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Shortest paths example, sp = (N*, min, +, 00, 0)
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Shortest paths solution

Hq?,% N
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solves this global optimality
problem:

A*(i, j) = min_w(p),

pex (i, J)

where 7 (i, j) is the set of all paths
from / to j.

Widest paths example, bw = (N*, max, min, 0, o)

11*3\@
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solves this global optimality
problem:
A*(i, j) = max w(p),
pem(i, J)
where w(p) is now the minimal
edge weight in p.
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Unfamiliar example, (222 ¢ U, ~ {}, {a, b, c})

We want A* to solve this global
optimality problem:

e tabej id) A= | wi).
<:E{bc}%i>—{b}>:> e
where w(p) is now the intersection
{ab} {b} of all edge weights in p.

®

For x € {a, b, c}, interpret x € A*(i, j) to mean that there is at least
one path from /i to j with x in every arc weight along the path. J

A*(4,1)={a, b} A*(4, 5) = {b}
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Another unfamiliar example, (212 ¢t~ )

We want matrix R to solve this
global optimality problem:

e} tabel i) A )= () wip)
<:g{bcwi>—{b}>:> e
where w(p) is now the union of all
{ab} {b} edge weights in p.

Ro

For x € {a, b, c}, interpret x e A*(i, j) to mean that every path from i
to j has at least one arc with weight containing x. J

A*(4,1) ={b} A*(4, 5 ={b} A*(5 1)={}
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Semirings (generalise (R, +, x,0,1))

possible routing use
minimum-weight routing
greatest-capacity routing
most-reliable routing
usable-path routing
shared link attributes?
shared path attributes?

name S @, ®
sp N* min  +
bw N®  max min
rel [0, 1] max x

use {0, 1} max min
2W

U M

S o o o 8| o
=S = = 8 o =

ow 8 U

A wee bit of notation!

Symbol Interpretation

Natural numbers (starting with zero)
Natural numbers, plus infinity
|dentity for @

|dentity for ®

—~lolZ Z
8

v
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Semiring axioms ...

We will look at all of the axioms of semirings, but the most important
are

distributivity
LD : a®((bdc) = (a®b) @ (a®c)
RD : (a®b)®c = (a®c)@® (b®c)
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Distributivity, illustrated
b
a
ol (0
c

aR(bdc) = (a®@b)d(a®c)

Jj makes the choice = 7 makes the choice
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Should distributivity hold in Internet Routing?

long path through a customer

(O— ©

customer provider
short path through a peer

@ j prefers long path though one of its customers (not the shorter
path through a competitor)

@ given two routes from a provider, i prefers the one with a shorter
path

@ More on inter-domain routing in the Internet later in the term ...
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Widest shortest-paths

@ Metric of the form (d, b), where d is distance (min, +) and b is
capacity (max, min).

@ Metrics are compared lexicographically, with distance considered
first.

@ Such things are found in the vast literature on Quality-of-Service
(QoS) metrics for Internet routing.
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Widest shortest-paths

(1,100) (1,100)

(0)—(1,10) /1\/ (2,90)

N

1,5) (1,100)
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Weights are globally optimal (we have a semiring)

Widest shortest-path weights computed by Dijkstra and
Bellman-Ford

0 1 2 3 4
(0,00) (1,10) (3,10) (2,5) (2,10) ]
(1,10) (0,0) (2,100) (1,5) (1,100)
(2,100) (0,%0) (1,100) (1,100)
(2,5) (1,5) (1,100) (0,%0) (2,100)
(2,10) (1,100) (1,100) (2,100) (0, o)

s
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But what about the paths themselves?

Four optimal paths of weight (3, 10).
Poptimal(oa 2) = {(07 1 ) 2)7 (07 1 ) 47 2)}
Poptimal(za 0) = {(27 1 ) 0)7 (2a 4’ 1 ) 0)}

There are standard ways to extend Bellman-Ford and Dijkstra to
compute paths (or the associated next hops).

Do these extended algorithms find all optimal paths? J
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Surprise!

