L11: Algebraic Path Problems with applications to Internet Routing

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk
Computer Laboratory
University of Cambridge, UK

Michaelmas Term, 2019

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ り९℃

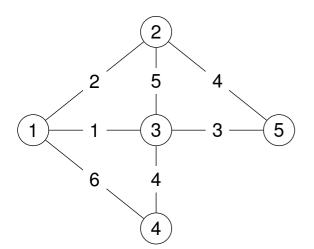
tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2017

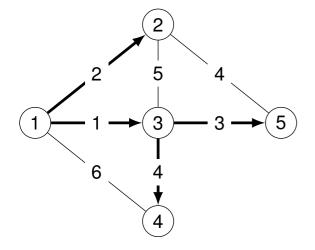
1 / 107

Shortest paths example, $sp = (\mathbb{N}^{\infty}, \min, +, \infty, 0)$



The adjacency matrix

Shortest paths solution



solves this global optimality problem:

$$\mathbf{A}^*(i, j) = \min_{\boldsymbol{p} \in \pi(i, j)} w(\boldsymbol{p}),$$

where $\pi(i, j)$ is the set of all paths from i to j.

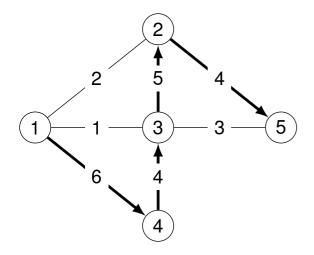
tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2017

3 / 107

Widest paths example, bw = $(\mathbb{N}^{\infty}, \text{ max}, \text{ min}, \mathbf{0}, \infty)$



$$\mathbf{A}^* = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & \infty & 4 & 4 & 6 & 4 \\ 2 & 4 & \infty & 5 & 4 & 4 \\ 4 & 5 & \infty & 4 & 4 \\ 6 & 4 & 4 & \infty & 4 \\ 5 & 4 & 4 & 4 & 4 & \infty \end{bmatrix}$$

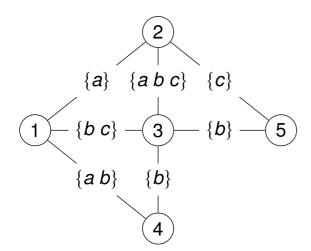
solves this global optimality problem:

$$\mathbf{A}^*(i, j) = \max_{\boldsymbol{p} \in \pi(i, j)} w(\boldsymbol{p}),$$

where w(p) is now the minimal edge weight in p.

◆□▶◆□▶◆■▶◆■▶ ■ かくぐ

Unfamiliar example, $(2^{\{a, b, c\}}, \cup, \cap, \{\}, \{a, b, c\})$



We want **A*** to solve this global optimality problem:

$$\mathbf{A}^*(i, j) = \bigcup_{\boldsymbol{p} \in \pi(i, j)} w(\boldsymbol{p}),$$

where w(p) is now the intersection of all edge weights in p.

For $x \in \{a, b, c\}$, interpret $x \in \mathbf{A}^*(i, j)$ to mean that there is at least one path from i to j with x in every arc weight along the path.

$$A^*(4, 1) = \{a, b\}$$
 $A^*(4, 5) = \{b\}$

◆ロ → ◆ 母 → ◆ 量 → ◆ 量 → り へ ⊙

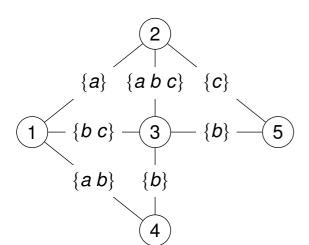
tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2017

5 / 107

Another unfamiliar example, $(2^{\{a, b, c\}}, \cap, \cup)$



We want matrix **R** to solve this global optimality problem:

$$\mathbf{A}^*(i, j) = \bigcap_{\boldsymbol{p} \in \pi(i, j)} \boldsymbol{w}(\boldsymbol{p}),$$

where w(p) is now the union of all edge weights in p.

For $x \in \{a, b, c\}$, interpret $x \in \mathbf{A}^*(i, j)$ to mean that every path from i to j has at least one arc with weight containing x.

$$A^*(4, 1) = \{b\}$$
 $A^*(4, 5) = \{b\}$ $A^*(5, 1) = \{\}$

Semirings (generalise $(\mathbb{R},+,\times,0,1)$)

name	S	\oplus ,	\otimes	0	1	possible routing use
sp	\mathcal{N}_{∞}	min	+	∞	0	minimum-weight routing
bw	M_{∞}	max	min	0	∞	greatest-capacity routing
rel	[0, 1]	max	×	0	1	most-reliable routing
use	$\{0, 1\}$	max	min	0	1	usable-path routing
	2^W	\cup	\cap	{}	W	shared link attributes?
	2 ^W	\cap	U	W	{}	shared path attributes?

A wee bit of notation!						
Symbol	Interpretation					
$\overline{\mathbb{N}}$	Natural numbers (starting with zero)					
M_{∞}	Natural numbers, plus infinity					
\overline{O}	Identity for ⊕					
1	Identity for ⊗					

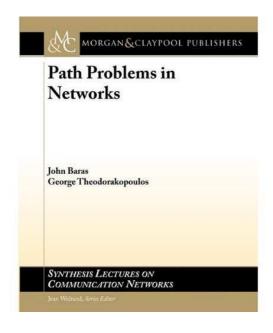
tgg22 (cl.cam.ac.uk)

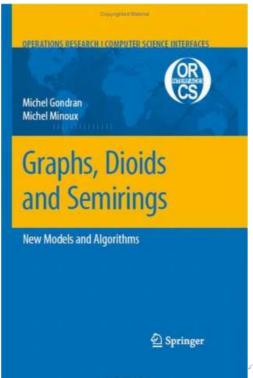
L11: Algebraic Path Problems with applica

T.G.Griffin©2017

7 / 107

Recommended (on reserve in CL library)





Semiring axioms ...

