
Topics in Logic and Complexity
Handout 2

Anuj Dawar

http://www.cl.cam.ac.uk/teaching/1920/L15

Descriptive Complexity

Descriptive Complexity provides an alternative perspective on
Computational Complexity.

Computational Complexity

• Measure use of resources (space, time, etc.) on a machine model of
computation;

• Complexity of a language—i.e. a set of strings.

Descriptive Complexity
• Complexity of a class of structures—e.g. a collection of graphs.
• Measure the complexity of describing the collection in a formal logic,

using resources such as variables, quantifiers, higher-order operators,
etc.

There is a fascinating interplay between the views.

Anuj Dawar Logic and Complexity

Signature and Structure

In general a signature (or vocabulary) σ is a finite sequence of relation,
function and constant symbols:

σ = (R1, . . . ,Rm, f1, . . . , fn, c1, . . . , cp)

where, associated with each relation and function symbol is an arity.

Anuj Dawar Logic and Complexity

Structure

A structure A over the signature σ is a tuple:

A = (A,RA
1 , . . . ,R

A
m, f

A
1 , . . . , f

A
n , c

A
1 , . . . , c

A
n),

where,
• A is a non-empty set, the universe of the strucure A,
• each RA

i is a relation over A of the appropriate arity.
• each f Ai is a function over A of the appropriate arity.
• each cAi is an element of A.

Anuj Dawar Logic and Complexity

First-order Logic

Formulas of first-order logic are formed from the signature σ and an
infinite collection X of variables as follows.

terms – c , x , f (t1, . . . , ta)

Formulas are defined by induction:

• atomic formulas – R(t1, . . . , ta), t1 = t2
• Boolean operations – φ ∧ ψ, φ ∨ ψ, ¬φ
• first-order quantifiers – ∃xφ, ∀xφ

Anuj Dawar Logic and Complexity

Queries

A formula φ with free variables among x1, . . . , xn defines a map Q from
structures to relations:

Q(A) = {a | A |= φ[a]}.

Any such map Q which associates to every structure A a (n-ary) relation
on A, and is isomorphism invariant, is called a (n-ary) query.
Q is isomorphism invariant if, whenever f : A→ B is an isomorphism
between A and B, it is also an isomorphism between (A,Q(A)) and
(B,Q(B)).

If n = 0, we can regard the query as a map from structures to {0, 1}—a
Boolean query.

Anuj Dawar Logic and Complexity

Graphs

For example, take the signature (E), where E is a binary relation symbol.
Finite structures (V ,E) of this signature are directed graphs.

Moreover, the class of such finite structures satisfying the sentence

∀x¬Exx ∧ ∀x∀y(Exy → Eyx)

can be identified with the class of (loop-free, undirected) graphs.

Anuj Dawar Logic and Complexity

Complexity

For a first-order sentence φ, we ask what is the computational complexity
of the problem:

Input: a structure A
Decide: if A |= φ

In other words, how complex can the collection of finite models of φ be?

In order to talk of the complexity of a class of finite structures, we need
to fix some way of representing finite structures as strings.

Anuj Dawar Logic and Complexity

Representing Structures as Strings

We use an alphabet Σ = {0, 1,#,−}.
For a structure A = (A,R1, . . . ,Rm, f1, . . . , fl), fix a linear order < on
A = {a1, . . . , an}.
Ri (of arity k) is encoded by a string [Ri]< of 0s and 1s of length nk .
fi is encoded by a string [fi]< of 0s, 1s and −s of length nk log n.

[A]< = 1 · · · 1︸ ︷︷ ︸
n

#[R1]<# · · ·#[Rm]<#[f1]<# · · ·#[fl]<

The exact string obtained depends on the choice of order.

Anuj Dawar Logic and Complexity

Naïve Algorithm

The straightforward algorithm proceeds recursively on the structure of φ:

• Atomic formulas by direct lookup.
• Boolean connectives are easy.
• If φ ≡ ∃x ψ then for each a ∈ A check whether

(A, c 7→ a) |= ψ[c/x],

where c is a new constant symbol.

This runs in time O(lnm) and O(m log n) space, where m is the nesting
depth of quantifiers in φ.

Mod(φ) = {A | A |= φ}

is in logarithmic space and polynomial time.

