BWT(Genome)
required us to store |Genome| copies of
| Genome|.

Sbanana
aSbanan
anaSban
ananaShb
bananas$
naSbana
nanaSba

 Can we invert BWT with less space?



A Strange Observation
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A Strange Observation

nmE S 290 499 COCGC O © v o©

v @ @ C © CQ E & 8 8 QW



Is It True in General?

S S
abananas$panam
amabananas$pan
anamabananasSp
ananasS$panamab
anasSpanamaban

asSpanamabanan
b a

ANUlL b WIDNBE

wmo B BB 3
O o 9 o0 W

These strings are sorted

/’

Chop off a

bananas$panam
mabananas$pan
namabananasS$Sp
nanasS$Spanamab
nas$panamaban
sSpanamabanan



Is It True in General?

S S
abananas$panam
amabananas$pan
anamabananasSp
ananasS$panamab
anasSpanamaban
asSpanamabanan
b a

ANUlL b WIDNBE

wmo B BB 3
O o 9 o0 W

These strings are sorted

/’

Chop off a

bananas$panam
mabananas$pan
namabananasS$Sp
nanasS$Spanamab
nas$panamaban
sSpanamabanan

Still
sorted



ANUlL b WIDNBE

These strings are sorted

Is It True in General?

O oo N
S OoOT B 38 ®

a n
bananas$panama
mabananasS$Spana
namabananas$pa
nanasS$Spanamaba
nas$panamabana

P $
sSpanamabanana

U WNR

/’

Chop off a

Ordering
doesn't
change!

Add a
to end

\4

bananas$panama
mabananas$pana
namabananas$pa
nanasS$Spanamaba
nas$Spanamabana
sSpanamabanana

Still
sorted

Still
sorted



Is It True in General?

* First-Last Property: The k-th  *:

occurrence of symbol in :z
FirstColumn and the k-th a;
occurrence of symbol in :2
LastColumn correspond to ag
the same position of symbol o1
In Genome. n,

n



More Efficient BWT Decompression



More Efficient BWT Decompression



More Efficient BWT Decompression

$1 Sl $ p a
a; m,
a, n, s
a; P
a, b,
asg n,
ag n, a
b, a;
m, a,
n a
1 3

n
n, ay,
n, asg
P S
S ag a

n b
a

* Memory: 2|Genome| = O(|Genomel|).



Recalling Our Goal

e Suffix Tree Pattern Matching:
— Runtime: O(|Genome| + | Patterns|)
— Memory: O(|Genome|)

— Problem: suffix tree takes 20 x | Genome| space

 Can we use BWT(Genome) as our data
structure instead?



Finding Pattern Matches Using BWT

* Searching for ana in panamabananas

S S
a, m,
a, n,
as;na P,
a,na b,
a;na n,
ag n,
b, a,
m, a,
n, aj
n, a,
n, asg
P $1
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Finding Pattern Matches Using BWT

* Searching for ana in panamabananas

S S
a, m,
a, n,
a; P
a, b,
as; n,
ag n,
b, a,
m, a,
n, aj
n, a,
n , a-
P $1



Finding Pattern Matches Using BWT

* Searching for ana in panamabananas

S S
a, m,
a, n,
a; | o]
a, b,
as; n,
ag n;
b, a,
m, a,
n, aj
n, a,
n , a-
P $1



Finding Pattern Matches Using BWT

* Searching for ana in panamabananas

S S
a, m,
a, n,
as;na P,
a,na b,
a;na n,
ag n,
b, a,
m, a,
n, aj
n, a,
n , a-
P $1



Where Are the Matches?

* Multiple Pattern Matching Problem:

— Input: A collection of strings Patterns and a string
Genome.

— Output: All positions in Genome where one of
Patterns appears as a substring.

* Where are the positions? BWT has not
revealed them.



Where Are the Matches?

 Example: We know that $ 1
ana occurs 3 times, but a,
where? asna



Using the Suffix Array to Find Matches

* Suffix array: holds $ 1
starting position of a,
each suffix beginning a3
a row. a.



Using the Suffix Array to Find Matches

* Suffix array: holds 13| $,
starting position of a,
each suffix beginning a3
a row. a.




Using the Suffix Array to Find Matches

* Suffix array: holds 13| $,
. . 5| a;bananass$
starting position of a,
each suffix beginning a3

a row. a.

abananasS$S




Using the Suffix Array to Find Matches

* Suffix array: holds 13| $,

. . a,bananass$
starting position of 3| a,mabananass$
each suffix beginning a3

a row. a.

(&)

amabananasS$




Using the Suffix Array to Find Matches

31

a,bananass$
a,mabananass$
a;namabananass$

* Suffix array: holds 1
starting position of
each suffix beginning
a row. a.

= w 01 W

anamabananasS




Using the Suffix Array to Find Matches

e Suffix array: holds
starting position of
each suffix beginning
a row.

ananass$

N 2 W oW

31

a,bananass$
a,mabananass$
a;namabananass$
a,nanass$



Using the Suffix Array to Find Matches

e Suffix array: holds
starting position of
each suffix beginning
a row.

anass$

O Jd = WL W

31

a,bananass$
a,mabananass$
a;namabananass$
a,nanass$
a,nass$



Using the Suffix Array to Find Matches

e Suffix array: holds
starting position of
each suffix beginning
a row.

as$

R O Jd kL WOl W

31

a,bananass$
a,mabananass$
a;namabananass$
a,nanass$
a,nass$

a,ss$



Using the Suffix Array to Find Matches

e Suffix array: holds
starting position of
each suffix beginning
a row.

bananasS$

=

=
OO R O JdFk WOL W

31

a,bananass$
a,mabananass$
a;namabananass$
a,nanass$
a,nass$

a,ss$

b,ananas$



Using the Suffix Array to Find Matches

=

31

a,bananass$
a,mabananass$
a;namabananass$
a,nanass$
a,nass$

a,ss$
b,ananas$
m,abananass$
n,amabananass$
n,anass$

n;ass$

P

S

e Suffix array: holds
starting position of
each suffix beginning
a row.

=

nassS

OO NPFTFOEF O JKF WOLIW

=




Using the Suffix Array to Find Matches

e Suffix array: holds
starting position of
each suffix beginning
a row.

panamabananass$

=

= =
OO WNDBDOKE OUIKFE WU W

31

a,bananass$
a,mabananass$
a;namabananass$
a,nanass$
a,nass$

a,ss$

b,ananas$
m,abananass$
n,amabananass$
n,anass$

n;ass$
p,anamabananass$;
S



Using the Suffix Array to Find Matches

=

31

a,bananass$
a,mabananass$
a;namabananass$
a,nanass$
a,nass$

a,ss$

b,ananas$
m,abananass$
n,amabananass$
n,anass$

n;ass$
p,anamabananass$;

S,$

e Suffix array: holds
starting position of
each suffix beginning
a row.

=

n
n’2
e

N OO oo NPcEFOEF O JdJF WLl Ww

=




Using the Suffix Array to Find Matches

=

e Suffix array: holds
starting position of
each suffix beginning
a row.

=

panamabananass$

e
N OO oo NPcEFOEF O JdJF WLl Ww
U
o

=




Using the Suffix Array to Find Matches

* Suffix array: holds $ 1
. o .. a
starting position of A,
each suffix beginning 1 asna
7 a,na
a row. 9 a,na
dg
bl
m,
* Thus, ana occurs at n,
positions 1, 7, 9 of 22
3
panamabananass$. P,

1 )



The Suffix Array: Memory Once Again

* Memory: ~ 4 x |Genome|.

11 12

M3 5 3 1 7 9 11 6 4 2 8 10 0 1



The Suffix Array: Memory Once Again

* Memory: ~ 4 x |Genome|.

11 12

M3 5 3 1 7 9 11 6 4 2 8 10 0 1



The Suffix Array: Memory Once Again

* Memory: ~ 4 x |Genome|.

11 12

M3 5 3 1 7 9 11 6 4 2 8 10 0 1



Reducing Suffix Array Size

* We don’t want to have to store all of the suffix
array; can we store only part of it? Show how
checkpointing can be used to store 1/100 the
suffix array.