We will look at all of the axioms of semirings, but the most important are

distributivity

 $\mathbb{LD} : a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$ $\mathbb{RD} : (a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$

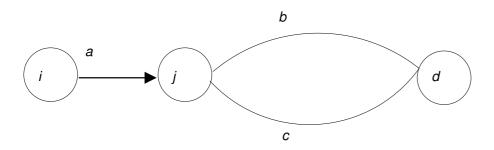
tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2017

9 / 107

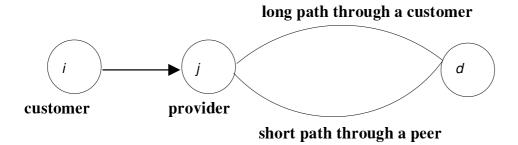
Distributivity, illustrated



$$a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$$

j makes the choice = i makes the choice

Should distributivity hold in Internet Routing?



- *j* prefers long path though one of its customers (not the shorter path through a competitor)
- given two routes from a provider, i prefers the one with a shorter path
- More on inter-domain routing in the Internet later in the term ...

|□▶◀♬▶◀불▶◀불▶ | 불 | 쒸९()

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

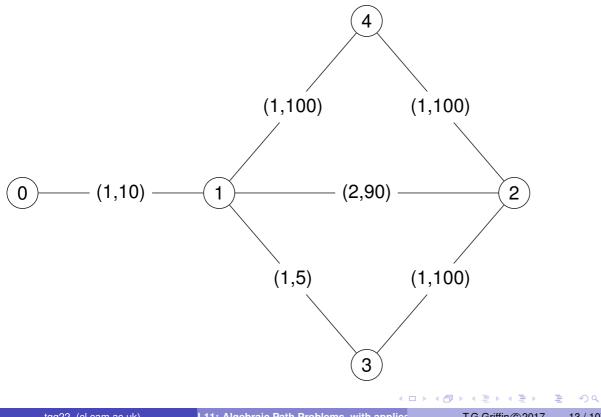
T.G.Griffin@2017

11 / 107

Widest shortest-paths

- Metric of the form (d, b), where d is distance $(\min, +)$ and b is capacity (\max, \min) .
- Metrics are compared lexicographically, with distance considered first.
- Such things are found in the vast literature on Quality-of-Service (QoS) metrics for Internet routing.

Widest shortest-paths



tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

Weights are globally optimal (we have a semiring)

Widest shortest-path weights computed by Dijkstra and Bellman-Ford

But what about the paths themselves?

Four optimal paths of weight (3, 10).

$$\begin{array}{lcl} \textbf{P}_{optimal}(0,2) & = & \{(0,1,2), \ (0,1,4,2)\} \\ \textbf{P}_{optimal}(2,0) & = & \{(2,1,0), \ (2,4,1,0)\} \end{array}$$

There are standard ways to extend Bellman-Ford and Dijkstra to compute paths (or the associated next hops).

Do these extended algorithms find all optimal paths?

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2017

15 / 107

Surprise!

Four **optimal** paths of weight (3, 10)

$$\begin{array}{lcl} \boldsymbol{P}_{optimal}(0,2) & = & \{(0,1,2), \ (0,1,4,2)\} \\ \boldsymbol{P}_{optimal}(2,0) & = & \{(2,1,0), \ (2,4,1,0)\} \end{array}$$

Paths computed by (extended) Dijkstra

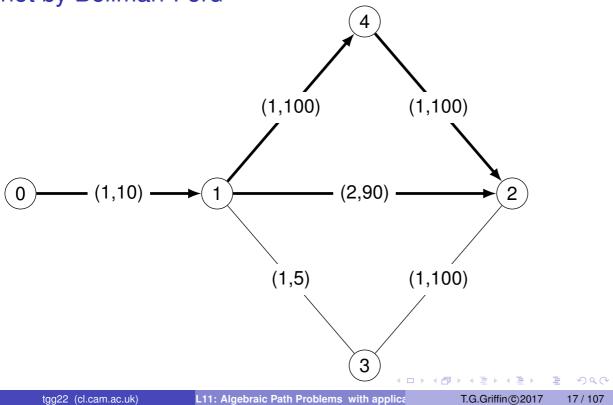
$$\begin{array}{lcl} \textbf{P}_{Dijkstra}(0,2) & = & \{(0,1,2), \ (0,1,4,2)\} \\ \textbf{P}_{Dijkstra}(2,0) & = & \{(2,4,1,0)\} \end{array}$$

Notice that 0's paths cannot both be implemented with next-hop forwarding since $\mathbf{P}_{Dijkstra}(1,2)=\{(1,4,2)\}.$

Paths computed by distributed Bellman-Ford

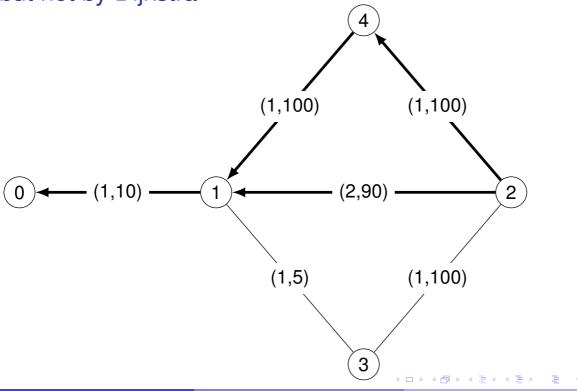
$$\begin{array}{lcl} \textbf{P}_{Bellman}(0,2) & = & \{(0,1,4,2)\} \\ \textbf{P}_{Bellman}(2,0) & = & \{(2,1,0), \ (2,4,1,0)\} \end{array}$$

Optimal paths from 0 to 2. Computed by Dijkstra but not by Bellman-Ford



T.G.Griffin@2017

Optimal paths from 2 to 1. Computed by Bellman-Ford but not by Dijkstra



How can we understand this (algebaically)?