Four optimal paths of weight (3, 10)

Poptimal(oa 2) = {(07 1 ’ 2)7 ( s 1y

0,1,4,2)}
Poptimal(za 0) = {(25 1 ) 0)7 (27 47 1

2
,0)}

Paths computed by (extended) Dijkstra

PDijkstra(072) = {(07172)a (0717472)}
Ppijkstra(2,0) = {(2,4,1,0)}

Notice that 0’s paths cannot both be implemented with next-hop
forwarding since Ppjjksira(1,2) = {(1,4,2)}.
Paths computed by distributed Bellman-Ford

PBellman(07 2) = {(07 1 ) 47 2)}
PBellman(za O) = {(27 1 y 0)7 (27 47 1 3 O)}
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Optimal paths from 0 to 2. Computed by Dijkstra but
not by Bellman-Ford
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Optimal paths from 2 to 1. Computed by Bellman-Ford

but not by Dijkstra f

(1 100) (1,100)

(1,10) 4% (2,90)
(1,100)
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How can we understand this (algebaically)?

The Algorithm to Algebra (A2A) method

original metric modified metric
+ — +
complex algorithm matrix equations (generic algorithm)
Preview

@ We can add paths explicitly to the widest shortest-path semiring to
obtain a new algebra.

@ We will see that distributivity does not hold for this algebra.

@ Why? We will see that it is because min is not cancellative!
(amin b = amin ¢ does not imply that b = ¢)

v
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Towards a non-classical theory of algebraic path
finding
We need theory that can accept algebras that violate distributivity.

Global optimality
A*(i, )= @D w(p)

peP (i, j)

Left local optimality (distributed Bellman-Ford)
L= (A®L)a®l

Right local optimality (Dijkstra’s Algorithm)
R=(R®A Ll

Embrace the fact that all three notions can be distinct.
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Lectures 2, 3

@ Semigroups
@ A few important semigroup properties
@ Semigroup and partial orders
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Semigroups

Semigroup

A semigroup (S, e) is a non-empty set S with a binary operation such
that

AS associative = Va,b,ce S, ae(bec)=(aeb)ec

Important Assumption — We will ignore trival semigroups
We will impicitly assume that 2 <| S |.

Note

Many useful binary operations are not semigroup operations. For
example, (R, o), where ae b= (a+ b)/2.
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Some Important Semigroup Properties

D identity = dJae S, Vae S a=aea=aec
AN annihilator = Jwe S, VaeS w=wea=aeuw
CM commutative = Va,be S, aeb=Dbea

SL selective = Vabe S, aebe{a, b}

I[P idempotent = Vae S, aea=a

A semigroup with an identity is called a monoid.
Note that
SL(S, ¢) = IP(S, e)
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A few concrete semigroups
S ) description | @ | w | CM | SL | IP
S left xlefty = x
S right | xrighty =y
S* .| concatenation | €
STt concatenation
{t, f} A conjunction t | f * x|
{t, f} v disjunction flt | ~ | « | %
N min minimum 0 * x | *
N max maximum 0 * * |
2w U union 1w/l * *
W n | intersection | W | {} | « *
fin(2Y) | U union {} * *
fin(2Y) | ~ | intersection ] * *
N + addition 0 *
N X multiplication | 1 | O | «

W a finite set, U an infinite set. Forset Y, fin(Y) = {X € Y | X is finite}

tgg22 (cl.cam.ac.uk)
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A few abstract semigroups

S e | description w |CM | SL | TP
2V | U union by U
2V | ~ | intersection | U | {}

2UxU | 1 | relational join | Zy | {}

X — X | o | composition | A\x.x

U an infinite set
XXY={(x,2)eUxU|3yelU, (x,y) e XA (y, 2)e Y}
Iy ={(u, u)|ue U}

subsemigroup

Suppose (S, o) isasemigroupand T < S. If T is closed w.r.t e (that
is,Vx,ye T,xeye T), then (T, e)is asubsemigroup of S.

tgg22 (cl.cam.ac.uk)
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Order Relations

We are interested in order relations << Sx S
Definition (Important Order Properties
RX
TR

reflexive = a< a

transitve = a<bab<c—oa<c

AY antisymmetric

as<barb<a—a=>hb

TO total = a<bvb<a
partial preference total
pre-order order order order
RX * * * *
TR * * * *
AY * *
TO * *

tgg22 (cl.cam.ac.uk)
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Canonical Pre-order of a Commutative Semigroup

Definition (Canonical pre-orders)
a<d’b = 3ceS:b=aec
a<dtpb = 3ceS:a=bec

Lemma (Sanity check)
Associativity of e implies that these relations are transitive.

