
Concurrent systems
Lecture 6: Concurrency without shared data, composite operations

 and transactions, and serialisability

Dr David J Greaves
(Thanks to Dr Robert N. M. Watson)

1



Reminder from last time

• Liveness properties

• Deadlock (requirements; resource allocation graphs; detection; 
prevention; recovery)

• The Dining Philosophers

• Priority inversion

• Priority inheritance
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Concurrency is so hard!

If only there were some way that programmers could accomplish useful concurrent 
computation without…

(1) the hassles of shared memory concurrency
(2) blocking synchronisation primitives
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This time

• Concurrency without shared data

– Use same hardware+OS primitives, but expose higher-level models via 
software libraries or programming languages

• Active objects

– Ada

• Message passing; the actor model

– Occam, Erlang

• Composite operations

– Transactions, ACID properties

– Isolation and serialisability

• History graphs; good (and bad) schedules
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This material has significant overlap with databases and distributed 
systems – but is presented here from a concurrency perspective

This material has significant overlap with databases and distributed 
systems – but is presented here from a concurrency perspective



Concurrency without shared data

• The examples so far have involved threads which can 
arbitrarily read & write shared data

– A key need for mutual exclusion has been to avoid race-
conditions (i.e. ‘collisions’ on access to this data)

• An alternative approach is to have only one thread 
access any particular piece of data

– Different threads can own distinct chunks of data

• Retain concurrency by allowing other threads to ask for 
operations to be done on their behalf

– This ‘asking’ of course needs to be concurrency safe…
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Fundamental design dimension: concurrent access via
shared data vs. concurrent access via explicit communication

Fundamental design dimension: concurrent access via
shared data vs. concurrent access via explicit communication



Example: Active Objects

• A monitor with an associated server thread

– Exports an entry for each operation it provides

– Other (client) threads ‘call’ methods

– Call returns when operation is done

• All complexity bundled up in an active object

– Must manage mutual exclusion where needed

– Must queue requests from multiple threads

– May need to delay requests pending conditions
• E.g. if a producer wants to insert but buffer is full
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Observation: the code of exactly one thread, and the data that 
only it accesses, effectively experience mutual exclusion

Observation: the code of exactly one thread, and the data that 
only it accesses, effectively experience mutual exclusion



Producer-Consumer in Ada
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task-body ProducerConsumer is 
  ...
  loop 
    SELECT 
      when count < buffer-size
        ACCEPT insert(item) do
          // insert item into buffer
        end;
      count++; 
    or
      when count > 0
        ACCEPT consume(item) do
          // remove item from buffer
        end;
      count--;
    end SELECT
  end loop

task-body ProducerConsumer is 
  ...
  loop 
    SELECT 
      when count < buffer-size
        ACCEPT insert(item) do
          // insert item into buffer
        end;
      count++; 
    or
      when count > 0
        ACCEPT consume(item) do
          // remove item from buffer
        end;
      count--;
    end SELECT
  end loop

Non-deterministic choice 
between a set of 

guarded ACCEPT clauses

Clause is active only 
when condition is true

ACCEPT dequeues a 
client request and 

performs the operation

Single thread: no need 
for mutual exclusion



Message passing

• Dynamic invocations between threads can be thought of 
as general message passing
– Thread X can send a message to Thread Y

– Contents of message can be arbitrary data values

• Can be used to build Remote Procedure Call (RPC)
– Message includes name of operation to invoke along with as 

any parameters 

– Receiving thread checks operation name, and invokes the 
relevant code

– Return value(s) sent back as another message

• (Called Remote Method Invocation (RMI) in Java)

7

We will discuss message passing and RPC in detail 2nd half; a taster 
now, as these ideas apply to local, not just distributed, systems.
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Message passing semantics

• Can conceptually view sending a message to be similar to 
sending an email: 
1. Sender prepares contents locally, and then sends

2. System eventually delivers a copy to receiver

3. Receiver checks for messages

• In this model, sending is asynchronous:
–.Sender doesn’t need to wait for message delivery

–.(but they may, of course, choose to wait for a reply)

–.Bounded FIFO may ultimately apply sender back pressure

• Receiving is also asynchronous: 
–.messages first delivered to a mailbox, later retrieved

–.message is a copy of the data (i.e. no actual sharing)
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Synchronous Message Passing

• FSM view: both (all) participating FSMs execute the message passing primitive 
simultaneously.

