
Concurrent systems
Lecture 6: Concurrency without shared data, composite operations

 and transactions, and serialisability

Dr David J Greaves
(Thanks to Dr Robert N. M. Watson)

1

Reminder from last time

• Liveness properties

• Deadlock (requirements; resource allocation graphs; detection;
prevention; recovery)

• The Dining Philosophers

• Priority inversion

• Priority inheritance

2

Concurrency is so hard!

If only there were some way that programmers could accomplish useful concurrent
computation without…

(1) the hassles of shared memory concurrency
(2) blocking synchronisation primitives

Concurrency is so hard!

If only there were some way that programmers could accomplish useful concurrent
computation without…

(1) the hassles of shared memory concurrency
(2) blocking synchronisation primitives

This time

• Concurrency without shared data

– Use same hardware+OS primitives, but expose higher-level models via
software libraries or programming languages

• Active objects

– Ada

• Message passing; the actor model

– Occam, Erlang

• Composite operations

– Transactions, ACID properties

– Isolation and serialisability

• History graphs; good (and bad) schedules

3

This material has significant overlap with databases and distributed
systems – but is presented here from a concurrency perspective

This material has significant overlap with databases and distributed
systems – but is presented here from a concurrency perspective

Concurrency without shared data

• The examples so far have involved threads which can
arbitrarily read & write shared data

– A key need for mutual exclusion has been to avoid race-
conditions (i.e. ‘collisions’ on access to this data)

• An alternative approach is to have only one thread
access any particular piece of data

– Different threads can own distinct chunks of data

• Retain concurrency by allowing other threads to ask for
operations to be done on their behalf

– This ‘asking’ of course needs to be concurrency safe…

4

Fundamental design dimension: concurrent access via
shared data vs. concurrent access via explicit communication

Fundamental design dimension: concurrent access via
shared data vs. concurrent access via explicit communication

Example: Active Objects

• A monitor with an associated server thread

– Exports an entry for each operation it provides

– Other (client) threads ‘call’ methods

– Call returns when operation is done

• All complexity bundled up in an active object

– Must manage mutual exclusion where needed

– Must queue requests from multiple threads

– May need to delay requests pending conditions
• E.g. if a producer wants to insert but buffer is full

5

Observation: the code of exactly one thread, and the data that
only it accesses, effectively experience mutual exclusion

Observation: the code of exactly one thread, and the data that
only it accesses, effectively experience mutual exclusion

Producer-Consumer in Ada

6

task-body ProducerConsumer is
 ...
 loop
 SELECT
 when count < buffer-size
 ACCEPT insert(item) do
 // insert item into buffer
 end;
 count++;
 or
 when count > 0
 ACCEPT consume(item) do
 // remove item from buffer
 end;
 count--;
 end SELECT
 end loop

task-body ProducerConsumer is
 ...
 loop
 SELECT
 when count < buffer-size
 ACCEPT insert(item) do
 // insert item into buffer
 end;
 count++;
 or
 when count > 0
 ACCEPT consume(item) do
 // remove item from buffer
 end;
 count--;
 end SELECT
 end loop

Non-deterministic choice
between a set of

guarded ACCEPT clauses

Clause is active only
when condition is true

ACCEPT dequeues a
client request and

performs the operation

Single thread: no need
for mutual exclusion

Message passing

• Dynamic invocations between threads can be thought of
as general message passing
– Thread X can send a message to Thread Y

– Contents of message can be arbitrary data values

• Can be used to build Remote Procedure Call (RPC)
– Message includes name of operation to invoke along with as

any parameters

– Receiving thread checks operation name, and invokes the
relevant code

– Return value(s) sent back as another message

• (Called Remote Method Invocation (RMI) in Java)

7

We will discuss message passing and RPC in detail 2nd half; a taster
now, as these ideas apply to local, not just distributed, systems.

We will discuss message passing and RPC in detail 2nd half; a taster
now, as these ideas apply to local, not just distributed, systems.