Anuj Dawar Logic and Complexity

Complexity of First-Order Logic

The following problem:
FO satisfaction

Input: a structure A and a first-order sentence φ
Decide: if A |= φ

is
PSPACE-complete.

It follows from the O(lnm) and O(m log n) space algorithm that the
problem is in PSPACE.
How do we prove completeness?

Anuj Dawar Logic and Complexity

QBF

We define quantified Boolean formulas inductively as follows, from a set
X of propositional variables.

• A propositional constant T or F is a formula
• A propositional variable X ∈ X is a formula
• If φ and ψ are formulas then so are: ¬φ, φ ∧ ψ and φ ∨ ψ
• If φ is a formula and X is a variable then ∃X φ and ∀X φ are

formulas.

Say that an occurrence of a variable X is free in a formula φ if it is not
within the scope of a quantifier of the form ∃X or ∀X .

Anuj Dawar Logic and Complexity

QBF

Given a quantified Boolean formula φ and an assignment of truth values
to its free variables, we can ask whether φ evaluates to true or false.
In particular, if φ has no free variables, then it is equivalent to either true
or false.

QBF is the following decision problem:
Input: a quantified Boolean formula φ with no free variables.
Decide: whether φ evaluates to true.

Anuj Dawar Logic and Complexity

Complexity of QBF

Note that a Boolean formula φ without quantifiers and with variables
X1, . . . ,Xn is satisfiable if, and only if, the formula

∃X1 · · · ∃Xn φ is true.

Similarly, φ is valid if, and only if, the formula

∀X1 · · · ∀Xn φ is true.

Thus, SAT ≤L QBF and VAL ≤L QBF and so QBF is NP-hard and
co-NP-hard.
In fact, QBF is PSPACE-complete.

Anuj Dawar Logic and Complexity

QBF is in PSPACE

To see that QBF is in PSPACE, consider the algorithm that maintains a
1-bit register X for each Boolean variable appearing in the input formula
φ and evaluates φ in the natural fashion.

The crucial cases are:
• If φ is ∃X ψ then return T if either (X ← T ; evaluate ψ) or

(X ← F ; evaluate ψ) returns T.
• If φ is ∀X ψ then return T if both (X ← T ; evaluate ψ) and

(X ← F ; evaluate ψ) return T.

Anuj Dawar Logic and Complexity

PSPACE-completeness

To prove that QBF is PSPACE-complete, we want to show:
Given a machine M with a polynomial space bound and an in-
put x , we can define a quantified Boolean formula φMx which
evaluates to true if, and only if, M accepts x .

Moreover, φMx can be computed from x in polynomial time (or
even logarithmic space).

The number of distinct configurations of M on input x is bounded by 2n
k

for some k (n = |x |).
Each configuration can be represented by nk bits.

Anuj Dawar Logic and Complexity

Constructing φM
x

We use tuples A,B of nk Boolean variables each to encode
configurations of M.
Inductively, we define a formula ψi (A,B) which is true if the
configuration coded by B is reachable from that coded by A in at most
2i steps.

ψ0(A,B) ≡ “A = B” ∨ “A→M B”
ψi+1(A,B) ≡ ∃Z∀X∀Y [(X = A ∧ Y = Z) ∨ (X = Z ∧ Y = B)

⇒ ψi (X,Y)]
φ ≡ ψnk (A,B) ∧ “A = start” ∧ “B = accept”

Anuj Dawar Logic and Complexity

Reducing QBF to FO satisfaction

We have seen that FO satisfaction is in PSPACE.
To show that it is PSPACE-complete, it suffices to show that
QBF ≤L FO sat.

The reduction maps a quantified Boolean formula φ to a pair (A, φ∗)
where A is a structure with two elements: 0 and 1 interpreting two
constants f and t respectively.

φ∗ is obtained from φ by a simple inductive definition.

Anuj Dawar Logic and Complexity

Expressive Power of FO

For any fixed sentence φ of first-order logic, the class of structures
Mod(φ) is in L.

There are computationally easy properties that are not definable in
first-order logic.
• There is no sentence φ of first-order logic such that A |= φ if, and

only if, |A| is even.
• There is no formula φ(E , x , y) that defines the transitive closure of a

binary relation E .