The Algorithm to Algebra (A2A) method

$$\left(\begin{array}{c} \text{original metric} \\ + \\ \text{complex algorithm} \end{array}\right) \rightarrow \left(\begin{array}{c} \text{modified metric} \\ + \\ \text{matrix equations (generic algorithm)} \end{array}\right)$$

Preview

- We can add paths explicitly to the widest shortest-path semiring to obtain a new algebra.
- We will see that distributivity does not hold for this algebra.
- Why? We will see that it is because min is not cancellative! $(a \min b = a \min c \text{ does not imply that } b = c)$

|□▶◀♬▶◀불▶◀불▶ | 불 | 쒸९()

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2017

19 / 107

Towards a non-classical theory of algebraic path finding

We need theory that can accept algebras that violate distributivity.

Global optimality

$$\mathbf{A}^*(i, j) = \bigoplus_{\mathbf{p} \in \mathbf{P}(i, j)} \mathbf{w}(\mathbf{p}),$$

Left local optimality (distributed Bellman-Ford)

$$L = (A \otimes L) \oplus I$$
.

Right local optimality (Dijkstra's Algorithm)

$$\textbf{R} = (\textbf{R} \otimes \textbf{A}) \oplus \textbf{I}.$$

Embrace the fact that all three notions can be distinct.

Lectures 2, 3

- Semigroups
- A few important semigroup properties
- Semigroup and partial orders

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2017

21 / 107

Semigroups

Semigroup

A semigroup (S, \bullet) is a non-empty set S with a binary operation such that

AS associative
$$\equiv \forall a, b, c \in S, a \bullet (b \bullet c) = (a \bullet b) \bullet c$$

Important Assumption — We will ignore trival semigroups

We will impicitly assume that $2 \le |S|$.

Note

Many useful binary operations are not semigroup operations. For example, (\mathbb{R}, \bullet) , where $a \bullet b \equiv (a+b)/2$.

Some Important Semigroup Properties

A semigroup with an identity is called a monoid.

Note that

$$\mathbb{SL}(S, \bullet) \implies \mathbb{IP}(S, \bullet)$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2017

23 / 107

A few concrete semigroups

S	•	description	α	ω	$\mathbb{C}\mathbb{M}$	SL	\mathbb{IP}
S S S*	left	$x \operatorname{left} y = x$				*	*
S	right	x right $y = y$				*	*
S*	•	concatenation	ϵ				
\mathcal{S}^+	•	concatenation					
$\{t, f\}$	^	conjunction	t	f	*	*	*
$\{t, f\}$	V	disjunction	f	t	*	*	*
\mathbb{N}	min	minimum		0	*	*	*
N	max	maximum	0		*	*	*
2 ^W 2 ^W	\cup	union	{}	W	*		*
2 ^W	\cap	intersection	W	{}	*		*
$fin(2^U)$	\cup	union	{}		*		*
$fin(2^U)$	\cap	intersection		{}	*		*
N	+	addition	0		*		
\mathbb{N}	×	multiplication	1	0	*		

W a finite set, U an infinite set. For set Y, $fin(Y) \equiv \{X \in Y \mid X \text{ is finite}\}\$

A few abstract semigroups

S	•	description	α	ω	$\mathbb{C}\mathbb{M}$	SL	\mathbb{IP}
2^U	\supset	union	{}	U	*		*
2^U	\cap	intersection	U	{}	*		*
$2^{U \times U}$	\bowtie	relational join	$\mathcal{I}_{\mathcal{U}}$	{}			
$X \to X$	0	composition	$\lambda x.x$				

U an infinite set

$$X \bowtie Y \equiv \{(x, z) \in U \times U \mid \exists y \in U, (x, y) \in X \land (y, z) \in Y\}$$

 $\mathcal{I}_U \equiv \{(u, u) \mid u \in U\}$

subsemigroup

Suppose (S, \bullet) is a semigroup and $T \subseteq S$. If T is closed w.r.t \bullet (that is, $\forall x, y \in T, x \bullet y \in T$), then (T, \bullet) is a subsemigroup of S.



tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2017

25 / 107

Order Relations

We are interested in order relations $\leq \subseteq S \times S$

Definition (Important Order Properties)

 \mathbb{RX} reflexive $\equiv a \leqslant a$

TR transitive $\equiv a \leqslant b \land b \leqslant c \rightarrow a \leqslant c$

 \mathbb{AY} antisymmetric $\equiv a \leqslant b \land b \leqslant a \rightarrow a = b$

 \mathbb{TO} total $\equiv a \leqslant b \lor b \leqslant a$

	pre-order	•	preference order	total order
$\mathbb{R}\mathbb{X}$	*	*	*	*
\mathbb{TR}	*	*	*	*
$\mathbb{A}\mathbb{Y}$		*		*
$\mathbb{T}\mathbb{O}$			*	*

Canonical Pre-order of a Commutative Semigroup

Definition (Canonical pre-orders)

$$a \leq^R b \equiv \exists c \in S : b = a \cdot c$$

 $a \leq^L b \equiv \exists c \in S : a = b \cdot c$

Lemma (Sanity check)

Associativity of • implies that these relations are transitive.

Proof.

Note that $a \unlhd_{\bullet}^{R} b$ means $\exists c_{1} \in S : b = a \bullet c_{1}$, and $b \unlhd_{\bullet}^{R} c$ means $\exists c_{2} \in S : c = b \bullet c_{2}$. Letting $c_{3} = c_{1} \bullet c_{2}$ we have $c = b \bullet c_{2} = (a \bullet c_{1}) \bullet c_{2} = a \bullet (c_{1} \bullet c_{2}) = a \bullet c_{3}$. That is, $\exists c_{3} \in S : c = a \bullet c_{3}$, so $a \unlhd_{\bullet}^{R} c$. The proof for \unlhd_{\bullet}^{L} is similar.

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2017

27 / 107

Canonically Ordered Semigroup

Definition (Canonically Ordered Semigroup)

A commutative semigroup (S, \bullet) is canonically ordered when $a \unlhd_{\bullet}^R c$ and $a \unlhd_{\bullet}^L c$ are partial orders.