A Return to Constants

* Explain that using a checkpointed array
increases runtime by a constant factor, but in
practice it is a worthwhile trade-off.



13

N —
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Returning to Our Original Problem

* We need to look at INEXACT matching in order
to find variants.

* Approx. Pattern Matching Problem:

— Input: A string Pattern, a string Genome, and an
integer d.

— Output: All positions in Genome where Pattern
appears as a substring with at most d mismatches.



Returning to Our Original Problem

* We need to look at INEXACT matching in order
to find variants.

* Multiple Approx. Pattern Matching Problem:

— Input: A collection of strings Patterns, a string
Genome, and an integer d.

— Output: All positions in Genome where a string
from Patterns appears as a substring with at most
d mismatches.



Method 1: Seeding

e Say that Pattern appears in Genome with 1
mismatch:

Pattern actt|ggct

Genome actalggct



Method 1: Seeding

e Say that Pattern appears in Genome with 1
mismatch:

Pattern acttijggct

Genome actalggct

* One of the substrings must match!



Method 1: Seeding

* Theorem: If Pattern occurs in Genome with d
mismatches, then we can divide Pattern into
d + 1 “equal” pieces and find at least one
exact match.

X X X X XIXXXXX|XX
X X X X XIXXXX XXX




Method 1: Seeding

Say we are looking for at most d mismatches.

Divide each of our strings into d + 1 smaller
pieces, called seeds.

Check if each Pattern has a seed that matches
Genome exactly.

If so, check the entire Pattern against Genome.



Method 2: BWT Saves the Day Again

* Recall: searching for ana in panamabananas

# Mismatches

a, m, 1

a, n, 0

1

Now we extend 2 b 1
all strings with at a, n, 0
a n, 0

most 1 mismatch.

b,a a;
m,a a,
n,a a,
n,a a,
n;a as
p,a 1
S s



Method 2: BWT Saves the Day Again

* Recall: searching for ana in panamabananas

One string
produces a
second mismatch
(the $), so we
discard it.

ag

nw B BB 38U
H R W N R R R
O N TR « DI o) B ) B )

# Mismatches

NOOO = -



Method 2: BWT Saves the Day Again

* Recall: searching for ana in panamabananas

# Mismatches

$1 S,
a,ba m, 1
a,ma n, 1
0
In the end, we :ZEZ Ei 0
have five 3-mers a,na n, 0
with at most 1 oo 0
. 1 1
mismatch. m, a,
I‘ll a;
n, a,
n; ag
P S,



Method 2: BWT Saves the Day Again

* Recall: searching for ana in panamabananas

Suffix Array

$1 Sl
a; m,
a, n,
a; P

In the end, we 2 na b .
. 1
have five 3-mers a. n,
with at most 1 oo o2
. 1 1
mismatch. m, a,
n, a;
n, a,
n, as
P $1



Method 2: BWT Saves the Day Again

* Recall: searching for ana in panamabananas

Suffix Array

$ 1 S,
a1 m1
a2 1’11
In the end, we o2 P
. 4 1

have five 3-mers a,na n, 9
with at most 1 oo o
. 1 1
mismatch. m, a,
I‘ll a3
n, a,
n; as
P S



http://www.allisons.org/ll/AlgDS/Strings/BWT/

C @

LA home

Computing
Algorithms
Glossary
Strings
Suffix array
BWT
Factors
Suffix tree
BWT

Example:

where the end of sequence pseudo-symbol, $, is less than all proper symbols.

@ www.allisons.org/Il/AlgDS/Strings/BWT/

11

012345678901
S=agcagcagact$

S — BWT(S)

Sort the suffixes of S; the Burrows Wheeler transform [BW94] of S, BWT(S), consists of the symbols before each sorted suffix in turn. Note that $

comes before S[0].

Equivalently (with $), sort the rotations of S; BWT(S) consists of the last symbol of each sorted rotation in turn.

vE 9%

1<

Cerca

Burrows Wheeler Transform (BWT)

suffix# [BWT(S) | suffix/ ch|$jalc|g|t
o 11| t |$ t rank(ch) |0|1|5/8|11
1 8| g |act$ g
2 6| c¢ |agact$ c
3 3| ¢ |agcagact$agc
4 0| $ |agcagcagact$
5 5| g |cagact$agcag
6 2| g |cagcagact$ag
7 9| a |[ct$ a
8 7| a |gact$ a
9 4| a |gcagact$agca
10 1 a ocascacact®a




Hidden Markov models

How to identify Genes and gene parts?

The gene information starts with the promoter,
which is followed by a transcribed (i.e. RNA) but
non-coding (i.e. not translated) region called 5’
untranslated region (5’ UTR). The initial exon
contains the start codon which is usually ATG.
There is an alternating series of introns and
exons, followed by the terminating exon, which

contains the stop codon. It is followed by

another non-coding region called the 3’ UTR; at
the end there is a polyadenylation (polyA)

signal, i.e. a repetition of the amino acid
adenine. The intron/exon and exon/intron
boundaries are conserved short

sequences and called the acceptor and donor
sites. For all these different parts we need to
know their probability of occurrence in a large

database.

‘1 Stop codon GGCAGAAACAATAAATS¥-1s
QI GATCCCCATGCCTGAGGGECCCTC 7‘

Startcodon  codons  ponor site

N
(e[ s ATGCCCTTCTCCAACAG. <1 ({1 (-1
Transcription
start\

Promoter CCTCCCAG

Acceptor site

Intron

Poly-A site
Ve




Startcodon  codons  ponor site

(s ATGCCCTTCTCCAACAG ci L (el (-\¢]
Transcription
staK

/ ‘ —— ‘/ _____ Exon
SUTR —\<

Promoter ICCTCCCAG

Acceptor site

Intron

Poly-A site
£

Stop codon

AGAAACAA .A—iIACCAc
GATCCCCATGCCTGAGGGCCCCTC ﬁ

a . Intron

Splice Sites

Exon 1 GuU A

c®
cO

ey

G
o
Us

wr

5" splice site Branch site

230 cC0weuly

CGAA

A
v U
IR ageaGa

3’ splice site




The dishonest casino model

0.95 005 0.95

PA|F) = 1/6 PA|L) = 1/10
P(2|F) = 1/6 P(2|L) = 1/10
P(3|F) = 1/6 0.05 P(3|L) = 1/10
P(4|F) = 1/6 P(4|L) = 1/10
P(5|F) = 1/6 P(5|L) = 1/10

) )
P(6|F) = 1/6 P(B|L) = 1/2




HMM

Definition: A hidden Markov model (HMM)

* Alphabet 2={by,b,, .. by}

e Setofstates Q={1,..K}

* Transition probabilities between any two states

a; = transition prob from state i to state j

a,;t+..+a,=1, forallstatesi=1..K

* Start probabilities a,

gyt ... tag =1

* Emission probabilities within each state
e(b) =P(x,=b | , =k)

e(b)) +..+e(by) =1, forallstatesi=1..K



A Hidden Markov Model is memory-less

At each time step t,
the only thing that affects future states
is the current state m,

—_ (“ ” _
P (7T, = < | “whatever happened so far”) =
P (T, = K | 7Ty, T, .oy T, Xy, Xy, ey X) =
P (7T, = < | m,)




A parse of a sequence

Given a sequence X = Xq......Xy;,
A parse of x is a sequence of states & = m, ......, Ty




Likelihood of a parse

Given a sequence X = Xj......Xy
and aparsew=m,, ...... , Ty

To find how likely is the parse:
(given our HMM) ' ' ' '

P(X, 7t) = P(Xq, ) Xy Ty wenees, Ty) =

P(Xy, 7ty | 7th.1) P(Xnier Ty | TTpp) e P(X,, T, | 0Ty)
P(x,, ;) =

Q011 Atorreee AN 1N ot (X )o@y (Xy)



Example: the dishonest casino
Let the sequence of rolls be:

x=1,2,1,5,6,2,1,6,2,4

Then, what is the likelihood of

it = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?

(say initial probs agei, = 2, a,,0adeq = 72)

% x P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) ... P(4 | Fair) =

% x (1/6)1° x (0.95)° =.00000000521158647211 = 0.5 x 10



Example: the dishonest casino
So, the likelihood the die is fair in all this run
is just 0.521 x 10~

OK, but what is the likelihood of

= Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded,
Loaded, Loaded, Loaded?