We will see proofs of these facts later on.

Anuj Dawar Logic and Complexity

Second-Order Logic

We extend first-order logic by a set of relational variables.
For each m ∈ N there is an infinite collection of variables
Vm = {Vm

1 ,V
m
2 , . . .} of arity m.

Second-order logic extends first-order logic by allowing second-order
quantifiers

∃X φ for X ∈ Vm

A structure A satisfies ∃X φ if there is an m-ary relation R on the
universe of A such that (A,X → R) satisfies φ.

Anuj Dawar Logic and Complexity

Existential Second-Order Logic

ESO—existential second-order logic consists of those formulas of
second-order logic of the form:

∃X1 · · · ∃Xk φ

where φ is a first-order formula.

Anuj Dawar Logic and Complexity

Examples

Evennness
This formula is true in a structure if, and only if, the size of the domain is
even.
∃B∃S ∀x∃yB(x , y) ∧ ∀x∀y∀zB(x , y) ∧ B(x , z)→ y = z

∀x∀y∀zB(x , z) ∧ B(y , z)→ x = y
∀x∀yS(x) ∧ B(x , y)→ ¬S(y)
∀x∀y¬S(x) ∧ B(x , y)→ S(y)

Anuj Dawar Logic and Complexity

Examples

Transitive Closure
This formula is true of a pair of elements a, b in a structure if, and only
if, there is an E -path from a to b.
∃P ∀x∀y P(x , y)→ E (x , y)

∃xP(a, x) ∧ ∃xP(x , b) ∧ ¬∃xP(x , a) ∧ ¬∃xP(b, x)
∀x∀y(P(x , y)→ ∀z(P(x , z)→ y = z))
∀x∀y(P(x , y)→ ∀z(P(z , y)→ x = z))
∀x((x 6= a ∧ ∃yP(x , y))→ ∃zP(z , x))
∀x((x 6= b ∧ ∃yP(y , x))→ ∃zP(x , z))

Anuj Dawar Logic and Complexity

Examples

3-Colourability
The following formula is true in a graph (V ,E) if, and only if, it is
3-colourable.
∃R∃B∃G ∀x(Rx ∨ Bx ∨ Gx)∧

∀x(¬(Rx ∧ Bx) ∧ ¬(Bx ∧ Gx) ∧ ¬(Rx ∧ Gx))∧
∀x∀y(Exy → (¬(Rx ∧ Ry)∧

¬(Bx ∧ By)∧
¬(Gx ∧ Gy)))

Anuj Dawar Logic and Complexity

Fagin’s Theorem

Theorem (Fagin)
A class C of finite structures is definable by a sentence of existential
second-order logic if, and only if, it is decidable by a nondeterminisitic
machine running in polynomial time.

ESO = NP

One direction is easy: Given A and ∃P1 . . . ∃Pmφ.
a nondeterministic machine can guess an interpretation for
P1, . . . ,Pm and then verify φ.

Anuj Dawar Logic and Complexity

Fagin’s Theorem

Given a machine M and an integer k , there is an ESO sentence φ such
that A |= φ if, and only if, M accepts [A]<, for some order < in nk steps.

We construct a first-order formula φM,k such that

(A, <,X) |= φM,k ⇔ X codes an accepting computation of M
of length at most nk on input [A]<

So, A |= ∃ < ∃XφM,k if, and only if, there is some order < on A so that
M accepts [A]< in time nk .

Anuj Dawar Logic and Complexity

Order

The formula φM,k is built up as the conjunction of a number of formulas.
The first of these simply says that < is a linear order

∀x(¬x < x)∧
∀x∀y(x < y → ¬y < x)∧
∀x∀y(x < y ∨ y < x ∨ x = y)
∀x∀y∀z(x < y ∧ y < z → x < z)

We can use a linear order on the elements of A to define a lexicographic
order on k-tuples.