• Send and receive operations must be part of edge guard (before the slash).
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Asynchronous Message Passing

• We will normally assume asynchronous unless obviously or 
explicitly otherwise.

• Send and receive operations in action part (after slash). 10



Message passing advantages

• Copy semantics avoid race conditions
– At least directly on the data

• Flexible API: e.g. 
– Batching: can send K messages before waiting; and can similarly 

batch a set of replies

– Scheduling: can choose when to receive, who to receive from, 
and which messages to prioritize

– Broadcast: can send messages to many recipients

• Works both within and between machines
– i.e. same design works for distributed systems

• Explicitly used as basis of some languages…
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Example: Occam
• Language based on Hoare’s Communicating Sequential Processes (CSP) formalism

– A projection of a process algebra into a real-world language

• No shared variables

• Processes synchronously communicate via channels
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<channel> ? <variable>    // an input process
<channel> ! <expression>  // an output process
<channel> ? <variable>    // an input process
<channel> ! <expression>  // an output process

• Build complex processes via SEQ, PAR and ALT, e.g.

ALT 
  count1 < 100 & c1 ? Data
    SEQ                      
      count1:= count1 + 1
      merged ! data 
  count2 < 100 & c2 ? Data
    SEQ
      count2:= count2 + 1
      merged ! data

ALT 
  count1 < 100 & c1 ? Data
    SEQ                      
      count1:= count1 + 1
      merged ! data 
  count2 < 100 & c2 ? Data
    SEQ
      count2:= count2 + 1
      merged ! data



Example: Erlang
• Functional programming language designed in mid 80’s, made popular 

more recently (especially in eternal systems such as telephone network).

• Implements the actor model

• Actors: lightweight language-level processes

– Can spawn() new processes very cheaply

• Single-assignment: each variable is assigned only once, and thereafter is 
immutable

– But values can be sent to other processes

• Guarded receives (as in Ada, occam)

– Messages delivered in order to local mailbox

• Message/actor-oriented model allows run-time restart or replacement of 
modules to  limit downtime
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Proponents of Erlang argue that lack of synchronous message 
passing prevents deadlock. Why might this claim be misleading?

Proponents of Erlang argue that lack of synchronous message 
passing prevents deadlock. Why might this claim be misleading?



Producer-Consumer in Erlang
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-module(producerconsumer).
-export([start/0]).

start() -> 
  spawn(fun() -> loop() end).

loop() ->  
  receive 
    {produce, item } ->
      enter_item(item), 
      loop(); 
    {consume, Pid } ->
      Pid ! remove_item(), 
      loop();
    stop ->
      ok
end.

-module(producerconsumer).
-export([start/0]).

start() -> 
  spawn(fun() -> loop() end).

loop() ->  
  receive 
    {produce, item } ->
      enter_item(item), 
      loop(); 
    {consume, Pid } ->
      Pid ! remove_item(), 
      loop();
    stop ->
      ok
end.

Invoking start() will 
spawn an actor…

receive matches 
messages to patterns

explicit tail-recursion is 
required to keep the 

actor alive…

… so if send ‘stop’, 
process will terminate.



Message passing: summary

• A way of sidestepping (at least some of) the issues with 
shared memory concurrency

– No direct access to data => no data race conditions

– Threads choose actions based on message

• Explicit message passing can be awkward

– Many weird and wonderful languages ;-)

• Can also use with traditional languages, e.g. 

– Transparent messaging via RPC/RMI

– Scala, Kilim (actors on Java, or for Java), …
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We have eliminated some of the issues associated with shared memory, but 
these are still concurrent programs subject to deadlock, livelock, etc.

We have eliminated some of the issues associated with shared memory, but 
these are still concurrent programs subject to deadlock, livelock, etc.