% x P(1 | Loaded) P(Loaded, Loaded) ... P(4 | Loaded) =

% x (1/10)8 x (1/2)?% (0.95)° = .00000000078781176215=7.9
x 1010

Therefore, it is after all 6.59 times more likely that the die is
fair all the way, than that it is loaded all the way.



Example: the dishonest casino
Let the sequence of rolls be:

x=1,6,6,5,6,2,6,6,3,6

Now, what is the likelihood Tt =F, F, ..., F?

% x (1/6)19 x (0.95)° = 0.5 x 10, same as before

What is the likelihood

T =LL..L?

% x (1/10)* x (1/2)® (0.95)° =.00000049238235134735 = 0.5 x 10’

So, it is 100 times more likely the die is loaded



The three main questions on HMMs

1. Evaluation
GIVEN a HMM M, and a sequence X,

FIND Prob[ x | M ]
2. Decoding
GIVEN a HMM M, and a sequence X,
FIND the sequence 1 of states that maximizes P[ x, 7 |
M ]
3. Learning

GIVEN a HMM M, with unspecified transition/emission
probs., and a sequence X,

FIND parameters 0 = (e(.), a;) that maximize P[x | 0 ]



Let’s not be confused by notation

P[x| M]: The probability that sequence x was generated by
the model

The model is: architecture (#states, etc)
+ parameters 6 = a;, e(.)

So, P[x | 6], and P[ x ] are the same, when the architecture,
and the entire model, respectively, are implied

Similarly, P[ x, t | M ] and P[ x, t ] are the same

In the LEARNING problem we aIwaY]s write P[x | 6] to
emphasize that we are seeking the 08 that maximizes P[ x |

0]



Decoding

= Probability of most likely sequence of
states ending at state ;. = k



Decoding — main idea
Given that for all states k, and for a fixed position i,
Vili) = maXy iy PIXge X, T, ey T, X, 76 = K]
What is V, (i+1)?

From definition,

V(i+1) = max, ___,I}P[ Xqee:Xiy T0qy weey TC, Xiyq, TTiyq =1 ]

= mMax, ___’,}P(x,ﬂ, 1 = ] XX, 7y, T0) P[xl...xi, TCq,-ey TC]
=maXg,;  aP(Xiy, Ty = 1] 7)) PIXXi, 7Ty, o, Ty, X, T

= max, P(X;,,{, T, = | | 7. = k) max{n1 iy PIX e X, 7T, Ty,

X, t=k] = el(x,+1) max, a,, V, (i)



The Viterbi Algorithm

Input: X = Xq.....Xy Andrew
T . Viterbi
Initialization:
V,(0) =1 (0 is the imaginary first position)
V. (0) =0, forallk>0

Iteration:
V(i) = (%) x max, a; V,(i-1)
Ptr(i) = argmax, a,; V,(i-1)
Termination:

P(x, ®*) = max, V,(N)

Traceback:
mty* = argmax, V,(N)
. * =Ptr_ (i)



The Viterbi Algorithm

State 1

.
- N\
“THi0)

K

left: Similar to “aligning” a set of states to a sequence,

Time: O(K%N); Space: O(KN); right : comparison of valid
directions in the alignment and decoding problem.



Viterbi Algorithm — a practical detail

Underflows are a significant problem

P[ Xyyeeee) X;, Ty, oo, ] = Qg0 Agrpeeeee@ € 4(Xq) e (X))

These numbers become extremely small — underflow

Solution: Take the logs of all values

V\(i) = log e (x;) + max, [ V,(i-1) + log a, ]



Example

Let x be a sequence with a portion of ~ 1/6 6’s, followed by a portion of
~ % 6's...

X =123456123456...12345 6626364656...1626364656

Then, it is not hard to show that optimal parse is (exercise):

6 nucleotides “123456” parsed as F, contribute .95%x(1/6)° =
1.6x10>
parsed as L, contribute .95%x(1/2)'x(1/10)°> = 0.4x10
“162636” parsed as F, contribute .95°%x(1/6)° =
1.6x10>
parsed as L, contribute .95%x(1/2)3%(1/10)3 =
9.0x107



Generating a sequence by the model

Given a HMM, we can generate a sequence of length n
as follows:

Start at state s, according to prob a,_,

1. Emit letter x, according to prob e_,(x,)
2. Go to state 7, according to prob a_,
3. ... until emitting x|

®

®
:
X

n



A couple of questions
Given a sequence X,

 What is the probability that x was generated by the
model?

* Given a position i, what is the most likely state that
emitted x,?

Example: the dishonest casino
Say x =12341623162616364616234161221341

Most likely path: mw = FF......F

However: marked letters more likely to be L than unmarked
letters



Evaluation

We will develop algorithms that allow us to compute:
P(x) Probability of x given the model
P(x;...x;) ~ Probability of a substring of x given the model
P(rt, =k | x) Probability that the ith state is k, given x

A more refined measure of which states x may be in




The Forward Algorithm

We want to calculate
P(x) = probability of x, given the HMM

Sum over all possible ways of generating x:

P(x)= 2_P(x,7t) = 2_P(x | 7) P(x)

To avoid summing over an exponential number of paths m,
define

f (i) = P(x;...x,, 7w = k) (the forward probability)



The Forward Algorithm — derivation

Define the forward probability:

f (i) = P(xy...x, 7, = 1)

- znlﬂ:l_l P(Xl...xi_1, T[;l,..., Tci-l’ Tl:l = I) e|(X|)

= Zk 23'[317”'2 P(Xl...Xi_l, J-El,..., J-Ci_z, ni_l - k) akl eI(X|)

= e,(x;) 2 fi(i-1) a,,



The Forward Algorithm

We can compute f(i) for all k, i, using dynamic programming!
Initialization:

f(0) =1
f(0)=0, forallk>0
Iteration:

f(i) = e/(x) Zk f (i-1) a,,
Termination:

P(x) = 2 f(N) a,

Where, a,, is the probability that the terminating state is k
(usually = a,,)



Relation between Forward and Viterbi

VITERBI FORWARD
Initialization: Initialization:
VQ(O) =1 fO(O) =1
V, (0)=0, forallk>0 f(0)=0,forallk>0
Iteration: Iteration:
V(i) = e(x) max, V,(i-1) a f,(i) = e,(xi) Zk f (i-1) a,,
Termination: Termination:

P(x) = 2 f(N) ay,

P(x, t*) = max, V,(N)



Motivation for the Backward Algorithm

We want to compute
P(J-Ei = k | X)/
the probability distribution on the it" position, given x

We start by computing

P(rt, = k, X) = P(X{...X;, T = K, X\ 1...Xy)
= P(X;...X, 7T = K) P(X;,1---Xy | Xq-o.X, 7 = K)
= P(x,...x,, 7 = k) P(x.,4 . = k)

I
1'—'orward fk(l) Bacquard ka\)l




The Backward Algorithm — derivation

Define the backward probability:

b (i) = P(X;,;...Xy | 7T = k)
=21 N POt Xis s Xy Ty oo Ty | 75 = K)

= ZI 2rci+1...rcN P(Xis1:Xis2r s Xy Tigq = |, Ty e, Ty | 70 =
k)

= 241 €(Xiy1) 3 L1 N PXiaas o X Wiy oo Ty | TWiag = 1)

= 2 €/(X;,1) @ by(i+1)



The Backward Algorithm

We can compute b, (i) for all k, i, using dynamic
programming

Initialization:
b, (N) = a,,, for all k

Iteration:

b, (i) = 2 e/(x;,,) 8 by(i+1)

Termination:

P(x) = 2, a, €(x,) b,(1)




Computational Complexity

What is the running time, and space required, for
Forward, and Backward?

Time: O(K?N)
Space: O(KN)
Useful implementation technique to avoid underflows

Viterbi: sum of logs

Forward/Backward: rescaling at each position by
multiplying by a constant



Genscan

® genes.mit.edu/GENSCAN.html B | oo w | Q v INn @O @

The GENSCAN Web Server at MIT

Identification of complete gene structures in genomic DNA

[2]

For information about Genscan, click here

Server update, November, 2009: We've been recently upgrading the GENSCAN webserver hardware, which resulted in some problems in the output of
GENSCAN. We apologize for the inconvenience. These output errors were resolved.