Message passing semantics

• Can conceptually view sending a message to be similar to
sending an email:
1. Sender prepares contents locally, and then sends

2. System eventually delivers a copy to receiver

3. Receiver checks for messages

• In this model, sending is asynchronous:
–.Sender doesn’t need to wait for message delivery

–.(but they may, of course, choose to wait for a reply)

–.Bounded FIFO may ultimately apply sender back pressure

• Receiving is also asynchronous:
–.messages first delivered to a mailbox, later retrieved

–.message is a copy of the data (i.e. no actual sharing)

8

Synchronous Message Passing

• FSM view: both (all) participating FSMs execute the message passing primitive
simultaneously.

• Send and receive operations must be part of edge guard (before the slash).

9

Asynchronous Message Passing

• We will normally assume asynchronous unless obviously or
explicitly otherwise.

• Send and receive operations in action part (after slash). 10

Message passing advantages

• Copy semantics avoid race conditions
– At least directly on the data

• Flexible API: e.g.
– Batching: can send K messages before waiting; and can similarly

batch a set of replies

– Scheduling: can choose when to receive, who to receive from,
and which messages to prioritize

– Broadcast: can send messages to many recipients

• Works both within and between machines
– i.e. same design works for distributed systems

• Explicitly used as basis of some languages…

11

Example: Occam
• Language based on Hoare’s Communicating Sequential Processes (CSP) formalism

– A projection of a process algebra into a real-world language

• No shared variables

• Processes synchronously communicate via channels

12

<channel> ? <variable> // an input process
<channel> ! <expression> // an output process
<channel> ? <variable> // an input process
<channel> ! <expression> // an output process

• Build complex processes via SEQ, PAR and ALT, e.g.

ALT
 count1 < 100 & c1 ? Data
 SEQ
 count1:= count1 + 1
 merged ! data
 count2 < 100 & c2 ? Data
 SEQ
 count2:= count2 + 1
 merged ! data

ALT
 count1 < 100 & c1 ? Data
 SEQ
 count1:= count1 + 1
 merged ! data
 count2 < 100 & c2 ? Data
 SEQ
 count2:= count2 + 1
 merged ! data

Example: Erlang
• Functional programming language designed in mid 80’s, made popular

more recently (especially in eternal systems such as telephone network).

• Implements the actor model

• Actors: lightweight language-level processes

– Can spawn() new processes very cheaply

• Single-assignment: each variable is assigned only once, and thereafter is
immutable

– But values can be sent to other processes

• Guarded receives (as in Ada, occam)

– Messages delivered in order to local mailbox

• Message/actor-oriented model allows run-time restart or replacement of
modules to limit downtime

13

Proponents of Erlang argue that lack of synchronous message
passing prevents deadlock. Why might this claim be misleading?

Proponents of Erlang argue that lack of synchronous message
passing prevents deadlock. Why might this claim be misleading?

Producer-Consumer in Erlang

14

-module(producerconsumer).
-export([start/0]).

start() ->
 spawn(fun() -> loop() end).

loop() ->
 receive
 {produce, item } ->
 enter_item(item),
 loop();
 {consume, Pid } ->
 Pid ! remove_item(),
 loop();
 stop ->
 ok
end.

-module(producerconsumer).
-export([start/0]).

start() ->
 spawn(fun() -> loop() end).

loop() ->
 receive
 {produce, item } ->
 enter_item(item),
 loop();
 {consume, Pid } ->
 Pid ! remove_item(),
 loop();
 stop ->
 ok
end.

Invoking start() will
spawn an actor…

receive matches
messages to patterns

explicit tail-recursion is
required to keep the

actor alive…

… so if send ‘stop’,
process will terminate.

Message passing: summary

• A way of sidestepping (at least some of) the issues with
shared memory concurrency

– No direct access to data => no data race conditions

– Threads choose actions based on message

• Explicit message passing can be awkward

– Many weird and wonderful languages ;-)

• Can also use with traditional languages, e.g.

– Transparent messaging via RPC/RMI

– Scala, Kilim (actors on Java, or for Java), …

15

We have eliminated some of the issues associated with shared memory, but
these are still concurrent programs subject to deadlock, livelock, etc.

We have eliminated some of the issues associated with shared memory, but
these are still concurrent programs subject to deadlock, livelock, etc.