Definition (Groups)

A monoid is a group if for every $a \in S$ there exists a $a^{-1} \in S$ such that $a \bullet a^{-1} = a^{-1} \bullet a = \alpha$.

◆ロト ◆個ト ◆差ト ◆差ト 差 めへぐ

Canonically Ordered Semigroups vs. Groups

Lemma (THE BIG DIVIDE)

Only a trivial group is canonically ordered.

Proof.

If $a, b \in S$, then $a = \alpha \bullet a = (b \bullet b^{-1}) \bullet a = b \bullet (b^{-1} \bullet a) = b \bullet c$, for $c = b^{-1} \bullet a$, so $a \leq_{\bullet}^{L} b$. In a similar way, $b \leq_{\bullet}^{R} a$. Therefore a = b.

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

Natural Orders

Definition (Natural orders)

Let (S, \bullet) be a semigroup.

$$a \leq_{\bullet}^{L} b \equiv a = a \bullet b$$

$$a \leq^R b \equiv b = a \bullet b$$

Lemma

If • is commutative and idempotent, then $a \leq_{\bullet}^{D} b \iff a \leq_{\bullet}^{D} b$, for $D \in \{R, L\}.$

Proof.

$$a \leq^R_{\bullet} b \iff b = a \bullet c = (a \bullet a) \bullet c = a \bullet (a \bullet c)$$

$$= a \bullet b \iff a \leq^R_{\bullet} b$$

$$a \leq^L_{\bullet} b \iff a = b \bullet c = (b \bullet b) \bullet c = b \bullet (b \bullet c)$$

$$= b \bullet a = a \bullet b \iff a \leq^L_{\bullet} b$$

T.G.Griffin@2017

Special elements and natural orders

Lemma (Natural Bounds)

- If α exists, then for all a, $a \leq_{\bullet}^{L} \alpha$ and $\alpha \leq_{\bullet}^{R} a$
- If ω exists, then for all $a, \omega \leqslant^L_{\bullet} a$ and $a \leqslant^R_{\bullet} \omega$
- If α and ω exist, then S is bounded.

Remark (Thanks to Iljitsch van Beijnum)

Note that this means for (min, +) we have

$$\begin{array}{cccc}
0 & \leqslant_{\min}^{L} & a & \leqslant_{\min}^{L} & \infty \\
\infty & \leqslant_{\min}^{R} & a & \leqslant_{\min}^{R} & 0
\end{array}$$

and still say that this is bounded, even though one might argue with the terminology!

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2017

31 / 107

Examples of special elements

S	•	α	ω	$\leq^{\operatorname{L}}_{ullet}$	\leq^{R}_{ullet}
\mathcal{N}_{∞}	min	∞	0	\leq	>
$M_{-\infty}$	max	0	$-\infty$	≥	\leq
$\mathcal{P}(\mathbf{W})$	U	{}	W	\subseteq	\supseteq
$\mathcal{P}(\mathbf{W})$	\cap	W	{}	\supseteq	\subseteq

Property Management

Lemma

Let $D \in \{R, L\}$.

Proof.

- 2 $a \leq_{\bullet}^{L} b \wedge b \leq_{\bullet}^{L} a \iff a = a \bullet b \wedge b = b \bullet a \implies a = b$
- 3 $a \leq_{\bullet}^{L} b \land b \leq_{\bullet}^{L} c \iff a = a \bullet b \land b = b \bullet c \implies a = a \bullet (b \bullet c) = (a \bullet b) \bullet c = a \bullet c \implies a \leq_{\bullet}^{L} c$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2017

33 / 107

Bounds

Suppose (S, \leq) is a partially ordered set.

greatest lower bound

For $a, b \in S$, the element $c \in S$ is the greatest lower bound of a and b, written c = a glb b, if it is a lower bound ($c \le a$ and $c \le b$), and for every $d \in S$ with $d \le a$ and $d \le b$, we have $d \le c$.

least upper bound

For $a, b \in S$, the element $c \in S$ is the <u>least upper bound of a and b</u>, written c = a lub b, if it is an upper bound ($a \le c$ and $b \le c$), and for every $d \in S$ with $a \le d$ and $b \le d$, we have $c \le d$.

Semi-lattices

Suppose (S, \leq) is a partially ordered set.

meet-semilattice

S is a meet-semilattice if a glb b exists for each $a, b \in S$.

join-semilattice

S is a join-semilattice if a lub b exists for each $a, b \in S$.

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2017

35 / 107

Fun Facts

Fact 1

Suppose (S, \bullet) is a commutative and idempotent semigroup.

- (S, \leq^L) is a meet-semilattice with $a \text{ glb } b = a \bullet b$.
- (S, \leq^R_{\bullet}) is a join-semilattice with a lub $b = a \bullet b$.

Fact 2

Suppose (S, \leq) is a partially ordered set.

- If (S, \leq) is a meet-semilattice, then (S, glb) is a commutative and idempotent semigroup.
- If (S, \leq) is a join-semilattice, then (S, lub) is a commutative and idempotent semigroup.

That is, semi-lattices represent the same class of structures as commutative and idempotent semigroups.

Lecture 3

- Semirings
- Matrix semirings
- Shortest paths
- Minimax

| ロ ト 4 週 ト 4 夏 ト 4 夏 ト 9 Qで

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2017

37 / 107

Bi-semigroups and Pre-Semirings

(S, \oplus, \otimes) is a bi-semigroup when

- (S, \oplus) is a semigroup
- (S, \otimes) is a semigroup

(S, \oplus, \otimes) is a pre-semiring when

- (S, \oplus, \otimes) is a bi-semigroup
- is commutative

and left- and right-distributivity hold,

 $\mathbb{LD} : a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$ $\mathbb{RD} : (a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$

Semirings

$(S, \oplus, \otimes, \overline{0}, \overline{1})$ is a semiring when

- (S, \oplus, \otimes) is a pre-semiring
- $(S, \oplus, \overline{0})$ is a (commutative) monoid
- $(S, \otimes, \overline{1})$ is a monoid
- $\overline{0}$ is an annihilator for \otimes

□ ▶ ∢ ┛ ▶ ∢ ≧ ▶ ∢ ≧ ▶ ♀ ♀ ♥ ♀ (

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2017

9 / 107

Examples

Pre-semirings

Semirings

name	S	\oplus ,	\otimes	0	1
sp	N_{∞}	min	+	∞	0
bw	M_{∞}	max	min	0	∞

Note the sloppiness — the symbols +, max, and min in the two tables represent different functions....