This server provides access to the program Genscan for predicting the locations and exon-intron structures of genes in genomic sequences from a variety of organisms.

This server can accept sequences up to 1 million base pairs (1 Mbp) in length. If you have trouble with the web server or if you have a large number of sequences to
process, request a local copy of the program (see instructions at the bottom of this page).

Organism: Suboptimal exon cutoff (optional): [ERII?

———
Print options:
Upload your DNA sequence file (upper or lower case, spaces/numbers ignored): Nessun file selezionato.

Or paste your DNA sequence here (upper or lower case, spaces/numbers ignored):




GenomeScan

webserver at MIT
N D R OB R DD ORI DR OB RN R ORR\ /
PO GO PR GHPUL GnPR GPOEL PR SRR G G .;r’}M'.g\

This server provides access to the program GenomeScan for predicting the locations and exon-intron structures of genes in genomic sequences from a variety of organisms.

GenomeScan incorporates protein homology information when predicting genes. This server allows you to input proteins suspected to be similar to regions of your DNA
sequence. You can find such proteins by doing a BLASTX comparison of your sequence to all known proteins, or by running GENSCAN and then comparing the results to
known proteins using BLASTP. Please input the proteins in FastA format; the file may contain multiple proteins so long as each is separated by a header on its own line.
Files should contain less than one million bases.

If you would like to test the program, feel free to use this DNA testfile and the corresponding protein file.

More information on GenomeScan: GenomeScan homepage

You may also wish to use or read about the GENSCAN server, GenomeScan's predecessor.

Run GenomeScan:
Organism: Vertebrate [
Sequence name (optional):

Print options: Predicted peptides only B

648



A eukaryotic gene

Base Position | 7775000 | 7780000 | 7785000 | 7790000 |
RefSeq Genes
RefSeq Genes ] T i
(Genscan Gene Predictions
NT_010718.226 f------ +-F-—------ H-H--#H--1 NT_010718.227 ===+

* This is the human p53 tumor suppressor gene
on chromosome 17.

* Genscan is one of the most popular gene
prediction algorithms.



A eukaryotic gene

Base Position 7790000 |

RefSeq Genes

NT_010718.226 NT_010718.227 ==

This particular gene lies on the reverse strand.



An Intron

revecomp(CT)=AG
GT: signals start of intron

(5: signals end of intron

Base Postion. 7777440 | 7777400 | 777500 | 7540 | 771520 | 7777530 | msao | e | 7777580 | im0 | e |
>GCTGGTGTTGTTGGECAGTGCTAGGAAAGAGGCAAGGAAAGGTGATAAAAGTGAATCTGAGGCATAACTGCACCCTTGGTCTCCTCCACCGCTTCTTGTCCTGCTIGCTTACCTC

RefSeq Genes

revcomp(AC)=GT

TP53
Genscan Gene Predictions

NT_010718.226

Donor Site
e
31
T R % "6~ - W 5 ® e ~ ®
5» . ' . 3:
wetbago okt o
2
Acceptor Site
-
1
C

webboggobehete p ek



Modeling the 5° splice site

> >
- GT ~ nfron -

* Most introns begin with the letters “GT.”
 We can add this sighal to the model.



Modeling the 5° splice site

o o
»

G T

»
L

Intron

* Most introns begin with the letters “GT.”
 We can add this sighal to the model.

* Indeed, we can model each nucleotide with its
Oowhn arrow.



Modeling the 5° splice site

o o
»

=

»
L

Intron

* Like most biological phenomenon, the splice
site sighal admits exceptions.

* The resulting model of the 5 splice site is a
length-2 PSSM.



Real splice sites

> exon | intron

_AG AéTT

O—wwn T O N T~ O N <TID W I~
1 ] L ] L ] L ] L ]

* Real splice sites show some conservation at positions
beyond the first two.

e We can add additional arrows to model these states.

webloao.berkelev.edu



Modeling the 5° splice site

> Db b T—> [} >
1 Intron -

>} >}
(k i\tror+

ex




No. of Introns

No. of Exons

Length distributions of human introns and initial, internal and terminal exons

B — 70
Histogram —
00 Geometric distribution ——- | 60
250 ] 50
200 1 % 400
4
150 ] g
4
100 ;
50 ; 10
00 1000 2000 3000 4000 5000 6000 7000 3000 9000 0
Length (bp)
250 {c) Intm-mlﬂ exons 35
Histogram —
2001 Smoothed density —— 30
25
150 | i E 20
&
%
100 | ] é
-4
50| ]
g 200 800 300 1000
Length (bp)

{b) Initial exons

Smoothed density ---

g - B

400 600 800 1000
Length (bp)
{d) Terminal exons
i Histogram —
|
} Smoothed density —--

657



GenScan @ 6 Q

<
N - intergenic region ”
P - promoter @

F - 5" untranslated region

Eqnel— single exon (intronless) (translation ’. ‘

start -> stop codon)

E. .. — initial exon (translation start ->
donor splice site) @ @

E, — phase k internal exon (acceptor
splice site -> donor splice site) Ft+

E..., — terminal exon (acceptor splicegftETR)
-> stop codon)

Esngl+

(single-exon

gene)

Pt
|, — phase k intron: 0 — between codons; (pro-
1 — after the first base of a codon; 2 — -
after the second base of a cogoA () Srand N
——————————— (intergenic —_— e — — — —
region) 658

Reverse (-) strand Reverse (-) strand



GENSCAN (Burge & Karlin)

promoter

Forward (+) strand

/

intergenic Forward (+) strand

Reverse (-) strand W Reverse (-) strand

/

pe

6201
6261
6321
6381
6441
6501
6561
6621
6681
6741
6801
6861
6921
6981
7041
7101
7601
7661
7721
7781
7841
7901
7961
8021
8081
8141
8201
8261
8321
8381
8441
8901
8961
9021
9081
9141
9201
9261

659



— Exons (coding)

— Introns (non coding)

Genscan model

Duration of states — length distributions of

Signals at state transitions

— ATG

— Stop Codon TAG/TGA/TAA
— Exon/Intron and Intron/Exon Splice Sites

Emissions

— Coding potential and frame at exons

— Intron emissions

scored by scored by scored by
signal sensor content sensor signal sensor
N A A
a Y N
NCGTATGCTAGCTAGCGCATICGAGTCGATA

signal sensor-#

signal sensor-*

TAC. ..



GenScan features

Model both strands at once

|str%utt?(g% may output a string of symbols (according to some probability

Explicit mtron/exon length modeling

Advanced splice site modeling

Complete intron/exon annotation for sequence

Able to predict multiple genes and partial/whole genes
Parameters learned from annotated genes

Separate garameter tralmng for different CpG content groups (< 43%, 43-51%,
91-57%,>57% CG content)

Performance

> 80% correct exon predictions, and > 90% correct coding/non coding predictions by bp.
BUT - the ability to predict the whole gene correctly is much lower



Hidden Markov models

How to identify protein structural parts?

Membrane proteins that are important for ce
import/export. We would like to predict the
position in the amino acids with respect to th
membrane. The prediction of gene parts and
the membrane protein topology (i.e. which
parts are outside, inside and buried in the
membrane) will require to train the model wi
a dataset of experimentally determined
genes / transmembrane helices and to valida
the model with another dataset. The figure
below describes a 7 helix membrane protein
forming a sort of a cylinder (porus) across the
cell membrane

662



B ™

> WMembrane proteins
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Cystic fibrosis

The gene affected by CF controls the movement of salt and
water in and out of cells. People with cystic fibrosis experience
a build-up of thick sticky mucus in the lungs, digestive system
and other organs, causing a wide range of challenging
symptoms affecting the entire body.