Composite operations

• So far have seen various ways to ensure safe concurrent access to 
a single object
– e.g. monitors, active objects, message passing

• More generally want to handle composite operations:
– i.e. build systems which act on multiple distinct objects

• As an example, imagine an internal bank system which allows 
account access via three method calls: 
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int amount = getBalance(account);
bool credit(account, amount);
bool debit(account, amount);

int amount = getBalance(account);
bool credit(account, amount);
bool debit(account, amount);

• If each is thread-safe, is this sufficient?

• Or are we going to get into trouble???



Composite operations

• Consider two concurrently executing client threads:
– One wishes to transfer 100 quid from the savings account to the 

current account 

– The other wishes to learn the combined balance
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// thread 1: transfer 100
// from savings->current
  debit(savings, 100); 
  credit(current, 100);

// thread 1: transfer 100
// from savings->current
  debit(savings, 100); 
  credit(current, 100);

// thread 2: check balance
  s = getBalance(savings);
  c = getBalance(current);
  tot = s + c;

// thread 2: check balance
  s = getBalance(savings);
  c = getBalance(current);
  tot = s + c;

• If we’re unlucky then:
– Thread 2 could see balance that’s too small

– Thread 1 could crash after doing debit() – ouch!

– Server thread could crash at any point – ouch?



Problems with composite operations 

Two separate kinds of problem here:

1. Insufficient Isolation
– Individual operations being atomic is not enough

– E.g., want the credit & debit making up the transfer to 
happen as one operation

– Could fix this particular example with a new transfer() 
method, but not very general ...

2. Fault Tolerance
– In the real-word, programs (or systems) can fail

– Need to make sure we can recover safely
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Transactions

• Want programmer to be able to specify that a set of operations should 
happen atomically, e.g. 
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// transfer amt from A -> B
transaction {
 if (getBalance(A) > amt) { 
    debit(A, amt); 
    credit(B, amt);
    return true; 
  } else return false;
}

// transfer amt from A -> B
transaction {
 if (getBalance(A) > amt) { 
    debit(A, amt); 
    credit(B, amt);
    return true; 
  } else return false;
}

• A transaction either executes correctly (in which case we say it 
commits), or has no effect at all (i.e. it aborts)

• regardless of other transactions, or system crashes!



ACID Properties
Want committed transactions to satisfy four properties:

• Atomicity: either all or none of the transaction’s operations are performed 

– Programmer doesn’t need to worry about clean up

• Consistency: a transaction transforms the system from one consistent 
state to another – i.e., preserves invariants

– Programmer must ensure e.g. conservation of money

• Isolation: each transaction executes [as if] isolated from the concurrent 
effects of others

– Can ignore concurrent transactions (or partial updates)

• Durability: the effects of committed transactions survive subsequent 
system failures

– If system reports success, must ensure this is recorded on disk
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This is a different use of the word “atomic” from previously; 
we will just have to live with that, unfortunately.

This is a different use of the word “atomic” from previously; 
we will just have to live with that, unfortunately.



ACID Properties

Can group these into two categories

1. Atomicity & Durability deal with making sure the system is safe 
even across failures

– (A) No partially complete txactions

– (D) Transactions previously reported as committed don’t disappear, 
even after a system crash

2. Consistency & Isolation ensure correct behavior even in the face 
of concurrency

– (C) Can always code as if invariants in place

– (I) Concurrently executing transactions are indivisible
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Isolation

• To ensure a transaction executes in isolation could just have a 
server-wide lock… simple!
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// transfer amt from A -> B
transaction {  // acquire server lock
 if (getBalance(A) > amt) { 
    debit(A, amt); 
    credit(B, amt);
    return true; 
  } else return false;
}              // release server lock

// transfer amt from A -> B
transaction {  // acquire server lock
 if (getBalance(A) > amt) { 
    debit(A, amt); 
    credit(B, amt);
    return true; 
  } else return false;
}              // release server lock

• But doesn’t allow any concurrency…

• And doesn’t handle mid-transaction failure
(e.g. what if we are unable to credit the amount to B?)