Proof.

Note that a <f b means 3c; € S: b = ae ¢y, and b <F ¢ means

dco € S: ¢ = be . Letting ¢35 = ¢4 e o we have
C=beco=(aeci)ecor=ae(CieCy) =aecs. Thatis,

Jes e S:c = aecs, so a<dffc. The proof for <t is similar. O
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Canonically Ordered Semigroup

Definition (Canonically Ordered Semigroup)

A commutative semigroup (S, ) is canonically ordered when a <ff ¢
and a <! c are partial orders.

Definition (Groups)

A monoid is a group if for every a e S there exists a a~! € S such that
aea '=alea=a.
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Canonically Ordered Semigroups vs. Groups

Lemma (THE BIG DIVIDE)
Only a trivial group is canonically ordered.

Proof.

Ifa, be S,thena=ca,ea=(beb ')ea=be(b~'ea)=Dbec,for
c=b1ea soa<kb. Inasimilar way, b <7 a. Thereforea=b. [

v
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Natural Orders
Definition (Natural orders)
Let (S, o) be a semigroup.

I
WV
I
L
[ ]
o

L
a<gb

a<bfib

ll
(o)
I
QD
[ ]
(o)

Lemma

If o is commutative and idempotent, then a<P b — a <P b, for
De {R, L}.

Proof.

a<dllb — b=aec=(aea)ec=ae(aec)
— aeb < a<Pb

a<tb <« a=bec=(beb)ec=Dbe(bec)
= bea=aeb <= a<tb

'_|
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Special elements and natural orders
Lemma (Natural Bounds)
@ Ifa exists, then forall a, a <t o and o <F a
o Ifw exists, then for all a, w <t aand a <F w
@ Ifa and w exist, then S is bounded.

w <t a <t a
aé?aéf"w

Remark (Thanks to lljitsch van Beijnum)
Note that this means for (min, +) we have

L L
0 <rﬁin a <arin 0 0]
e <min a <min 0

and still say that this is bounded, even though one might argue with the
terminology!

v
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Examples of special elements

S ) a| w [<<B
N*® |min|ow | O < | =
N~ |max | 0 | —0o| > | <
PW)| v [ {}| W ]| < |2
PW)| n |[W]| {} | 2| <
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Property Management

Lemma

LetDe {R, L}.

@ IP(S, o) — RX(S, <P)

@ CM(S, o) — AY(S, <P)

@ AS(S, o) — TR(S, <P)

Q CM(S, o) — (SL(S, o) «— TO(S, <P))

Proof.
Qo aS.Da <= a=aea,
Q@ a<tbrab<stla < a=aebrb=bea = a=0>b

Q a<itbab<slc «— a=aebrb=bec — a=ae(bec)=
(aeb)ec=aec — a<lc

Q a=—aebvb=aeb — a<tbvb<la

O

v
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Bounds

Suppose (S, <) is a partially ordered set.

greatest lower bound

For a, b e S, the element c € S is the greatest lower bound of a and b,
written ¢ = a glb b, if it is a lower bound (¢ < aand ¢ < b), and for
every d e Swith d < aand d < b, we have d < c.

least upper bound

For a, b e S, the element ¢ € S is the least upper bound of a and b,
written ¢ = alub b, if it is an upper bound (a < cand b < ¢), and for
every d e Swith a< dand b < d, we have ¢ < d.
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Semi-lattices

Suppose (S, <) is a partially ordered set.

meet-semilattice
S is a meet-semilattice if a glb b exists for each a, b e S.

join-semilattice
S is a join-semilattice if a lub b exists for each a, be S.
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Fun Facts

Fact 1

Suppose (S, e) is a commutative and idempotent semigroup.
@ (S, <b)is a meet-semilattice with aglb b = a e b.
@ (S, <F)is ajoin-semilattice with alub b = a e b.