Mutant CFTR Channel

does not move chloride ions,
° o causing sticky mucus to build

up on the outside of the cell

(+] °o°

o
Normal CFTR Channel gh'O"de lons

o
moves chloride ions to o0 o 0o ©° ©
the outside of the cell © o o




TMHMM: Prediction of transmembrane topology of protein sequence
Model consists of submodels for:
* helix core and cap regions (cytoplasmic and extracellular)
 cytoplasmic and extracellular loop regions

* globular domain regions
Trained form 160 proteins with experimentally determined transmembrane

outside loop

Prediction method:
Posterior decoding, the
tal o program computes for each
i residue of the sequence the
probability of being part if a
transmembrane helix, an
intracellular loop or globular

o ; a‘i inside . .
il \ S C =\ \AJ domain region, or an

membrane

tail
extracellular loop or domain
inside loop I"eglon .

amino acid sequence MGDVCDTEFGILVA. . -SVALRPRKHGRWIV...FWVDNGTEQ...PEHMTKLHMM. . .
state sequence ooooooooohhhhh...hhhhiiiiiiihhh...hhhooo000O. . .0000000hhh...

tail tail - tail tail | i
: - loop - tail
topology helix s helix -

out short loop long loop



Assessing performance: Sensitivity and Specificity

Testing of predictions is performed on sequences where
the gene structure is known

Sensitivity is the fraction of known genes (or bases or
exons) correctly predicted: SN=Ny,,. positives /NN True

— “Am | finding the things that I’'m supposed to find?
Specificity is the fraction of predicted genes (or bases or exons)
that correspond to true genes: SP=Nr, . positives / NAll Positives

— “What fraction of my predictions are true?

In general, increasing one decreases the other



Validation

@ be predicted to occur: Predicted Positive (PP)

@ be predicted not to occur: Predicted Negative (PN)

@ actually occur: Actual Positive (AP)

@ actually not occur: Actual Negative (AN)

@ True Positive TP = PP AP

@ True Negative TN = PN AN

@ False Negative FN = PN AP

Q False Positive FP = PP AN

Q@ Sensitivity: probability of correctly predicting a positive example Sn = TP/(TP + FN)

Q@ Specificity: probability of correctly predicting a negative example Sp = TN/(TN +
FP) or

@ Probability that positive prediction is correct Sp = TP/(TP + FP).
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Assessing performance: Sensitivity and Specificity

Testing of predictions is performed on sequences where
the gene structure is known

Sensitivity is the fraction of known genes (or bases or
exons) correctly predicted: SN=Ny,,. positives /NN True
— “Am | finding the things that I’'m supposed to find?

Specificity is the fraction of predicted genes (or bases or exons)
that correspond to true genes: SB=N-.... n_..i.... /Ny -

— “What fraction of CC = [(TP)(TN)_ (FP)(FN)]

In general, increas \/(AN)(PP)(AP)(PN)
AN =TN + FP; AP =TP + FN;

PP=1TP+ FP;PN =1N + FN

sitives




Graphic View of Specificity and Sensitivity

1200

| — random sequence —true sites |

) A
/ \

o A
AN

0 30 40 50

count

score {arb units)
e e e Correlation Coefficient

_ TruePositive _ 7"ruePositive
~ AllTrue  TruePositive+ FalseNegative CC - [(T P )(T N )— (FP )(FN )]
o TruePositive _ TruePositive J(AN)PP)4P)PN)
AllPositive TrugPositive+FalsePositive AN = TN + FP: AP = TP + FN;

PP=TP+ FP;PN =TN + FN



Specificity/Sensitivity Tradeoffs
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DTU Bioinformatics
Department of Bio and Health Informatics

Home

TMHMM Server v. 2.0

Prediction of transmembrane helices in proteins

Instructions

SUBMISSION

Submission of a local file in FASTA format (HTML 3.0 or higher)
Sfoglia...  Nessun file selezionato.

OR by pasting sequence(s) in FASTA format:

>AAA39861.1 opsin [Mus musculus]
MNGTEGPNFYVPFSNVTGVGRSPFEQPQYYLAEPWQFSMLAAYMFLLIVLGFPINFLTLYVTVQHKKLRT
PLNYILLNLAVADLFMVFGGFTTTLYTSLHGYFVFGPTGCNLEGFFATLGGEIALWSLVVLAIERYVVVC
KPMSNFRFGENHAIMGVVFTWIMALACAAPPLVGWSRYIPEGMQCSCGIDYYTLKPEVNNESFVIYMFVV
HFTIPMIVIFFCYGQLVFTVKEAAAQQQESATTQKAEKEVTRMVIIMVIFFLICWLPYASVAFYIFTHQG
SNFGPIFMTLPAFFAKSSSIYNPVIYIMLNKQFRNCMLTTLCCGKNPLGDDDASATASKTETSQVAPA  /

Output format:

© Extensive, with graphics
) Extensive, no graphics
) One line per protein

Other options:
Use old model (version 1)

Submit Clear

Restrictions:
At most 10,000 sequences and 4,000,000 amino acids per submission; each sequence not more than 8,000 amino acids.

Confidentiality:
The sequences are kept confidential and will be deleted after processing.
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Model architecture of TMHMM

(a)
c_\'u:;x'mu: non-cytoplasmic side

cap . cap Loy short loop —» glob-
cyl. helix core non-cylt, non-cyt, re— ular

glob- =3 loop

ular |- cyL
cap - cap < long loop —»| glob-
cyL helix core non-cyt, non-cyt. = ular

helix core

TMHMM: uses cyclic model with 7 states for

- TM helix core

- TM helix caps on the N- and C-terminal side

- non-membrane region on the cytoplasmic side

- 2 non-membrane regions on the non-cytoplasmic side (for short and long loops
to account for different membrane insertion mechanism)

- a globular domain state in the middle of each non-membrane region
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Example for TMHMM
www.cbs.dtu.dk/services/ TMHMM/

>Qi|218694017|ref|[YP_002401684.1] membrane protein; channel [Escherichia
coli 55989]

MQDLISQVEDLAGIEIDHTTSMVMIFGIIFLTAVVVHIILHWVVLRTFEKRAIASS
RLWLQIITQNKLFH
RLAFTLQGIIVNIQAVFWLQKGTEAADILTTCAQLWIMMYALLSVFSLLDVILNL
AQKFPAASQLPLKGI
FQGIKLIGAILVGILMISLLIGQSPAILISGLGAMAAVLMLVFKDPILGLVAGIQLS
ANDMLKLGDWLEM
PKYGADGAVIDIGLTTVKVRNWDNTITTIPTWSLVSDSFKNWSGMSASGGRR
IKRSISIDVTSIRFLDED
EMQRLNKAHLLKPYLTSRHQEINEWNRQQGSTESILNLRRMTNIGTFRAYLN
EYLRNHPRIRKDMTLMVR

QLAPGDNGLPLEIYAFTNTVVWLEYESIQADIFDHIFAIVEEFGLRLHQSPTGN
DIRSLAGAFKQ



Jequence
Jequence
Jequence
Jequence
Jequence
# Sequence
Jequence
Jequence
Jequence
Jequence
Jequence
Sequence
Jequence
Jequence
Jequence
Jequence
Jequence
Jequence
Jequence
Jequence
Jequence

o A

12

Length: 274

Nurber of predicted TMHs: 7

Exp nurber of AAs in TMHs:
Exp nuwber, first 60 Aas:
Total prob of N-in:

POSSIBLE N-term signal secquence

TMHMMZ

.0
TMHMMZ .
TMHMMZ .
TMHMMZ .
TMHMMZ .
TMHMMZ .
TMHMMZ .
TMHMMZ .
TMHMMZ .
TMHMMZ .
TMHMMZ .
TMHMMZ .
TMHMMZ .
TMHMMZ .
TMHMMZ .

Lo e s s s e s e e e e Y s Y o

TMHMM-Output

http://www.cbs.dtu.dk/services/ TMHMM-2.0/

153.74681

22.08833

0.04171
outside 1 26
TMhelix 27 49
inside 50 61
TMhelix 62 a4
outside 85 103
TMhelix 104 126
inside 127 130
TMhelix 131 153
outside 154 157
TMhelix 158 180
inside 181 200
TMhelix 201 223
outside 224 227
TMhelix 228 250
inside 251 274

TMHMM posterior probabilities for Sequence

08 r

probability
Q
(o)

50

04t
02 r
0 RN RN P, 20 I
transmembrane

inside

..hl. il __..|||....|" i A.!!..ul
200 250

outside
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DNA for computing:

Adleman, L. M. (1994). “Molecular computation of solutions to
combinatorial problems”. Science 266 (5187): 1021-1024. doi:10.1126/
science.7973651.