Composite operations

• So far have seen various ways to ensure safe concurrent access to
a single object
– e.g. monitors, active objects, message passing

• More generally want to handle composite operations:
– i.e. build systems which act on multiple distinct objects

• As an example, imagine an internal bank system which allows
account access via three method calls:

16

int amount = getBalance(account);
bool credit(account, amount);
bool debit(account, amount);

int amount = getBalance(account);
bool credit(account, amount);
bool debit(account, amount);

• If each is thread-safe, is this sufficient?

• Or are we going to get into trouble???

Composite operations

• Consider two concurrently executing client threads:
– One wishes to transfer 100 quid from the savings account to the

current account

– The other wishes to learn the combined balance

17

// thread 1: transfer 100
// from savings->current
 debit(savings, 100);
 credit(current, 100);

// thread 1: transfer 100
// from savings->current
 debit(savings, 100);
 credit(current, 100);

// thread 2: check balance
 s = getBalance(savings);
 c = getBalance(current);
 tot = s + c;

// thread 2: check balance
 s = getBalance(savings);
 c = getBalance(current);
 tot = s + c;

• If we’re unlucky then:
– Thread 2 could see balance that’s too small

– Thread 1 could crash after doing debit() – ouch!

– Server thread could crash at any point – ouch?

Problems with composite operations

Two separate kinds of problem here:

1. Insufficient Isolation
– Individual operations being atomic is not enough

– E.g., want the credit & debit making up the transfer to
happen as one operation

– Could fix this particular example with a new transfer()
method, but not very general ...

2. Fault Tolerance
– In the real-word, programs (or systems) can fail

– Need to make sure we can recover safely

18

Transactions

• Want programmer to be able to specify that a set of operations should
happen atomically, e.g.

19

// transfer amt from A -> B
transaction {
 if (getBalance(A) > amt) {
 debit(A, amt);
 credit(B, amt);
 return true;
 } else return false;
}

// transfer amt from A -> B
transaction {
 if (getBalance(A) > amt) {
 debit(A, amt);
 credit(B, amt);
 return true;
 } else return false;
}

• A transaction either executes correctly (in which case we say it
commits), or has no effect at all (i.e. it aborts)

• regardless of other transactions, or system crashes!

ACID Properties
Want committed transactions to satisfy four properties:

• Atomicity: either all or none of the transaction’s operations are performed

– Programmer doesn’t need to worry about clean up

• Consistency: a transaction transforms the system from one consistent
state to another – i.e., preserves invariants

– Programmer must ensure e.g. conservation of money

• Isolation: each transaction executes [as if] isolated from the concurrent
effects of others

– Can ignore concurrent transactions (or partial updates)

• Durability: the effects of committed transactions survive subsequent
system failures

– If system reports success, must ensure this is recorded on disk

20

This is a different use of the word “atomic” from previously;
we will just have to live with that, unfortunately.

This is a different use of the word “atomic” from previously;
we will just have to live with that, unfortunately.

ACID Properties

Can group these into two categories

1. Atomicity & Durability deal with making sure the system is safe
even across failures

– (A) No partially complete txactions

– (D) Transactions previously reported as committed don’t disappear,
even after a system crash

2. Consistency & Isolation ensure correct behavior even in the face
of concurrency

– (C) Can always code as if invariants in place

– (I) Concurrently executing transactions are indivisible

21

Isolation

• To ensure a transaction executes in isolation could just have a
server-wide lock… simple!

22

// transfer amt from A -> B
transaction { // acquire server lock
 if (getBalance(A) > amt) {
 debit(A, amt);
 credit(B, amt);
 return true;
 } else return false;
} // release server lock

// transfer amt from A -> B
transaction { // acquire server lock
 if (getBalance(A) > amt) {
 debit(A, amt);
 credit(B, amt);
 return true;
 } else return false;
} // release server lock

• But doesn’t allow any concurrency…

• And doesn’t handle mid-transaction failure
(e.g. what if we are unable to credit the amount to B?)