How about (max, +)?

Pre-semiring

name	S	\oplus ,	\otimes	0	1
max_plus	N	max	+	0	0

• What about "0 is an annihilator for ⊗"? No!

Fix that ...

◆ロ → ◆昼 → ◆ き → り へ で

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2017

41 / 107

Matrix Semirings

- $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring
- Define the semiring of $n \times n$ -matrices over $S : (\mathbb{M}_n(S), \oplus, \otimes, \mathbf{J}, \mathbf{I})$

$\oplus \text{ and } \otimes$

$$(\mathbf{A} \oplus \mathbf{B})(i, j) = \mathbf{A}(i, j) \oplus \mathbf{B}(i, j)$$

$$(\mathbf{A} \otimes \mathbf{B})(i, j) = \bigoplus_{1 \leqslant q \leqslant n} \mathbf{A}(i, q) \otimes \mathbf{B}(q, j)$$

J and I

$$\mathbf{J}(i, j) = \overline{0}$$

$$\mathbf{I}(i, j) = \begin{cases} \overline{1} & (\text{if } i = j) \\ \overline{0} & (\text{otherwise}) \end{cases}$$

Associativity

$$\mathbf{A} \otimes (\mathbf{B} \otimes \mathbf{C}) = (\mathbf{A} \otimes \mathbf{B}) \otimes \mathbf{C}$$

$$(\mathbf{A} \otimes (\mathbf{B} \otimes \mathbf{C}))(i, j)$$

$$= \bigoplus_{1 \leqslant u \leqslant n} \mathbf{A}(i, u) \otimes (\mathbf{B} \otimes \mathbf{C})(u, j) \qquad (\text{def } \rightarrow)$$

$$= \bigoplus_{1 \leqslant u \leqslant n} \mathbf{A}(i, u) \otimes (\bigoplus_{1 \leqslant v \leqslant n} \mathbf{B}(u, v) \otimes \mathbf{C}(v, j)) \qquad (\text{def } \rightarrow)$$

$$= \bigoplus_{1 \leqslant u \leqslant n} \bigoplus_{1 \leqslant v \leqslant n} \mathbf{A}(i, u) \otimes (\mathbf{B}(u, v) \otimes \mathbf{C}(v, j)) \qquad (\mathbb{LD})$$

$$= \bigoplus_{1 \leqslant u \leqslant n} \bigoplus_{1 \leqslant v \leqslant n} (\mathbf{A}(i, u) \otimes \mathbf{B}(u, v)) \otimes \mathbf{C}(v, j) \qquad (\mathbb{AS}, \mathbb{CM})$$

$$= \bigoplus_{1 \leqslant v \leqslant n} \bigoplus_{1 \leqslant u \leqslant n} \mathbf{A}(i, u) \otimes \mathbf{B}(u, v)) \otimes \mathbf{C}(v, j) \qquad (\mathbb{RD})$$

$$= \bigoplus_{1 \leqslant v \leqslant n} (\mathbf{A} \otimes \mathbf{B})(i, v) \otimes \mathbf{C}(v, j) \qquad (\text{def } \leftarrow)$$

$$= ((\mathbf{A} \otimes \mathbf{B}) \otimes \mathbf{C})(i, j) \qquad (\text{def } \leftarrow)$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2017

43 / 107

Left Distributivity

$$\mathbf{A} \otimes (\mathbf{B} \oplus \mathbf{C}) = (\mathbf{A} \otimes \mathbf{B}) \oplus (\mathbf{A} \otimes \mathbf{C})$$

$$(\mathbf{A} \otimes (\mathbf{B} \oplus \mathbf{C}))(i, j)$$

$$= \bigoplus_{1 \leqslant q \leqslant n} \mathbf{A}(i, q) \otimes (\mathbf{B} \oplus \mathbf{C})(q, j) \qquad (\text{def} \rightarrow)$$

$$= \bigoplus_{1 \leqslant q \leqslant n} \mathbf{A}(i, q) \otimes (\mathbf{B}(q, j) \oplus \mathbf{C}(q, j)) \qquad (\text{def} \rightarrow)$$

$$= \bigoplus_{1 \leqslant q \leqslant n} (\mathbf{A}(i, q) \otimes \mathbf{B}(q, j)) \oplus (\mathbf{A}(i, q) \otimes \mathbf{C}(q, j)) \qquad (\mathbb{LD})$$

$$= (\bigoplus_{1 \leqslant q \leqslant n} \mathbf{A}(i, q) \otimes \mathbf{B}(q, j)) \oplus (\bigoplus_{1 \leqslant q \leqslant n} \mathbf{A}(i, q) \otimes \mathbf{C}(q, j)) \qquad (\mathbb{AS}, \mathbb{CM})$$

$$= ((\mathbf{A} \otimes \mathbf{B}) \oplus (\mathbf{A} \otimes \mathbf{C}))(i, j) \qquad (\text{def} \leftarrow)$$

Matrix encoding path problems

- $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring
- G = (V, E) a directed graph
- $w \in E \rightarrow S$ a weight function

Path weight

The weight of a path $p = i_1, i_2, i_3, \dots, i_k$ is

$$w(p) = w(i_1, i_2) \otimes w(i_2, i_3) \otimes \cdots \otimes w(i_{k-1}, i_k).$$

The empty path is given the weight $\overline{1}$.