Fact 2
Suppose (S, <) is a partially ordered set.

@ If (S, <) is a meet-semilattice, then (S, glb) is a commutative and
idempotent semigroup.

@ If (S, <) is a join-semilattice, then (S, lub) is a commutative and
idempotent semigroup.

That is, semi-lattices represent the same class of structures as
commutative and idempotent semigroups.
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Lecture 3

@ Semirings

@ Matrix semirings
@ Shortest paths
@ Minimax
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Bi-semigroups and Pre-Semirings
(S, ®, ®) is a bi-semigroup when
@ (S, @) is a semigroup
@ (S, ®) is a semigroup
(S, ®, ®) is a pre-semiring when
@ (S, @, ®) is abi-semigroup
@ @ is commutative
and left- and right-distributivity hold,
LD : a®(bdc) = (a®b) @ (a®c)
RD : (a®db)®c = (a®c)@®(b®c)
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Semirings

(S, ®, ®, 0, 1) is a semiring when
@ (S, @, ®) is apre-semiring
@ (S, @, 0) is a (commutative) monoid
@ (S, ®, 1) is a monoid
@ 0 is an annihilator for ®

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice

Examples

Pre-semirings

name S ® ® 0 1
min_plus N min + 0

max min N max min O

Semirings
name S @ ® 0 1
sp N mn + o 0
bw N*® max min 0 o

Note the sloppiness — the symbols +, max, and min in the two tables
represent different functions....
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How about (max, +)?

Pre-semiring
name S & ® 0
max_plus N max + O

7
0

@ What about “0 is an annihilator for ®”? No!

Fix that ...
name S ® ® 0 1
max_plus™® Nw{—ow} max + - 0
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Matrix Semirings

® (S, ® ®, 0, 1)asemiring
@ Define the semiring of n x n-matrices over S: (M,(S), @, ®, J, I)

@ and ®
1<g<n
J and |
Ji,j) = 0

1 (ifi=}))

0 (otherwise)

v
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Associativity

AR (B®C)=(A®B)®C ]
(A2 (B®C))(, )
- @ Al W BRC)U ) (def )
- DAl e @ B VeV, ) (def )
- @ @ Al ueBU eCwy. ) L)
- D @Al weBW, v)EC, j) (48,Cu)
- B (@ Al weBw, vecy, j) @D)
- B ReB)i vecy, ) (def )
- (A®B)®C)i. ) (def <)
Left Distributivity
AR (B®C)=(A®B)® (A®C) J
(A% (B®C))(, )
- @ Al, 9©BaC)q, )) (def —)
= 1<£nA(i, q) ® (B(q, j)®C(q. ))) (def —)
~ 1<é@(A(i, q) ®B(q, j)) ® (Ali, 9 ®C(q, j)) (LD)
_ (D Al 9oB@ )o@ Al 9oC(@ ) (AS.CH)
_ (AeB)e@ASC)) (def )
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Matrix encoding path problems

° (S, ® ®, 0, 1)asemiring
@ G = (V, E) adirected graph
@ w e E — S aweight function

Path weight
The weight of a path p = i, io, i3, - -+ , ik IS
w(p) = w(ir, b) @ W(iz, 3) ® - @ W(ik_1, Ik)-

The empty path is given the weight 1.

Adjacency matrix A

w(i, j) (i, j)eE,

0 otherwise

v
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The general problem of finding globally optimal path
weights

Given an adjacency matrix A, find A* such that forall /i, je V

A“(i, )= D wip)

pem (i, )

where 7 (i, j) represents the set of all paths from i/ to j.