Isolation – Serialisability

• The idea of executing transactions serially (one after the other) 
is a useful model for the programmer:
– To improve performance, transaction systems execute many 

transactions concurrently

– But programmers must only observe behaviours consistent with a 
possible serial execution: serialisability

• Consider two transactions, T1 and T2
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T2 transaction {
  debit(S, 100); 
  credit(C, 100);
  return true;
}

T2 transaction {
  debit(S, 100); 
  credit(C, 100);
  return true;
}

• If assume individual operations are atomic, then there are six 
possible ways the operations can interleave…

T1 transaction {
  s = getBalance(S);
  c = getBalance(C);
  return (s + c);
}

T1 transaction {
  s = getBalance(S);
  c = getBalance(C);
  return (s + c);
}



Isolation – serialisability

• First case is a serial execution and hence serialisable

24

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

• Second case is not serial as transactions are interleaved
– Its results are identical to serially executing T2 and then T1

– The schedule is therefore serialisable

• Informally: it is serialisable because we have only swapped the 
execution orders of non-conflicting operations
– All of T1’s operations on any objects happen after T2’s update



Isolation – serialisability

• This execution is neither serial nor serialisable
– T1 sees inconsistent values: old S and new C
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T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

• This execution is also neither serial nor serialisable
– T1 sees inconsistent values: new S, old C

• Both orderings swap conflicting operations such that there is 
no matching serial execution



Conflict Serialisability

• There are many flavours of serialisability

• Conflict serialisability is satisfied for a schedule S if 
(and only if):
– It contains the same set of operations as some serial 

schedule T; and 

– All conflicting operations are ordered the same way as 
in T

• Define conflicting as non-commutative
– I.e., differences are permitted between the execution 

ordering and T, but they can’t have a visible impact
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History graphs

• Can construct a graph for any execution schedule:

– Nodes represent individual operations, and 

– Arrows represent “happens-before” relations 

• Insert edges between operations within a given transaction in 
program order (i.e., as written)

• Insert edges between conflicting operations operating on the 
same objects, ordered by execution schedule

– e.g. A.credit(), A.debit() commute [don’t conflict]

– A.credit() and A.addInterest() do conflict

• NB: Graphs represent particular execution schedules not sets 
of allowable schedules
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History graphs: good schedules

• Same schedules as before (both ok)

• Can easily see that everything in T1 either happens 
before everything in T2, or vice versa
– Hence schedule can be serialised
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T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

COMMITSTART

START COMMIT

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

COMMITSTART

START COMMIT



History graphs: bad schedules

• Cycles indicate that schedules are bad :-(

• Neither transaction strictly “happened before” the other:
– Arrows from T1 to T2 mean “T1 must happen before T2”

– But arrows from T2 to T1 => “T2 must happen before T1”

– Notice the cycle in the graph!

• Can’t both be true --- schedules are non-serialisable
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T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

COMMITSTART

START COMMIT

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

COMMITSTART

START COMMIT



Isolation – serialisability

• This execution is neither serial nor serialisable

– T1 sees inconsistent values: old S and new C
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T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

T1:

T2:

S.getBalance C.getBalance

S.debit C.credit

• This execution is also neither serial nor serialisable

– T1 sees inconsistent values: new S, old C

• Both orderings swap conflicting operations such that there is no matching serial execution

The transaction system must ensure that, regardless of any actual concurrent execution used to improve 
performance, only results consistent with serialisable orderings are visible to the transaction programmer. 

The transaction system must ensure that, regardless of any actual concurrent execution used to improve 
performance, only results consistent with serialisable orderings are visible to the transaction programmer. 

Same as earlier slide.



Summary + next time

• Concurrency without shared data (Active Objects)

• Message passing, actor model (Occam, Erlang)

• Composite operations; transactions; ACID properties

• Isolation and serialisability

• History graphs; good (and bad) schedules

• Next time – more on transactions:

– Isolation vs. strict isolation; enforcing isolation

– Two-phase locking; rollback

– Timestamp ordering (TSO); optimistic concurrency control (OCC)

– Isolation and concurrency summary
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