Adjacency matrix A

$$\mathbf{A}(i, j) = \begin{cases} w(i, j) & \text{if } (i, j) \in E, \\ \overline{0} & \text{otherwise} \end{cases}$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2017

45 / 107

The general problem of finding globally optimal path weights

Given an adjacency matrix **A**, find **A*** such that for all $i, j \in V$

$$\mathbf{A}^*(i, j) = \bigoplus_{\mathbf{p} \in \pi(i, j)} \mathbf{w}(\mathbf{p})$$

where $\pi(i, j)$ represents the set of all paths from i to j.

How can we solve this problem?

Stability

• $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring

 $a \in S$, define powers a^k

$$a^0 = \overline{1}$$

 $a^{k+1} = a \otimes a^k$

Closure, a*

$$a^{(k)} = a^0 \oplus a^1 \oplus a^2 \oplus \cdots \oplus a^k$$

 $a^* = a^0 \oplus a^1 \oplus a^2 \oplus \cdots \oplus a^k \oplus \cdots$

Definition (q stability)

If there exists a q such that $a^{(q)} = a^{(q+1)}$, then a is q-stable. By induction: $\forall t, 0 \leq t, a^{(q+t)} = a^{(q)}$. Therefore, $a^* = a^{(q)}$.

◆□▶◆□▶◆■▶◆■▼ か900

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2017

47 / 107

Matrix methods

Matrix powers, **A**^k

$$\mathbf{A}^0 = \mathbf{I}$$

$$\mathbf{A}^{k+1} = \mathbf{A} \otimes \mathbf{A}^k$$

Closure, A*

$$\mathbf{A}^{(k)} = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^k$$

$$\mathbf{A}^* = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^k \oplus \cdots$$

Note: A* might not exist. Why?

Matrix methods can compute optimal path weights

- Let $\pi(i,j)$ be the set of paths from i to j.
- Let $\pi^k(i,j)$ be the set of paths from i to j with exactly k arcs.
- Let $\pi^{(k)}(i,j)$ be the set of paths from i to j with at most k arcs.

Theorem

$$(1) \quad \mathbf{A}^{k}(i, j) = \bigoplus w(p)$$

(2)
$$\mathbf{A}^{(k)}(i,j) = \bigoplus_{p \in \mathbb{N}} w(p)$$

(1)
$$\mathbf{A}^{k}(i, j) = \bigoplus_{\substack{p \in \pi^{k}(i, j) \\ p \in \pi^{(k)}(i, j)}} \mathbf{w}(p)$$
(2)
$$\mathbf{A}^{(k)}(i, j) = \bigoplus_{\substack{p \in \pi^{(k)}(i, j) \\ p \in \pi(i, j)}} \mathbf{w}(p)$$

Warning again: for some semirings the expression $\mathbf{A}^*(i, j)$ might not be well-defeind. Why?

L11: Algebraic Path Problems with applica

Proof of (1)

By induction on k. Base Case: k = 0.

$$\pi^{0}(i, i) = \{\epsilon\},\$$

so
$$\mathbf{A}^0(i,i) = \mathbf{I}(i,i) = \overline{1} = \mathbf{w}(\epsilon)$$
.

And $i \neq j$ implies $\pi^0(i,j) = \{\}$. By convention

$$\bigoplus_{\boldsymbol{p}\in\{\}}\boldsymbol{w}(\boldsymbol{p})=\overline{0}=\boldsymbol{I}(i,\,j).$$

Proof of (1)

Induction step.

$$\mathbf{A}^{k+1}(i,j) = (\mathbf{A} \otimes \mathbf{A}^k)(i,j)$$

$$= \bigoplus_{1 \leqslant q \leqslant n} \mathbf{A}(i,q) \otimes \mathbf{A}^k(q,j)$$

$$= \bigoplus_{1 \leqslant q \leqslant n} \mathbf{A}(i,q) \otimes (\bigoplus_{p \in \pi^k(q,j)} w(p))$$

$$= \bigoplus_{1 \leqslant q \leqslant n} \bigoplus_{p \in \pi^k(q,j)} \mathbf{A}(i,q) \otimes w(p)$$

$$= \bigoplus_{(i,q) \in E} \bigoplus_{p \in \pi^k(q,j)} w(i,q) \otimes w(p)$$

$$= \bigoplus_{p \in \pi^{k+1}(i,j)} w(p)$$

(ロ▶→昼▶→重▶ ● りへ○

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2017

51 / 107

Fun Facts

Fact 3

If $\overline{1}$ is an annihiltor for \oplus , then every $a \in S$ is 0-stable!

Fact 4

If *S* is 0-stable, then $\mathbb{M}_n(S)$ is (n-1)-stable. That is,

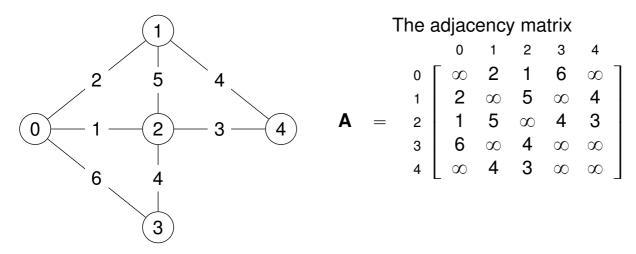
$$\mathbf{A}^* = \mathbf{A}^{(n-1)} = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^{n-1}$$

Why? Because we can ignore paths with loops.

$$(a \otimes c \otimes b) \oplus (a \otimes b) = a \otimes (\overline{1} \oplus c) \otimes b = a \otimes \overline{1} \otimes b = a \otimes b$$

Think of c as the weight of a loop in a path with weight $a \otimes b$.

Shortest paths example, $(\mathbb{N}^{\infty}, \min, +)$



Note that the longest shortest path is (1, 0, 2, 3) of length 3 and weight 7.