How can we solve this problem?
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Stability
® (S, @, ®, 0, 1)asemiring

ae S, define powers &

Q
o
I
—

Closure, a*

ak = Popaleae. - ¢ a
at = @ da odfo

Definition (g stability)

If there exists a g such that al@ = a(@+"), then ais g-stable. By
induction: Vt,0 < t, al9t) = (@ Therefore, a* = a(9.
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Matrix methods
Matrix powers, A

A — |
Ak+1 - A ® Ak
Closure, A*
A — ToA'aA2D .- - AKX
A* = IoA'OA2 - -AfD--.

Note: A* might not exist. Why?
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Matrix methods can compute optimal path weights

@ Let (i, /) be the set of paths from i to j.
@ Let 7*(i, ) be the set of paths from i to j with exactly k arcs.
o Let 79 (i, j) be the set of paths from i to j with at most k arcs.

Theorem

(1) A%, j) = @ wp)
pemk (i, j)

2 AWG, ) = D wp)
per &) (i, j)

38) A*(i,)) = @D w(p
pe (i, J)

Warning again: for some semirings the expression A*(i, j) might not
be well-defeind. Why?
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Proof of (1)

By induction on k. Base Case: k = 0.

O (i, i) = {e},
so A%(i i) = 1(i, i) = T = w(e).

And i = jimplies 7°(i, ) = {}. By convention

D w(p) =0 =1(i. j).

pe{}
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Proof of (1)

Induction step.
AT j) = (A@ARN)(, j)

= @ A(. q)®AXq, )

1<g<n
= @D Al,9a( @ wp)
1<q<n penk(q, j)

= @ @ Al 9ewp

1<q<n perk(q, j)

= @ D wi, 9ewp)

(i, Q)€E pemk(q.))

= @ wp)

perk+1(i, j)
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Fun Facts

Fact 3
If 1 is an annihiltor for @, then every a e S is 0-stable!

Fact 4
If Sis O-stable, then M,(S) is (n— 1)-stable. That is,

A*ZA(n_1)=I®A1@A2@--'@An_1

Why? Because we can ignore paths with loops.
(a®c®b)®(a®b)=a®(1®c)®b=a®1®b=a®b

Think of ¢ as the weight of a loop in a path with weight a® b.
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Shortest paths example, (N, min, +)

The adjacency matrix
0o 1 2 3 4
) 5 4 o[ oo 2 1 6 oo |
A\ 1 2 oo 5 o 4
\T/ 3 6 o 4 o
G\é 41 o0 4 3 o o |
Note that the longest shortest path is (1, 0, 2, 3) of length 3 and
weight 7.
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(min, +) example
Our theorem tells us that A* = A("-1) = A(4)
0 1 2 3 4
ol 0 2 1 5 4 ]
112 0 3 7 4
A* =A@ — I min A mn A2mnA3mnA*=2|1 3 0 4 3
3| 57 4 0 7
404 4 3 7 0 |
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(min, +) example

o0 1 2 3 4 0 1 2 3 4
o[ @ 2 1 6 o | o[ 8 4 3 8 10 |
1 2 o 5 o 4 1 4 8 7 7 6
A = 2|1 5 o 4 3 Al = 2 3 7 8 6 5
3 6 o 4 ow o 3 8 7 6 11 10
4] o 4 3 o w 41 10 6 5 10 12 |
0 1 2 3 4 0o 1 2 3 4
o[ 2 6 7 5 4] o[ 4 8 9 7 6 |
1|16 4 3 8 8 1|18 6 5 10 10
A2 = 2|7 3 2 79 A* = 219 5 4 9 11
3| 5 8 7 8 7 3| 7 10 9 10 9
41 4 8 9 7 6 416 10 11 9 8 |

First appearance of final value is in red and underlined. Remember:
we are looking at all paths of a given length, even those with cycles!
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Avs Al

Lemma
If @ is idempotent, then

(A )k = Ak,

Proof. Base case: When k = 0 both expressions are |.
Assume (A@ ¥ = A Then

(AT = (A@h(A@l
— (A@DhAW
= AAK @ AK)
- A(|@A@...@Ak)@A(k)
- AQA2®. .- @ AT AK
_ Ak—|—1 @A(k)
_ A(k+1)
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back to (min, +) example