Adleman's first DNA computation solved a traveling salesman problem of seven cities. He
used DNA techniques to assemble itineraries at random; Select itineraries from initial city to
final city. The correct number of cities must be visited. No city can be left out.

Each city is represented by a unique sequence of bases. Connections between two cities are
created from a combination of the complement of the first half of the sequence of one city,
and the complement of the second half of the sequence of a connected city. In this way
DNA representing the trip will be created with one strand representing a sequence of cities
and the complementing strand representing a series of connections.

The next step is filtering out trips that start and end in the correct cities, then filtering trips
with the correct number of cities, and finally filtering out trips that contain each city only
once. Pros: 1 gram of DNA can hold about 1x10%* MB of data. A test tube of DNA can
contain trillions of strands. Each operation on a test tube of DNA is carried out on all strands
in the tube in parallel; Adleman figured his computer was running 2 x 10%° operations per
joule. Adleman’s process to solve the traveling salesman problem for 200 cities would
require an amount of DNA that weighed more than the Earth.
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DNA for computing:

Represent Each City By A DNA Strand of 20 Bases Cityl  ATGCTCAGCTACTATAGCGA
\ l 4 City2 TGCGATGTACTAGCATATAT
J e \\\ \ City3 GCATATGGTACACTGTACAA
& City4  TTATTAGCGTGCGGCCTATG
a0 City5 CCGCGATAGTCTAGATTTCC
2 3 Etc.
2% ‘\\ \ < Represent Each Air Route By Mixed Complementary Strands
e City 1->2 TGATATCGCTACGCTACATG
o ——— City 2->3 ATCGTATATACGTATACCAT
(OFIGGCTAGGTACCAGCATGCTTE
2as T T > g City 3->4 GTGACATGTTAATAATCGCA
CTTAAAGCTAGGCTAGGTACK]
]
DNA representation of the path from city 2 —> city 3 > city 4 é
TR City 4->5 CGCCGGATACGGCGCTATCA
EICGATAAGCTCGAATTTCGATE] §
o complement of @ g
City 5->6 GATCTAAAGG
L. Adelman, Scientific American, pp. 54-61 (Aug
Etc.

1998);



DNA for computing

Ma-rlyn Amos

figures from Martyn Amos 4
: Theoretical and

<| Experimental

=/ DNA Computation

& @ Springer

routes

—_— 7 Z —_ |

V1to V2 V1to V4 V1to V7

cities
—— Wy R 77/ 7/
Vertex 1 Vertex 2 Vertex 3 V2to V3 V2t V4

I 7
Vertex 4 Vertex 5 Vertex 6 V3o V2 V3o V4 (b)
l
(a) V4 to V3
Vertex 7
selection for length and initial/lend points V5to V2

=
Vi V2

V3 V4 V5 V6 V7 V6 to V2 V6 to V7



‘travelling salesman’ problem

The challenge is finding a route between various cities, passing
through each only once.

Adleman first generated all the possible itineraries and then
selected the correct itinerary.

Since the enzymes (enzymes are proteins catalyzing a reaction)
work on many DNA molecules at once, the selection process is
massively parallel. Specifically, the method based on Adleman’s
experiment would be as follows:

* Generate all possible routes.

e Selectitineraries that start with the proper city and end with
the final city.

* Selectitineraries with the correct number of cities.
* Selectitineraries that contain each city only once.

e All of the above steps can be accomplished with standard
molecular biology techniques.
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Sort the DNA by length and select the DNA
whose length corresponds to 7 cities

A test tube is now filled with DNA encoded itineraries
that start with LA and end with NY, where the number
of cities in between LA and NY varies.

We now want to select those itineraries that are seven
cities long. To accomplish this we can use a technique
called Gel Electrophoresis, which is a common
procedure used to resolve the size of DNA. The basic
principle behind Gel Electrophoresis is to force DNA
through a gel matrix by using an electric field.

DNA is a negatively charged molecule under most
conditions, so if placed in an electric field it will be
attracted to the positive potential.



The gel is made up of a polymer
that forms a meshwork of linked
strands. The DNA now is forced to
thread its way through the tiny
spaces between these strands,
which slows down the DNA at
different rates depending on its
length.

What we typically end up with after
running a gel is a series of DNA
bands, with each band
corresponding to a certain length.

We can then simply cut out the
band of interest to isolate DNA of a
specific length. Since we know that
each city is encoded with a certain
number of base pairs of DNA,
knowing the length of the itinerary
gives us the number of cities.

7 aa
b /
o . X

@

- voltage

(DNA starts here )

¢

(Iong DNA)

[ short D NA)

+ voltage

500

400

200

100

M
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Technique for Generating Routes Strategy:

Encode city names in short DNA sequences. Encode itineraries by connecting the city
sequences for which routes exist.

Synthesizing short single stranded DNA is now a routine process, so encoding the city
strings is straightforward. Itineraries can then be produced from the city encodings by
linking them together in proper order.

To accomplish this you can take advantage of the fact that DNA hybridizes (=binds) with its
complimentary sequence (complementary strands of DNA bind each other).

For example, you can encode the routes between cities by encoding the compliment of the
second half (last n letters) of the departure city and the first half (first n letters) of the
arrival city.

For example the route between Miami (CTACGG) and NY (ATGCCG) can be made by taking
the second half of the coding for Miami (CGG) and the first half of the coding for NY (ATG).
This gives CGGATG.

By taking the complement of this you get, GCCTAC, which not only uniquely represents the
route from Miami to NY, but will connect the DNA representing Miami and NY by
hybridizing itself to the second half of the code representing Miami (...CGG) and the first
half of the code representing NY (ATG...).

Random itineraries can be made by mixing city encodings with the route encodings. Finally,
the DNA strands can be connected together by an enzyme called ligase (ligases are
enzymes, i.e. proteins connecting strings). What we are left with are strands of DNA
representing itineraries with a random number of cities and random set of routes.



Itineraries Selection:
Start and End with Correct Cities

Strategy: Selectively copy and amplify only the section of the DNA that starts with LA and ends
with NY by using the Polymerase Chain Reaction (PCR). See next slide.

After generating the routes, we now have a test tube full of various lengths of DNA that encode
possible routes between cities.

What we want are routes that start with LA and end with NY. To accomplish this we can use a
technique called Polymerase Chain Reaction (PCR), which allows you to produce many copies of
a specific sequence of DNA.

After many iterations of PCR, the DNA you're working on is amplified exponentially.

So to selectively amplify the itineraries that start and stop with our cities of interest, we use
primers that are complimentary to LA and NY.

What we end up with after PCR is a test tube full of double stranded DNA of various lengths,
encoding itineraries that start with LA and end with NY.



WHAT IS PCR?

Polymerase chain reaction - PCR
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from wikipedia
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®Studycon

PCR is an iterative process that cycle through a series of copying events using an enzyme
called polymerase. Polymerase will copy a section of single stranded DNA starting at the
position of a primer, a short piece of DNA complimentary to one end of a section of the DNA

that you're interested in.

By selecting primers that flank the section of DNA you want to amplify, the polymerase

preferentially amplifies the DNA between these primers, doubling the amount of DNA contair%i@g

this sequence.



Itineraries Selection: Have a Complete Set of Cities

DNA containing a specific sequence can be purified from a sample of mixed DNA by a technique called
affinity purification, as shown below. This is accomplished by attaching the compliment of the sequence
in question to a substrate like a magnetic bead. The beads are then mixed with the DNA. DNA, which
contains the sequence you're after then hybridizes with the complement sequence on the beads. These

beads can then be retrieved and the DNA isolated.

( compliment )

B

| New York’
[Los Angeles|| Chicago || Dallas || New York |
| LAtoCh || ChtoDa || Dato NY | )

/

(hybridized DNA )

(Mognefic bead)

Select itineraries that have a complete set of cities. Sequentially affinity-purify n times, using a
different city complement for each run. We are left with itineraries that start in LA, visit each

city once, and end in NY.
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* Adleman's experiment solved a seven city problem,
but there are two major shortcomings preventing a
large scaling up of his computation.