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2017

53 / 107

(min, +) example

Our theorem tells us that $\mathbf{A}^* = \mathbf{A}^{(n-1)} = \mathbf{A}^{(4)}$

$$\mathbf{A}^* = \mathbf{A}^{(4)} = \mathbf{I} \text{ min } \mathbf{A} \text{ min } \mathbf{A}^2 \text{ min } \mathbf{A}^3 \text{ min } \mathbf{A}^4 = \begin{bmatrix} 0 & 2 & 1 & 5 & 4 \\ 2 & 0 & 3 & 7 & 4 \\ 1 & 3 & 0 & 4 & 3 \\ 5 & 7 & 4 & 0 & 7 \\ 4 & 4 & 3 & 7 & 0 \end{bmatrix}$$

(min, +) example

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & \boxed{2} & \boxed{1} & 6 & \infty \\ \frac{2}{2} & \infty & 5 & \infty & \boxed{4} \\ \frac{1}{6} & 5 & \infty & \boxed{4} & \boxed{3} \\ 6 & \infty & \boxed{4} & \infty & \infty \end{bmatrix} \quad \mathbf{A}^3 = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & \boxed{1} & 2 & 3 & 4 \\ 0 & 4 & 3 & 8 & 10 \\ 4 & 8 & 7 & \boxed{7} & 6 \\ 3 & 7 & 8 & 6 & 5 \\ 8 & \boxed{7} & 6 & 11 & 10 \\ 10 & 6 & 5 & 10 & 12 \end{bmatrix}$$

$$\mathbf{A}^{2} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 2 & 6 & 7 & \frac{5}{2} & \frac{4}{4} \\ 6 & 4 & \frac{3}{2} & 8 & 8 \\ 7 & \frac{3}{2} & 2 & 7 & 9 \\ \frac{5}{4} & 8 & 9 & \frac{7}{7} & 6 \end{bmatrix} \qquad \mathbf{A}^{4} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 4 & 8 & 9 & 7 & 6 \\ 8 & 6 & 5 & 10 & 10 \\ 9 & 5 & 4 & 9 & 11 \\ 7 & 10 & 9 & 10 & 9 \\ 6 & 10 & 11 & 9 & 8 \end{bmatrix}$$

First appearance of final value is in red and <u>underlined</u>. Remember: we are looking at all paths of a given length, even those with cycles!

4□ ト 4 □ ト 4 亘 ト 4 亘 ト 9 Q ⊙

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2017

55 / 107

A vs A I

Lemma

If \oplus is idempotent, then

$$(\mathbf{A} \oplus \mathbf{I})^k = \mathbf{A}^{(k)}.$$

Proof. Base case: When k = 0 both expressions are **I**.

Assume $(\mathbf{A} \oplus \mathbf{I})^k = \mathbf{A}^{(k)}$. Then

$$(\mathbf{A} \oplus \mathbf{I})^{k+1} = (\mathbf{A} \oplus \mathbf{I})(\mathbf{A} \oplus \mathbf{I})^{k}$$

$$= (\mathbf{A} \oplus \mathbf{I})\mathbf{A}^{(k)}$$

$$= \mathbf{A}\mathbf{A}^{(k)} \oplus \mathbf{A}^{(k)}$$

$$= \mathbf{A}(\mathbf{I} \oplus \mathbf{A} \oplus \cdots \oplus \mathbf{A}^{k}) \oplus \mathbf{A}^{(k)}$$

$$= \mathbf{A} \oplus \mathbf{A}^{2} \oplus \cdots \oplus \mathbf{A}^{k+1} \oplus \mathbf{A}^{(k)}$$

$$= \mathbf{A}^{k+1} \oplus \mathbf{A}^{(k)}$$

$$= \mathbf{A}^{(k+1)}$$

back to (min, +) example

$$(\mathbf{A} \oplus \mathbf{I})^2 = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 & 4 \\ 2 & 0 & 3 & 8 & 4 \\ 1 & 3 & 0 & 4 & 3 \\ 5 & 8 & 4 & 0 & 7 \\ 4 & 4 & 3 & 7 & 0 \end{bmatrix}$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2017

57 / 107

Semigroup properties (so far)

$$\mathbb{AS}(S, \bullet) \equiv \forall a, b, c \in S, \ a \bullet (b \bullet c) = (a \bullet b) \bullet c$$

$$\mathbb{IID}(S, \bullet, \alpha) \equiv \forall a \in S, \ a = \alpha \bullet a = a \bullet \alpha$$

$$\mathbb{ID}(S, \bullet) \equiv \exists \alpha \in S, \ \mathbb{IID}(S, \bullet, \alpha)$$

$$\mathbb{IAN}(S, \bullet, \omega) \equiv \forall a \in S, \ \omega = \omega \bullet a = a \bullet \omega$$

$$\mathbb{AN}(S, \bullet) \equiv \exists \omega \in S, \ \mathbb{IAN}(S, \bullet, \omega)$$

$$\mathbb{CM}(S, \bullet) \equiv \forall a, b \in S, \ a \bullet b = b \bullet a$$

$$\mathbb{SL}(S, \bullet) \equiv \forall a, b \in S, \ a \bullet b \in \{a, b\}$$

$$\mathbb{IP}(S, \bullet) \equiv \forall a \in S, \ a \bullet a = a$$

$$\mathbb{IR}(S, \bullet) \equiv \forall s, t \in S, s \bullet t = t$$

$$\mathbb{IL}(S, \bullet) \equiv \forall s, t \in S, s \bullet t = s$$

Recall that <u>is right</u> (IR) and <u>is left</u> (IL) are forced on us by wanting an \Leftrightarrow -rule for $SL((S, \bullet) \times (T, \diamond))$