Isolation – Serialisability

• The idea of executing transactions serially (one after the other)
is a useful model for the programmer:
– To improve performance, transaction systems execute many

transactions concurrently

– But programmers must only observe behaviours consistent with a
possible serial execution: serialisability

• Consider two transactions, T1 and T2

23

T2 transaction {
 debit(S, 100);
 credit(C, 100);
 return true;
}

T2 transaction {
 debit(S, 100);
 credit(C, 100);
 return true;
}

• If assume individual operations are atomic, then there are six
possible ways the operations can interleave…

T1 transaction {
 s = getBalance(S);
 c = getBalance(C);
 return (s + c);
}

T1 transaction {
 s = getBalance(S);
 c = getBalance(C);
 return (s + c);
}

Isolation – serialisability

• First case is a serial execution and hence serialisable

24

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

• Second case is not serial as transactions are interleaved
– Its results are identical to serially executing T2 and then T1

– The schedule is therefore serialisable

• Informally: it is serialisable because we have only swapped the
execution orders of non-conflicting operations
– All of T1’s operations on any objects happen after T2’s update

Isolation – serialisability

• This execution is neither serial nor serialisable
– T1 sees inconsistent values: old S and new C

25

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

• This execution is also neither serial nor serialisable
– T1 sees inconsistent values: new S, old C

• Both orderings swap conflicting operations such that there is
no matching serial execution

Conflict Serialisability

• There are many flavours of serialisability

• Conflict serialisability is satisfied for a schedule S if
(and only if):
– It contains the same set of operations as some serial

schedule T; and

– All conflicting operations are ordered the same way as
in T

• Define conflicting as non-commutative
– I.e., differences are permitted between the execution

ordering and T, but they can’t have a visible impact

26

History graphs

• Can construct a graph for any execution schedule:

– Nodes represent individual operations, and

– Arrows represent “happens-before” relations

• Insert edges between operations within a given transaction in
program order (i.e., as written)

• Insert edges between conflicting operations operating on the
same objects, ordered by execution schedule

– e.g. A.credit(), A.debit() commute [don’t conflict]

– A.credit() and A.addInterest() do conflict

• NB: Graphs represent particular execution schedules not sets
of allowable schedules

27

History graphs: good schedules

• Same schedules as before (both ok)

• Can easily see that everything in T1 either happens
before everything in T2, or vice versa
– Hence schedule can be serialised

28

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

COMMITSTART

START COMMIT

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

COMMITSTART

START COMMIT

History graphs: bad schedules

• Cycles indicate that schedules are bad :-(

• Neither transaction strictly “happened before” the other:
– Arrows from T1 to T2 mean “T1 must happen before T2”

– But arrows from T2 to T1 => “T2 must happen before T1”

– Notice the cycle in the graph!

• Can’t both be true --- schedules are non-serialisable
29

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

COMMITSTART

START COMMIT

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

COMMITSTART

START COMMIT

Isolation – serialisability

• This execution is neither serial nor serialisable

– T1 sees inconsistent values: old S and new C

30

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

• This execution is also neither serial nor serialisable

– T1 sees inconsistent values: new S, old C

• Both orderings swap conflicting operations such that there is no matching serial execution

The transaction system must ensure that, regardless of any actual concurrent execution used to improve
performance, only results consistent with serialisable orderings are visible to the transaction programmer.

The transaction system must ensure that, regardless of any actual concurrent execution used to improve
performance, only results consistent with serialisable orderings are visible to the transaction programmer.

Same as earlier slide.

Summary + next time

• Concurrency without shared data (Active Objects)

• Message passing, actor model (Occam, Erlang)

• Composite operations; transactions; ACID properties

• Isolation and serialisability

• History graphs; good (and bad) schedules

• Next time – more on transactions:

– Isolation vs. strict isolation; enforcing isolation

– Two-phase locking; rollback

– Timestamp ordering (TSO); optimistic concurrency control (OCC)

– Isolation and concurrency summary

31

	Slide 1
	Reminder from last time
	This time
	Concurrency without shared data
	Example: Active Objects
	Producer-Consumer in Ada
	Message passing
	Message passing semantics
	Slide 9
	Slide 10
	Message passing advantages
	Example: occam
	Example: Erlang
	Producer-Consumer in Erlang
	Message passing: summary
	Composite operations
	Composite operations
	Problems with composite operations
	Transactions
	ACID Properties
	ACID Properties
	Isolation
	Isolation – Serialisability
	Isolation – serialisability
	Isolation – serialisability
	Conflict Serialisability
	History graphs
	History graphs: good schedules
	History graphs: bad schedules
	Isolation – serialisability
	Summary + next time

