Concurrent systems

Lecture 3: Mutual exclusion, semaphores,
and producer-consumer relationships

Dr David J Greaves
(Thanks to Dr Robert N. M. Watson)



Reminder from last time

* Automata models of concurrent systems

Concurrency hardware mechanisms

Challenge: concurrent access to shared resources
Mutual exclusion, race conditions, and atomicity
Mutual exclusion locks (mutexes)



From first lecture

From last time: beer-buying example

* Thread 1 (person 1) * Thread 2 (person 2)

1. Look in fridge 1. Look in fridge
2. If no beer, go buy beer 2. If no beer, go buy beer
3. Put beer in fridge 3. Put beer in fridge

* In most cases, this works just fine...

* But if both people look (step 1) before either refills the fridge (step 3)... we'll end up with
too much beer!

* Obviously more worrying if “look in fridge” is “check reactor”, and “buy beer” is “toggle
safety system” ;-)

We spotted race conditions in obvious concurrent implementations.
Ad hoc solutions (e.g., leaving a note) failed.

Even naive application of atomic operations failed.
Mutexes provide a general mechanism for mutual exclusion.




This time

* Implementing mutual exclusion

* Semaphores for mutual exclusion, condition
synchronisation, and resource allocation

* Two-party and generalised producer-
consumer relationships



Implementing mutual exclusion

* Associate a mutual exclusion lock with each
critical section, e.g. a variable L
— (must ensure use correct lock variable!)
ENTER_CS() = “LOCK(L)”
LEAVE_CS() = “UNLOCK(L)”

* Can implement LOCK() using read-and-set():

LOCK(L) { UNLOCK(L) {
while(!read-and-set(L)) L = 0;
; // do nothing }
}



Semaphores

* Despite with atomic ops, busy waiting remains inefficient...
— Lock contention with spinning-based solution wastes CPU cycles.
— Better to sleep until resource available.

Dijkstra (THE, 1968) proposed semaphores
— New type of variable

— Initialized once to an integer value (default 0)

Supports two operations: wait() and signall()

— Sometimes called down() and up()
— (and originally called P() and V() ... blurk!)

Can be used for mutual exclusion with sleeping

* Can also be used for condition synchronisation
— Wake up another waiting thread on a condition or event
—E.g., “There is an item available for processing in a queue”



Semaphore implementation

* Implemented as an integer and a queue

wait(sem) {
if(sem > 0) {
sem = sem - 1;
} else suspend caller & add thread to queue for sem

}

signal(sem) {
if no threads are waiting {
sem = sem + 1;
} else wake up some thread on queue

}

* Method bodies are implemented atomically
* Think of “sem” as count of the number of available “items”
* “suspend” and “wake” invoke threading APIs



Hardware support for wakeups: IPIs

CAS/LLSC/... support atomicity via shared memory

But what about “wake up thread”?
— E.g., notify waiter of resources now free, work now waiting, ...

— Generally known as condition synchronisation
— On a single CPU, wakeup triggers context switch

— How to wake up a thread on another CPU that is already busy doing something
else?

Inter-Processor Interrupts (IPIs) (aka Inter-Core Interrupt ICI)

— Mark thread as “runnable”

— Send an interrupt to the target CPU

— IPI handler runs thread scheduler, preempts running thread, triggers context
switch

Together, shared memory and IPIs support atomicity and condition

synchronisation between processors



Mutual exclusion with a semaphore

aSem A B C
1]
EE—» wait (aSem)
(0] J-pg wait|(aSem)

CS B blocked
IIE—' B,C wait (nSem)
. C blocked
m—»c signal (aSem)
CS
EE_, signal (aSem)
CS
! signal (aSem)
v v v

* |nitialize semaphore to 1; wait() is lock(), signal() is unlock()



Condition synchronisation

wait before signal

aSem

(o]
(OTd-n "

A blocked

(o]

A continueg

v

(aSem)

signal

(aSem)

asem

(o]
(1]

signal before wait

“wake-up waiting”

[0 F+

wait

signal

(aSem)
A continues

(aSem)

* |nitialize semaphore to O0; A proceeds only after B signals

10



N-resource allocation

* Suppose there are N instances of a resource
— e.g. N printers attached to a DTP system

* Can manage allocation with a semaphore sem,
initialized to N
— Any job wanting printer does wait(sem)
— After N jobs get a printer, next will sleep

— To release resource, signal(sem)
* Will wake some job if any job is waiting.

* Will typically also require mutual exclusion
— E.g. to decide which printers are free



Semaphore design patterns

* Semaphores are quite powerful
— Can solve mutual exclusion...
— Can also provide condition synchronization
* Thread waits until some condition set by another thread
* Let’s look at three common examples:

— One producer thread, one consumer thread, with a N-
slot shared memory buffer

— Any number of producer and consumer threads, again
using an N-slot shared memory buffer

— Multiple reader, single writer synchronization (next time).