 The complexity of the traveling salesman problem
simply doesn’t disappear when applying a different
method of solution - it still increases exponentially.

* For Adleman’s method, what scales exponentially is
not the computing time, but rather the amount of
DNA. Unfortunately this places some hard restrictions
on the number of cities that can be solved; after the
Adleman article was published, more than a few
people have pointed out that using his method to
solve a 200 city problem would take an amount of
DNA that weighed more than the earth.



Adleman’s pros & cons

Pros: 1 gram of DNA can hold about 1x10* MB of data. A
test tube of DNA can contain trillions of strands.

5 grams of DNA contain 10 %! bases (Zetta Bytes)

Each operation on a test tube of DNA is carried out on all
strands in the tube in parallel; Adleman figured his
computer was running 2 x 10'° operations per joule.

Adleman’s process to solve the traveling salesman
problem for 200 cities would require an amount of DNA
that weighed more than the Earth.

Speed: 500-5000 base pairs a second.



d
Primer library design
i. Design workflow ii. Validation
4 3\ 4 N { '
Generate random
20-mer based on Filter
GC-content, secondary Filter 3,240 48

seq complementarity, structure, similarity files files
long homopolymers, ’ and Tm ’
Hamming distance

19,480 9,869 5,625 — . —=
' ’ ’ =/ Multiplex (==
sequences sequences sequences U b 0 12 24 36 48

\ J \ J N\ J PCR File ID

log,o(avg reads)

Design of random access primers and coding algorithm. (a, i)
They designed a primer library. The primer sequence set is
then filtered that has low similarity between the sequences. (3,
ii) The resulting set of candidate primers is then validated
experimentally by synthesizing a pool of about 100,000 strands
containing sets of size 1 to 200 DNA sequences each,
surrounded by one of the candidate primer pairs, and then
randomly selecting 48 of those pairs for amplification. The
product is sequenced, and sequences with each of the 48
primer pairs appear among sequencing reads, albeit at

different relative proportions when normalized to the number
of sequences in each set.
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DNA as information storage

The work, carried out by George Church and Sri Kosuri, basically treats DNA as just another
digital storage & device. Instead of binary data being encoded as magnetic regions on a
hard drive platter, strands of DNA that store 96 bits are synthesized, with each of the bases
(TGAC) representing a binary value (Tand G=1, Aand C=0).

To read the data stored in DNA, you simply sequence it — just as if you were sequencing
the human genome — and convert each of the TGAC bases back into binary. To aid with
sequencing, each strand of DNA has a 19-bit address block at the start (the red bits in the
image below) — so a whole vat of DNA can be sequenced out of order, and then sorted into
usable data using the addresses.

ferential DN

1000110111000110100 [barcode/address)

[f] 01100101 [e] [r]
STORAGE LIMITS S St oot onioolt e (G
Estimates based on bacterial genetics suggest that digital DNA Q,O 00100000 [ ] 01000100 [D] 01001110 [N] 06\
could one day rival or exceed today’s storage technology. Q

WEIGHT & __F Ti - it TaacGTeTTGeccGGaGaa
ot OF DNA —" : aaTTc aTTcaTaT aTGTcaG
J NEEDED {_ } o ——
Flash Bacterial TO STORE —
memory DNA WORLD’S S B
Read-write speed = ~3,000- ~100 <100 DATA @O &
(us per bit) 5,000 O\ — e m— ng’
Data retention > ~10 =10 56 ’I/O é\
(years) & 6\
Power usage - "
(watts per gigabyte) > 004 ~0.01-0.04 <10
Data density

e S ~10% ~10®  gnature

more at the end of the course
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https://www.nature.com/articles/nbt.4079
ARTICLES

nature
biotechnology

Random access Iin large-scale DNA data storage

Lee Organick!, Siena Dumas Ang?, Yuan-Jyue Chen?, Randolph Lopez?, Sergey Yekhanin?,

Konstantin Makarychev>°, Miklos Z Racz??, Govinda Kamath?>, Parikshit Gopalan®°, Bichlien Nguyen?,
Christopher N Takahashi!, Sharon Newman!>>, Hsing- Yeh Parker?, Cyrus Rashtchian?, Kendall Stewart!,

Gagan Gupta?, Robert Carlson?, John Mulligan?, Douglas Carmean?, Georg Seelig!4, Luis Ceze! & Karin Strauss?

Synthetic DNA is durable and can encode digital data with high density, making it an attractive medium for data storage.
However, recovering stored data on a large-scale currently requires all the DNA in a pool to be sequenced, even if only a subset of
the information needs to be extracted. Here, we encode and store 35 distinct files (over 200 MB of data), in more than 13 million
DNA oligonucleotides, and show that we can recover each file individually and with no errors, using a random access approach.
We design and validate a large library of primers that enable individual recovery of all files stored within the DNA. We also develop
an algorithm that greatly reduces the sequencing read coverage required for error-free decoding by maximizing information from
all sequence reads. These advances demonstrate a viable, large-scale system for DNA data storage and retrieval.

july 2018 o



a File1 1

0101001 Encode and add ACTGAT Append primer AC ACACTGAT
1100010 redundancy ATTGCA unique to file 2 ACATTGCA Synthesize
1110100 » TGACAC » ACTGAGAC
1101011 CCGACT ACCCGACT
1110000 CTGCTA ACCTGCTA

DNA pool

1011101 Encode and add CTGAAT Append primer GT GTCTGAAT

Syninesize

1100000 redundancy TCATTG unique to file 2 GTTCATTG Synthesize
1101111 » AGGAGT » GTAGCAGT
0001101 TAGCAA GTTAGGAA
1011001 GTGAGT GTGTGAGT
b DNA pool ACTGAT
ePCR to select ATTGCA  ciyster reads 0101001
molecules of file 1 Sequence TCGACAC  and decode 1100010
> » CCCACT »1110100
CTGCTA 1101011
ACTGAT 1110000
CCGACT

The principle of DNA information storage in Organick et al.
(a) Two files are stored by encoding each file in a set of different DNA sequences.
Redundant information is added to enable error recovery at retrieval, and a distinct primer is
appended to each set of sequences corresponding to a file.
The resulting strings are synthesized and stored as a pool of different DNA molecules.

(b) A specific file is retrieved by amplifying the molecules corresponding to the file by ePCR,

sequencing the PCR products, and algorithmically reconstructing the data from the reads. ,



Organick et al. stored and retrieved more than 200 megabytes of
data.

Specifically, they attach distinct primers to each set of DNA
molecules carrying information about a file. This allows them to
retrieve a given file by selectively amplifying and sequencing only
the molecules with the primer marking the desired file.

To test their scheme, they designed a primer library that allowed
them to uniquely tag data stored in DNA. They encoded 35 digital
files into 13,448,372 DNA sequences, each 150-nucleotides long.
Redundant information using error detection codes is also included
to increase robustness to missing sequences and errors.

To improve recovery of the information, Organick et al.
develop a clustering and consensus algorithm that aligns and
filters reads before error correction.

This algorithm also takes into account reads that differ from the
correct length.



aqlle o Decoding 011011

011011 oding o Storage (0 bit error)

. Primer library design Clustering .
Reed-Solomon code 9 synthesis PCR random access Trace reconstruction
15% redundancy pools llumina and Oxford Error correction
20 bp xbp 110-xbp 20 bp Nanopore Technologies
e T,
- == ... ® o 7o\ "\
o[ was|_eago [ e NG D
"o * RN
Addr|  Payload m’ DNApool  File-t  File-N o | o
o, ® i o
¢ ,'\?_.,‘\}
| 0 Addr| _Payioad | 1D

This work describes large-scale random access, low redundancy, and robust
encoding and decoding of information stored in DNA, as well as a notable increase
in the volume of data stored (200 MB, the largest synthetic DNA pool available to
date).Overview of the DNA data storage workflow and stored data.