Bisemigroup properties (so far)

```
AAS(S, \oplus, \otimes) \equiv AS(S, \oplus)
  AID(S, \oplus, \otimes) \equiv ID(S, \oplus)
\mathbb{ACM}(S, \oplus, \otimes)
                                \equiv \mathbb{CM}(S, \oplus)
MAS(S, \oplus, \otimes)
                               \equiv \mathbb{AS}(S, \otimes)
 \mathbb{MID}(S, \oplus, \otimes)
                                \equiv \mathbb{ID}(S, \otimes)
   \mathbb{LD}(S, \oplus, \otimes)
   \mathbb{RD}(S, \oplus, \otimes)
                               \equiv \forall a, b, c \in S, (a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)
```

$$\mathbb{L}\mathbb{D}(\mathcal{S},\,\oplus,\,\otimes) \ \equiv \ \forall a,b,c\in\mathcal{S},\ a\otimes(b\oplus c)=(a\otimes b)\oplus(a\otimes c)$$

$$\mathbb{ZA}(S, \oplus, \otimes) \equiv \exists \overline{0} \in S, \ \mathbb{IID}(S, \oplus, \overline{0}) \land \mathbb{IAN}(S, \otimes, \overline{0})$$

$$\overline{\mathbb{OA}(S,\,\oplus,\,\otimes)} \ \equiv \ \exists \overline{1} \in S, \ \mathbb{IID}(S,\,\otimes,\,\overline{1}) \land \mathbb{IAN}(S,\,\oplus,\,\overline{1})$$

$$\begin{array}{cccc} \mathbb{ASL}(S,\,\oplus,\,\otimes) & \equiv & \mathbb{SL}(S,\,\oplus) \\ \mathbb{AIP}(S,\,\oplus,\,\otimes) & \equiv & \mathbb{IP}(S,\,\oplus) \end{array}$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

A Minimax Semiring

$$minimax \equiv (\mathbb{N}^{\infty}, min, max, \infty, 0)$$

$$17 \min \infty = 17$$

$$17 \max \infty = \infty$$

How can we interpret this?

$$\mathbf{A}^*(i, j) = \min_{\boldsymbol{p} \in \pi(i, j)} \max_{(\boldsymbol{u}, \boldsymbol{v}) \in \boldsymbol{p}} \mathbf{A}(\boldsymbol{u}, \ \boldsymbol{v}),$$

One possible interpretation of Minimax

- Given an adjacency matrix **A** over minimax,
- suppose that $\mathbf{A}(i, j) = 0 \Leftrightarrow i = j$,
- suppose that **A** is symmetric ($\mathbf{A}(i, j) = \mathbf{A}(j, i)$,
- interpret $\mathbf{A}(i, j)$ as measured dissimilarity of i and j,
- interpret $\mathbf{A}^*(i, j)$ as <u>inferred</u> dissimilarity of i and j,

Many uses

- Hierarchical clustering of large data sets
- Classification in Machine Learning
- Computational phylogenetics
- ...

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕久(

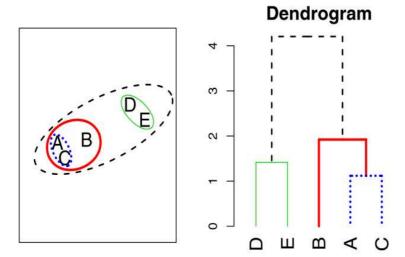
tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2017

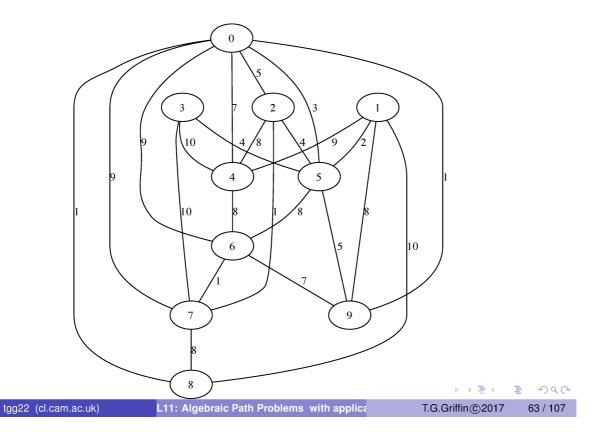
1 / 107

Dendrograms

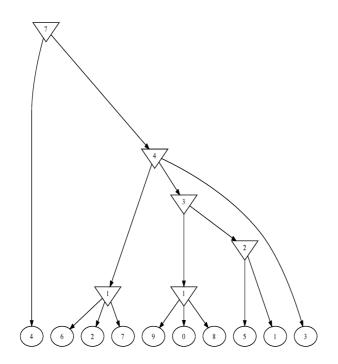


from Hierarchical Clustering With Prototypes via Minimax Linkage, Bien and Tibshirani, 2011.

A minimax graph



The solution A* drawn as a dendrogram



Hierarchical clustering? Why?

Suppose $(Y, \leq, +)$ is a totally ordered with least element 0.

Metric

A <u>metric</u> for set X over $(Y, \leq, +)$ is a function $d \in X \times X \rightarrow Y$ such that

- $\forall x, y \in X, \ d(x, y) = 0 \Leftrightarrow x = y$
- \bullet $\forall x, y \in X, d(x, y) = d(y, x)$

Ultrametric

An <u>ultrametric</u> for set X over (Y, \leq) is a function $d \in X \times X \to Y$ such that

- $\forall x \in X, \ d(x, \ x) = 0$
- $\bullet \ \forall x,y \in X, \ d(x,y) = d(y,x)$
- $\forall x, y, z \in X$, $d(x, y) \leq d(x, z) \max d(z, y)$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2017

65 / 107

Fun Facts

Fact 5

If **A** is an $n \times n$ symmetric minimax adjacency matrix, then **A*** is a finite ultrametric for $\{0, 1, \ldots, n-1\}$ over $(\mathbb{N}^{\infty}, \leq)$).

Fact 6

Suppose each arc weight is unique. Then the set of arcs

$$\{(i, j) \in E \mid \mathbf{A}(i, j) = \mathbf{A}^*(i, j)\}$$

is a minimum spanning tree.

A spanning tree derived from \boldsymbol{A} and \boldsymbol{A}^*