Anuj Dawar Logic and Complexity

Ordering Tuples

If x = x1, . . . , xk and y = y1, . . . , yk are k-tuples of variables, we use
x = y as shorthand for the formula

∧
i<k xi = yi and x < y as shorthand

for the formula ∨
i<k

(
(
∧
j<i

xj = yj) ∧ xi < yi
)

We also write y = x + 1 for the following formula:

x < y ∧ ∀z
(
x < z→ (y = z ∨ y < z)

)

Anuj Dawar Logic and Complexity

Constructing the Formula

Let M = (K ,Σ, s, δ).
The tuple X of second-order variables appearing in φM,k contains the
following:

Sq a k-ary relation symbol for each q ∈ K
Tσ a 2k-ary relation symbol for each σ ∈ Σ
H a 2k-ary relation symbol

Anuj Dawar Logic and Complexity

Intuitively, these relations are intended to capture the following:

• Sq(x) – the state of the machine at time x is q.
• Tσ(x, y) – at time x, the symbol at position y of the tape is σ.
• H(x, y) – at time x, the tape head is pointing at tape cell y.

We now have to see how to write the formula φM,k , so that it enforces
these meanings.

Anuj Dawar Logic and Complexity

Initial state is s and the head is initially at the beginning of the tape.

∀x
(
(∀y x ≤ y)→ Ss(x) ∧ H(x, x)

)
The head is never in two places at once

∀x∀y
(
H(x, y)→ (∀z(y 6= z)→ (¬H(x, z)))

)
The machine is never in two states at once

∀x
∧
q

(Sq(x)→
∧
q′ 6=q

(¬Sq′(x)))

Each tape cell contains only one symbol

∀x∀y
∧
σ

(Tσ(x, y)→
∧
σ′ 6=σ

(¬Tσ′(x, y)))

Anuj Dawar Logic and Complexity

Initial Tape Contents

The initial contents of the tape are [A]<.

∀x x ≤ n→ T1(1, x)∧
x ≤ na → (T1(1, x + n + 1)↔ R1(x|a))

. . .

where,
x < na :

∧
i≤(k−a)

xi = 0

Anuj Dawar Logic and Complexity

The tape does not change except under the head

∀x∀y∀z(y 6= z→ (
∧
σ

(H(x, y) ∧ Tσ(x, z)→ Tσ(x + 1, z)))

Each step is according to δ.

∀x∀y
∧
σ

∧
q

(H(x, y) ∧ Sq(x) ∧ Tσ(x, y))

→
∨
∆

(H(x + 1, y′) ∧ Sq′(x + 1) ∧ Tσ′(x + 1, y))

Anuj Dawar Logic and Complexity

where ∆ is the set of all triples (q′, σ′,D) such that
((q, σ), (q′, σ′,D)) ∈ δ and

y′ =

 y if D = S
y − 1 if D = L
y + 1 if D = R

Finally, some accepting state is reached

∃x Sacc(x)

Anuj Dawar Logic and Complexity

NP

Recall that a languge L is in NP if, and only if,

L = {x | ∃yR(x , y)}

where R is polynomial-time decidable and polynomially-balanced.

Fagin’s theorem tells us that polynomial-time decidability can, in some
sense, be replaced by first-order definability.

Anuj Dawar Logic and Complexity

co-NP

USO—universal second-order logic consists of those formulas of
second-order logic of the form:

∀X1 · · · ∀Xk φ

where φ is a first-order formula.

A corollary of Fagin’s theorem is that a class C of finite structures is
definable by a sentence of universal second-order logic if, and only if, its
complement is decidable by a nondeterminisitic machine running in
polynomial time.

USO = co-NP

Anuj Dawar Logic and Complexity

Second-Order Alternation Hierarchy

We can define further classes by allowing other second-order quantifier
prefixes.
Σ1

1 = ESO
Π1

1 = USO
Σ1

n+1 is the collection of properties definable by a sentence of the form:
∃X1 · · · ∃Xk φ where φ is a Π1

n formula.
Π1

n+1 is the collection of properties definable by a sentence of the form:
∀X1 · · · ∀Xk φ where φ is a Σ1

n formula.
Note: every formula of second-order logic is Σ1

n and Π1
n for some n.

Anuj Dawar Logic and Complexity

Polynomial Hierarchy

We have, for each n:

Σ1
n ∪ Π1

n ⊆ Σ1
n+1 ∩ Π1

n+1

The classes together form the polynomial hierarchy or PH.

NP ⊆ PH ⊆ PSPACE
P = NP if, and only if, P = PH

Anuj Dawar Logic and Complexity

