Data Science: Principles and Practice
Lecture 3: Classification

Ekaterina Kochmar

13 November 2019

E. Kochmar DSPNP: Lecture 3 13 November 1/25



Recap: Supervised Learning

Dataset: {< x(), y(1) > < x(2) () 5 < x(m) y(m) >}
Input features: (xf"), xg), s X,gi))

Known (desired) outputs: y(1), y(  y(m)

Our goal: Learn the mapping f : X = Y
such that y() = f(x(D) for all i =1,2,....,m

Strategy: Learn the function on the training set,
use to predict yU) = f(xU)) for all x; in the test set

Last time we looked into regression tasks, today — classification
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Recap: Regression vs. Classification

Regression tasks: the desired labels are continuous
Examples: House size, age, income — price
Weather conditions, time — number of rented bikes

Classification tasks: the desired labels are discrete
Examples: Pixel distribution in the image — digit label

Word distribution in movie reviews — sentiment
(pos/neg/neut) label
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Outline

© Binary classification

© Data transformations
© Model evaluation

@ Multi-class classification

© Practical 2
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Binary classification

Case study

Let's start with a simpler case — binary classification

Task: Sentiment analysis in movie reviews (Part IA CST Machine
Learning and Real-world Data)

Data: m x n matrix X with m reviews and n features (words)
Labels: y € (0,1) with O for neg and 1 for pos

Approach

Naive Bayes classifier:
@ relies on probabilistic assumptions about the data
@ makes “naive” independence assumption about the features
o fast and scalable compared to more sophisticated methods

@ competitive results on a number of real-world tasks, despite
over-simplistic assumptions
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Binary classification with Naive Bayes

Prediction

ol ; 1, if p(y = 1[x) > p(y = 0|x()

Pl = argmaxce(ovl)p(y = c\x( )) = ( _ x1) ( Ixt7)
0, otherwise

where x(1) = (fl(i), s fn(i))

Flipping the conditions

Ay — ol (D)) — Pe)p()c)
ply = c|x') p(x)

where p(c) is the prior, p(x\)|c) is likelihood, p(x()) is evidence (note: it's
irrelevant for the argmax estimation), and p(y = c|x()) is the posterior
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Binary classification with Naive Bayes

“Naive” independence assumption

p(FD o £01y) ~ TT5_, p(Fy)

Revised estimation
90 = argmax, p(y|x) = argmax, p(y) [Tf_1 p(F"|y)

where probabilities can be estimated from the training data using
maximum a posteriori estimate

Naive Bayes models typically differ with respect to the assumptions
about the distribution of features p(x()|y). Commonly used models:
Gaussian NB, Multinomial NB, Bernoulli NB.?

“Recommended reading: A. McCallum and K. Nigam (1998). A comparison of
event models for Naive Bayes text classification.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.1529
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Linearly separable data

Example

Linear ML models, or the models that try to build a linear separation
boundary between the classes, are well-suited for such data. Examples:
Logistic Regression, Perceptron, Support Vector Machines
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Logistic Regression

Logistic Regression vs Linear Regression

@ Last time we looked into Linear Regression and learned how to use it to
output a continuous value

@ Despite the name, Logistic Regression outputs a discrete value, i.e. it is
used for classification

@ Logistic Regression estimates whether the probability of an instance i
belonging to class c is greater than 0.5. If it is, the item is classified a c;
otherwise as —c )
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Logistic Regression

@ Estimate w - X as before, where w is the weight vector (wg, wy, ..., w,)

@ Apply a sigmoid function to the result: p = o(w - X), where
o(t) = 1+e><p( t)

@ Prediction step:

1, ifp>05 o1 =0
~ 10, otherwise e 0, otherwise
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Logistic Regression

Training

@ Learning objective: learn weights w such that prediction p has a high

positive value for y = 1 and high negative value for y =0

@ The following cost function answers this objective:
—log(p ify=1
c(w) = og(p); ify
—log(1—p), ify=0

@ Log-loss cost functiorj: . ' '
J(w) = —L 37 [yDiog(p?) + (1 — yD)log(1 — p)]

m

@ No closed form solution for w that minimises the cost function, but since
the function is convex, Gradient Descent (refer to the previous lecture) can

be used to find the optimal weights
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Single-layer perceptron

7 i) =
0, otherwise
9 output where w - x()) is the dot product of
weight vector w and the feature vector
o3 x() for the instance i, ZJ 1 WX J(),
and b is the bias term )

1, ifw-xD4+b>0
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Single-layer perceptron

Training
O Initialisation: Initialise the weights w = (wq, ..., wj) and the bias
b = wp to some value (e.g., 0 or some other small value)
@ Estimation at time t for each instance i:
90 = F(w(t) - xD) = F(wo(t) + wa()x + .. + wa(£)x)
© Update for the weights at time (t + 1) for instance i and each

feature 0 < j < n: w;(t + 1) = w;(t) + r(y) — )“/(")))9("), where r is a

predefined learning rate

@ Stopping criteria: convergence to an error below a predefined
threshold ~, or after a predefined number of iterations t < T.
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Single-layer perceptron

o If the data is linearly separable, the perceptron algorithm is
guaranteed to converge

o If the data is not linearly separable, the perceptron will never be able
to find a solution to separate the classes in the training data