0 1 2 3 4 0o 1 2 3 4
o[ 0 2 1 6 o] o[ 0 2 15 4
1 2 0 5 o 4 112 0 3 7 4
Ael!' = 2|1 5 0 4 3A®D® = 2|13 0 4 3
3] 6 © 4 0 o 3| 95 7 4 0 7
s 0 4 3 o 0 | s 44370
0o 1 2 3 4
o[ 0 2 1 5 4]
112 0 3 8 4
A2 = 2|1 30 4 3
35 8 40 7
4| 4 4370
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Semigroup properties (so far)

AS(S, o) = Va,b,ce S, ae(bec)=(aeb)ec
[ID(S, o, @) = Vae S, a=aea=ae«

ID(S, o) = Jae S, IID(S, o, a)
TAN(S, o, w) = VaeS, w=wea=aew

AN(S, o) = Jwe S, TAN(S, o, w)

CM(S, o) = Va,be S, aeb=>bea

SL(S, o) = Va,be S, aebe{a, b}

[P(S, ) = Vae S, aea=a

IR(S, o) = Vs, teS,set=t

IL(S, ) = Vs, teS,set=s

Recall that is right (IR) and is left (IL) are forced on us by wanting an
<-rule for SL((S,e) x (T,¢))
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Bisemigroup properties (so far)

AAS(S, @, ®) = AS(S, @)
AID(S, @, ®) = ID(S, @)
ACM(S, @, ® = CM(S, @)
MAS(S, @, ®) = AS(S, ®)
MID(S, @, ® = ID(S, ®)
LD(S, &, ® = Vab,ceS, ap(bdc)=(a®b)®(a®c)
RD(S, ®, ® = Vab,ceS, (a®db)®c=(a®c)®d (b c)
ZA(S, ®, ®) = 30e S, IID(S, @, 0) A IAN(S, ®, 0)
0A(S, @, ® = 3I1e S IID(S, ®, 1) AIAN(S, @, 1)
ASL(S, &, ® = SL(S, @)
AIP(S, @, ®) = IP(S, @)
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A Minimax Semiring
minimax = (N®, min, max, oo, 0) J

17mincc = 17

17maxoco = o

How can we interpret this?

A*(i, j)= min max A(u, v),
pex(i, j) (u,v)ep
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One possible interpretation of Minimax

@ Given an adjacency matrix A over minimax,

@ suppose that A(/, j) =0 < i =,

@ suppose that A is symmetric (A(i, j) = A(Jj, /),

@ interpret A(/, j) as measured dissimilarity of / and j,
@ interpret A*(i, j) as inferred dissimilarity of / and j,

Many uses
@ Hierarchical clustering of large data sets
@ Classification in Machine Learning
@ Computational phylogenetics
° ..
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Dendrograms
Dendrogram
9 P
g ™ - : :
20N o
6| 1T
\ . L

from Hierarchical Clustering With Prototypes via Minimax Linkage, Bien
and Tibshirani, 2011.
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A minimax graph

/
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The solution A* drawn as a dendrogram
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Hierarchical clustering? Why?
Suppose (Y, <, +) is a totally ordered with least element 0.

Metric

A metric for set X over (Y, <, +)is afunction de X x X — Y such
that

o Vx,yeX,d(x,y)=0ex=y
") VX,yEX, d(X7 y) = d(y7 X)
@ Vx,y,ze X, d(x, y) <d(x, z) +d(z, y)

Ultrametric

An ultrametric for set X over (Y, <) is a function d € X x X — Y such
that

@ Vxe X, d(x, x)=0
@ Vx,ye X, d(x, y)=d(y, x)
@ Vx,y,ze X, d(x, y) < d(x, z)maxd(z, y)

v
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Fun Facts

Fact 5

If A'is an n x n symmetric minimax adjacency matrix, then A* is a finite
ultrametric for {0, 1, ..., n— 1} over (N, X)).

Fact 6

Suppose each arc weight is unique. Then the set of arcs
{(7, )) e E|A(i, j) = A*(i, ))}

IS @ minimum spanning tree.
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A spanning tree derived from A and A*
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