(a) The encoding process maps digital files into a large set of 150-nucleotide DNA
sequences, including Reed—Solomon code redundancy to overcome errors in
synthesis and sequencing. The resulting collection of sequences is
synthesized. The random access process starts with amplifying a subset of the
sequences corresponding to one of the files using PCR. The amplified pools
are sequenced. Finally, sequencing reads are decoded using clustering,
consensus and error correction algorithms.
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- 05k . . , 3 a comparison to
2010 2012 2014 2016 2018 research
Year achievements shows
that our coding
Example files encoded within the 200 MB of data. scheme has similar
c logical redundancy,
but requires lower
Data File size Number of DNA sequences Sequencing coverage
OK GO (HD video) 44.2 MB 3.2 million .
‘ , : : to recover files
Classical music collection (Music) 13.9 MB 890,000
d
Data size Sequencing Sut;cs)a}gwled Coverage Bliat:speer Bngpeer Random
technology 9 including excluding access
coverage primers primers
Church et al.® 0.65 MB lllumina No 3,000x 0.60 0.83 No
Goldman et al.* 0.63 MB lllumina Yes 51x 0.19 0.29 No
Grass et al.® 0.08 MB lllumina No 372x 0.86 1.16 No
Bornholt et al.® 0.15 MB lllumina Yes 40x 0.57 0.85 Yes
Erlich and Zielinski’ 2.11 MB lllumina Yes 10.5x 1.18 1.55 No
Blawat et al.® 22 MB lllumina No 160x 0.89 1.08 No
This work 200.2 MB lllumina Yes 5x 0.81 1.10 Yes
Yadzi et al.™® 0.003 MB Nanopore No 200x 1.71 1.74 Yes
This work 0.033 MB Nanopore Yes 36x / 80x 0.81 1.10 Yes 695




Encoding Binary DNA sequences
(110101..) (ATCTGC..)

Binary data

0110011011... Payload i E,D) Payload n Payload n
oY)

e m Payload Payload n Payload n
D

1101010001... ’m Payoad {1 ’ Payload ’ 0 [ Awr| Payosd | D
Randomize 2

ajost B pajost M0 [nssr| pajoss | 0|

Apply = Apply Select primers
outer code inner code

The encoding process starts by randomizing data to reduce chances of secondary structures, primer—payload non-specific
binding, and improved properties during decoding. It then breaks the data into fixed-size payloads, adds addressing information
(Addr), and applies outer coding, which adds redundant sequences using a Reed—-Solomon code to increase robustness to
missing sequences and errors. The level of redundancy is determined by expected errors in sequencing and synthesis, as well as
DNA degradation. Next, it applies inner coding, which ultimately converts the bits to DNA sequences. The resulting set of
sequences is surrounded by a primer pair chosen from the library based on (low) level of overlap with payloads.

outer coae inner coae
C
Decoding
ATAGTA. o\ SNy 11001100.. 11001100..
® o4 (o 1o ! @V ® |
® o ’ NEANGCY ’ k.._._._._.j\\ i ’ 10010100.. » 10010100..
O [0 2 ' and
o ¢ : ~ ] 01010111..
i Q 1 \
SN e ) o ™ 01100011 01100011
® Tacacr. S S " "
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The decoding process starts by clustering reads based on similarity, and
finding a consensus between the sequences in each cluster to reconstruct the

original sequences, which are then decoded back to digital data. co6



The data longevity and information density of current DNA data storage
systems already surpass those of traditional storage systems, but the cost
and the read and write speeds do not.

Storing one megabyte of data in DNA with existing technology costs
hundreds of dollars, compared with less than $0.0001 per year using tape,
the standard for archival data storage.

The price of DNA storage will undoubtedly drop substantially as the
costs of DNA synthesis and sequencing fall.

The more pressing challenge is that DNA synthesis and sequencing are
inherently slow.

DNA synthesis and sequencing DNA can be extensively parallelized, their
slow speeds limit the amount of data that can be written and read in a
given time interval. The bottleneck for both cost and speed is synthesis.

A fully automated DNA drive would include synthesis and sequencing
technology, components to store and handle the DNA, as well as a supply of
chemicals.



Exam questions

1 Bioinformatics (PL)

(a) What are the usage and the limitations of the Bootstrap technique in phylogeny?
6 marks|

Answer:  This is a procedure of resam pling of the sites in an alignment and tree reconst ructiones
of all the peeudo alignments; it depends on the size of the alignment (length of the sequences
and their number), The percentage of times each interior branch s given a waloe of 1 s
noted. This s known ss the bootstrap value, As a geneml rule, If the bootstrap value for
a given imtenior branch s 8% or higher, then the topology at that branch s considered
correct, The presence of several repeated columns decrenses the amount of information in each
peeudoalignment.

(¢) How can you evaluate the results obtained (number of clusters and their relative
position) using the K means algorithm for clustering? |5 marks|

Answer: The quality of cluster could be assessed by ratio of distance to nearest cluster and
cluster diameter. A cluster can be formed even when there is no similarity between clustered
patterns. This occurs because the algorithm forces k clusters to be created. Linear relationship
with the number of data points; Complexity is O(nKI ) where n = number of points, K =
number of clusters, | = number of iterations.
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Exam questions

Bioinformatics

(a) Discuss the space-time complexity of dvnamic programming algorithms in
sequence alignment. |7 marks|

(b) Discuss with one example how to score a multiple sequence alignment.
|5 marks|
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Exam questions

1. Give the alignment matrix of the sequences "AATCGCGCGGT' and
"ATGCGCCGT" assuming the following costs: Cost(a,a)=0; Cost(a,b)=3
when a = b, Cost(a,-)=Cost(-,a)=2.

2. How would you set the function Cost in order to compute the longest
subsequence common to x and y?

3. Describe the differences between the algorithms for global and local
alignments

4. Which of the following reasons would lead you to use the Smith-Waterman
local alignment algorithm instead of the Needleman-Wunsch global
alignment algorithm?

Select all appropriate answers.

(a) Computer memory is too limited to compute the optimal global alignment.

(b) One wants to 1dentify common protein domains in the two sequences.

(c) The sequences have very different lengths.

(d) Smith-Waterman 1s faster than Needleman-Wunsch on long sequences.

5. Describe the notion of a parsimonious phylogeny for a finite set of
sequences and the hypothesis assumed on them



COMPUTER SCIENCE TRIPOS Part II — 2013 — Paper 7
3  Bioinformatics (PL)
Given the two DN A sequences: GCACTT and CCCAAT
(a) Compute the alignment (using the edit graph) and the final score with the

following rules: match score = +1, mismatch = —1, gap penalty = —1.
[4 marks]

(b) Discuss how the alignment score and the quality of the result depend on the
match score, mismatch, and gap penalty. [6 marks]

(¢) Generate four, short DNA sequences (a,b,c,d) such that their relations as a tree
are approximately the following: ((a,b),(c,d)). [5 marks]

(@) How iz the score matrix used in phylogenetic tree building techniques?
[£ marks]



COMPUTER SCIENCE TRIPOS Part II — 2012 — Paper 9
I Bioinformatics (PL)

(@) What are the usage and the limitations of the Bootstrap technique in phylogeny?
[6 marks]

(b) We often use Hidden Markov Models (HMM) to predict a pattern (for instance
the exons). How can you compute the number of True Positives, True Negatives,
False Positives and False Negatives and use them to evaluate your HIMIM?Y

[6 marks]

(¢) How can you evaluate the results obtained (number of clusters and their relative
position) using the K means algorithm for clustering? [5 marks]



HMM

(b) We often use Hidden Markov Models (HMM) to predict a pattern (for instance
the exons). How can you compute the number of True Positives, True Negatives,
False Positives and False Negatives and use them to evaluate your HMM?

[6 marks]

Answer:

1)
i)
i)

i)

v)

3
vig)

be predicted to occur: Predicted Positive (PP)

be predicted not to occur: Predicted Negative (PN)
actually occur: Actual Positive (AP)

actually not occur: Actual Negative (AN)

True Positive TP = PP (AP

True Negative TN = PN [ AN

False Negative FN = PN [ AP

viss ) False Positive FP = PP(| AN

i)

(
(
(
(
(
(vi)
(
(
(
(z)

(z2)

Sensitivity: probability of correctly predicting a positive example Sn = TP/(TP + FN)

Specificity: probability of correctly predicting a negative example Sp = TN/(TN + FP)
or

probability that positive prediction is correct Sp = TP /(TP + FP)