@ A single layer perceptron is a simple linear classifier. Often used to
illustrate the simplest feedforward neural network. Multilayer
perceptrons combine multiple layers and use non-linear activation
functions, which makes them capable to classify data that is not
linearly separable (more on this in later lectures)
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Non-linearly separable data

The classic example: XOR problem

X1
X X | ¥ . h
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Non-linearly separable data

Data transformations for non-linearly separable data
o Actual (raw) data: two classes non-linearly separable (on the left)

@ Objective: transform the data using additional dimensions such that
it becomes possible to separate the classes linearly (on the right)

e Method: data transformations / feature maps that transform the
data into higher dimensional space (e.g., kernel trick)

Data projected to R~2

Data in R~3 (separable)

v
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Non-linearly separable data

Toy example

@ Suppose a non-linearly separable classes as above: e.g., instances
x(® = (0.5,0.5) and x(V) = (-1, -1)

o Consider using a square function: x(©) — x/(0) = (0.25,0.25) and
x5 xM) = (1,1)

@ With the new data representation, the instances of class 0 (blue) end
up on the left, and the instances of class 1 (red) end up on the right

@ Kernel trick and feature maps allow us to cast the original data into a
higher dimensional data: e.g. (x,y) — (x2,xy, y?)

v
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Performance measures

Accuracy

o Task: suppose you select a digit in the
handwritten digits dataset (e.g., 5), and
perform a binary classification task of detecting
5 vs. =5 in a balanced dataset of 10 digits

o Evaluation: the most straightforward way to
evaluate is to calculate the proportion of
correct predictions:

T hum(y==y)
ACC = ==y T rumGT=y)

@ Results: suppose that you get an accuracy of
91%. Is this a good accuracy score?
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Performance measures

What accuracy score is missing

o If the classifier always predicts =5 (i.e., does nothing), the accuracy
will be ACC = 90%

@ It's unclear what exactly the classifier gets wrong

Confusion matrix
‘ predicted =5 ‘ predicted 5

actual =5 | TN FP
actual b FN TP

True negatives (TN) — actual instances of =5 correctly classified as —5
False negatives (FN) — actual instances of 5 missed by the classifier

True positives (TP) — actual instances of 5 correctly classified as 5

False positives (FP) — actual instances of =5 misclassified as 5

v
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Performance measures

Measures
@ Accuracy: ACC = %
@ Precision: P = %
@ Recall: R = TP+FN
@ Fy-score: F; =2 x ,’zig [Fs = (1+5°%) x %

Precision-recall trade-off

Some tasks require higher recall and some higher precision, e.g.:
@ Detection of a potentially cancerous case that needs further tests?

@ Detection of suspicious activity on a credit card? Automated blocking?

Automated change of drug dosage for a hospital patient?

Automated spell/grammar checker correction?

Search for related web-pages online?

V.
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Performance measures
Confidence threshold

Precision:  6/8=75% 4/5=80%  3/3=100%
Recall:  6/6 = 100% 4/6=67% 3/6=50%
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Performance measures

Receiver Operating Characteristic (ROC)

© Specificity = w15

@ False positive rate (FPR) / fall-out / probability of false alarm
= (1 — specificity)

@ True positive rate (TPR) / sensitivity / probability of detection = recall
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Multi-class classification

From binary to multi-class

@ Directly classified with some algorithms: e.g., Naive Bayes — simply output
the most probable class

@ Linear classifiers: one of two strategies:

@ one-vs-all (OvA) / one-vs-rest (OvR): n binary classifiers trained to
detect one class each (e.g. 10 binary digit detectors); output the class
with the highest score

@ one-vs-one (OvO): w binary class-vs-class classifiers (e.g. 45
binary digit-vs-digit classifiers); output class that wins most

v
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Multi-class classification

Error analysis

Confusion matrix: Confusions heatmap:

array(((36, 0, O, 0, 0, 0, 0, 0, 0, 0],

(o, 36, o, 0 0, 0, 0 0, 0, 0],
o, 1, 34, 0, 0, 0, 0, 0, 0, 0],
o, 0, 1, 34, 0, 2, 0, O, 0, 0],
o, 0, 0, 0, 35, 0, 0, 0, 0, 1],
o, 0 o0, o0, 0,37, 0, 0, 0, 0],
o, ¢ 0, 0, 0, 0, 36, 0, 0, 0],
o, 0, 0, 0, 0, 0, 0,36, 0, 0],
o, 4 0, 2, 2, 1, 0, 1, 23, 2],

[
[
[
[
[
[
[
tr1, o 0 o0, o0, 0, 0, 1, 0, 34]])
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Practical 2: Classification

Your task

@ two datasets: iris flower dataset (150 samples, 3 classes, 4 features),
and hand-written digits dataset (=~ 1.8K samples, 10 classes, 64
features)

@ learn about binary and multi-class classification in practice

@ investigate whether data is linearly separable and what to do when it
is not

@ apply 3 classifiers discussed in this lecture
@ focus on evaluation of the classifiers

@ one dataset is used to illustrate the ML techniques; your task is to
implement all the above steps for the other one
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