Exercise Problems 9-12: Information Theory

Exercise 9

Y and Z are two continuous random variables.

—X

Y has an exponential probability density distribution p(x) over x € [0,00]: p(x) =e

Note that o
/ e Tdxr = [—6_3”]80 =1.
0

Z has a uniform probability density distribution: p(z) =1/a for z € [0,¢a], else p(x) = 0.

Calculate the differential entropies h(Y') and h(Z) for these two continuous random variables, and
find the value of « for which these differential entropies are the same. Sketch these distributions.

Exercise 10

(a) What does it mean for a function to be “self-Fourier?” Name three functions which are
of importance in information theory and that have the self-Fourier property, and in each case
mention a topic or a theorem exploiting it.

(b) Show that the set of all Gabor wavelets is closed under convolution, i.e. that the convolution
of any two Gabor wavelets is just another Gabor wavelet. [HINT: This property relates to the
fact that these wavelets are also closed under multiplication, and that they are also self-Fourier.
You may address this question for just 1D wavelets if you wish.]

(¢) Show that the family of sinc functions used in the Nyquist Sampling Theorem,

sinc(x) = SIH)EA:E)
x

is closed under convolution. Show further that when two different sinc functions are convolved,
the result is simply whichever one of them had the lower frequency, i.e. the smaller A.



Exercise 11

(a) Animportant class of complex-valued functions for encoding informa-

tion with maximal resolution simultaneously in the frequency domain
and the signal domain are Gabor wavelets. Using an expression for

their functional form, explain:

1. their spiral helical trajectory as phasors, shown here with
projections of their real and imaginary parts;

2. the Uncertainty Principle under which they are optimal;

3. the spaces they occupy in the Information Diagram; 7(

4. some of their uses in pattern encoding and recognition. \'/ ‘l\‘/ T

(b) Explain why the real-part of a 2D Gabor wavelet has a 2D Fourier transform with two
peaks, not just one, as shown in the right panel of the Figure below.

2D Gabor Wavelet: Real Part
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Exercise 12

(a) Explain Logan’s Theorem about the richness of the zero-crossings in signals bandlimited
strictly to one octave, such as illustrated in the figure below. Name one intended application,
and at least one algorithmic difficulty, of Logan’s Theorem.
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Next, consider instead an amplitude-modulated signal such as f(t) = [1 + a(t)] ¢(t), where ¢(t)
is a pure sinusoidal carrier wave and its modulating function is anything [1 + a(¢)] > 0. What
does Logan’s Theorem say about the information contained in the zero-crossings of f(¢)?

(b) Compare and contrast the compression strategies deployed in the JPEG and JPEG-2000
protocols. Include these topics: the underlying transforms used; their computational efficiency
and ease of implementation; artefacts introduced in lossy mode; typical compression factors;
and their relative performance when used to achieve severe compression rates.

(¢) Define the Kolmogorov algorithmic complexity K of a string of data, and say whether or
not it is computable. What relationship is to be expected between the Kolmogorov complexity
K and the Shannon entropy H for a given set of data? Give a reasonable estimate of K for a
fractal, and explain why it is reasonable. Discuss the following concepts in Kolmogorov’s theory
of pattern complexity: how writing a program that generates a pattern is a way of compressing
it, and executing such a program decompresses it; Kolmogorov incompressibility, and patterns
that are their own shortest possible description.