12



Producer-consumer problem

* General “pipe” concurrent programming paradigm

— E.g. pipelines in Unix; staged servers; work stealing;
download thread vs. rendering thread in web browser

* Shared buffer B[] with N slots, initially empty

* Producer thread wants to:
— Produce an item
— If there’s room, insert into next slot;
— Otherwise, wait until there is room
* Consumer thread wants to:
— If there's anything in buffer, remove an item (+consume it)
— Otherwise, wait until there is something

* Maintain order, use parallelism, avoid context switches



Producer-consumer solution

spaces = new Semaphore(N);
items = new Semaphore(0);

int buffer[N]; int in = 0, out

= 0;

// producer thread
while(true) {
item =

roduce ()

buffer[in] = item;

in = (i1n + 1) % N;
}

}

// consumer thread

i+ there 1s an iten T ]

item = buffer[out];
out = (out + 1) % N;
}
consume(item);

buffer

14



Producer-consumer solution

int buffer[N]; int in = 0, out = 0;
spaces = new Semaphore(N);
items = new Semaphore(0);

// producer thread // consumer thread
while(true) {
item = produce();

while(true) {

buffer[in] = item;
in = (i1n + 1) % N;

buffer

15



Producer-consumer solution

* Use of semaphores for N-resource allocation
— In this case, resource is a slot in the buffer
— spaces allocates empty slots (for producer)
— items allocates full slots (for consumer)

* No explicit mutual exclusion

— Threads will never try to access the same slot at the
same time; if “in == out” then either
* buffer is empty (and consumer will sleep on items), or
* buffer is full (and producer will sleep on spaces)

— NB: in and out are each accessed solely in one of the
producer (in) or consumer (out)



Generalized producer-consumer

* Previously had exactly one producer thread, and
exactly one consumer thread

* More generally might have many threads adding
items, and many removing them

* If so, we do need explicit mutual exclusion

— E.g. to prevent two consumers from trying to remove
(and consume) the same item

— (Race conditions due to concurrent use of in and out
precluded when just one thread on each end)

* Can implement with one more semaphore...



Generalized P-C solution

int buffer[N]; int in = 0, out = 0;

spaces = new Semaphore(N);
items = new Semaphore(0);
guard = new Semaphore(1l); // for mutual exclusion

// producer threads
while(true) {
item = produce();
wait (spaces);

walit(quard);
buffer[in] = item;
in = (in + 1) % N;

signal(quard);

signal(items);

}

// consumer threads
while(true) {
wait(items);

wait(quard);

out = (out + 1)
signal (guard);

item = buffer[out];

signal (spaces);
consume(item);

}

* Exercise: Can we modify this design to allow concurrent access by 1
producer and 1 consumer by adding one more semaphore?




Semaphores: summary

* Powerful abstraction for implementing concurrency
control:

— Mutual exclusion & condition synchronization
* Better than read-and-set()... but correct use requires
considerable care
— E.g. forget to wait(), can corrupt data
— E.g. forget to signal(), can lead to infinite delay
— Generally get more complex as add more semaphores

* Used internally in some OSes and libraries, but
generally deprecated for other mechanisms...



Mutual exclusion and invariants

* One important goal of locking is to avoid exposing
inconsistent intermediate states to other threads

* This suggests an invariants-based strategy:
— Invariants hold as mutex is acquired
— Invariants may be violated while mutex is held
— Invariants must be restored before mutex is released

* E.g., deletion from a doubly linked list
— Invariant: an entry is in the list, or not in the list

— Individually non-atomic updates of forward and backward
pointers around a deleted object are fine as long as the lock isn’t
released in between the pointer updates



Summary + next time

* Implementing mutual exclusion: hardware support for
atomicity and inter-processor interrupts

* Semaphores for mutual exclusion, condition synchronisation,
and resource allocation

* Two-party and generalised producer-consumer relationships
* Invariants and locks

* Next time:
— Multi-Reader Single-Writer (MRSW) locks
— Starvation and fairness
— Alternatives to semaphores/locks

— Concurrent primitives in practice
21



	Slide 1
	Reminder from last time
	From last time: beer-buying example
	This time
	Implementing mutual exclusion
	Semaphores
	Semaphore implementation
	Hardware support for wakeups: IPIs
	Mutual exclusion with a semaphore
	Condition synchronisation
	N-resource allocation
	Semaphore design patterns
	Producer-consumer problem
	Producer-consumer solution
	Producer-consumer solution
	Producer-consumer solution
	Generalized producer-consumer
	Generalized P-C solution
	Semaphores: summary
	Mutual exclusion and invariants
	Summary + next time

