Type Systems

Lecture 1

Neel Krishnaswami
University of Cambridge

Type Systems for Programming Languages

- Type systems lead a double life

- They are an essential part of modern programming
languages

- They are a fundamental concept from logic and proof
theory

- As a result, they form the most important channel for
connecting theoretical computer science to practical
programming language design.

What are type systems used for?

- Error detection via type checking

- Support for structuring large (or even medium) sized
programs

- Documentation
- Efficiency
- Safety

A Language of Booleans and Integers

Terms e == true | false | n | e<e | e+e|ene| —e

Some terms make sense:

© 344
©3+44<5
S BHA<T)A(T<3+4)

Some terms don't:

- L Atrue
+ 3 <true
- true +7

Types for Booleans and Integers

Types 7 == bool | N
Terms e == true | false | n | e<e | e+e | ene

- How to connect term (like 3 + 4) with a type (like N)?

- Via a typing judgement e : T

- Atwo-place relation saying that “the term e has the type 7"
- So _: _is aninfix relation symbol

- How do we define this?

Typing Rules

— Num — TRUE — FALSE
n:N true : bool false : bool
e:N e N e : bool e’ : bool
—— PLUS AND
e+e:N e e :bool
e: N e N
—— |EQ
e < e :bool

- Above the line: premises

- Below the line: conclusion

An Example Derivation Tree

—— NuM — NUM
3:N 4: N

34+4:N
3+ 4<5:bool

PLUS —— NUM
5:N

LEQ

Adding Variables

Types 7 == bool | N
Terms e == ... | x| letx=ein¢

- Example: letx=51in (x+x) <10

- But what type should x have: x: ?

- To handle this, the typing judgement must know what the
variables are.

- So we change the typing judgement to be ' e : 7, where
I associates a list of variables to their types.

Contexts I == - | x:7
——— NuUM —— TRUE FALSE
l-n:N I true : bool I - false : bool
Nle:N NrN-¢e¢:N
PLUS
NN-e+ée:N
I+ e: bool e :bool Nl-e:N ¢ :N
AND LEQ
F'enée :bool M-e<eée :bool
xX:Ttel N-e:r Mx:rkeée:71
VAR LET

FTEx:7 M-letx=eine : 7 8

Does this make sense?

- We have: a type system, associating elements from one
grammar (the terms) with elements from another
grammar (the types)

- We claim that this rules out “bad” terms
- But does it really?
- To prove, we must show type safety

Prelude: Substitution

We have introduced variables into our language, so we should
introduce a notion of substitution as well

[e/x]|true = true
[e/x]false = false
[e/x]n = n
[e/x](e1 + e2) = [e/x]ei + [e/X]e:
[e/x](e1 < &) = [e/x]er < [e/X]e;
[e/x](e1 A e7) = [e/x]e1 A [e/x]ez
le/xz B e whenz=x
Zz whenz#x
[e/x](letz=e1ine)) = letz=[e/x]erin[e/x]es (x)

(¥) a-rename to ensure z does not occur in e!

10

Structural Properties and Substitution

1. (Weakening) If I, I"Fe:rthenl,x: 7" "ke:T.
If a term typechecks in a context, then it will still
typecheck in a bigger context.
2. (Exchange) If T, xq : 7, %2 : 7, " = e : T then
M Xxy:m,X:m,MkFe:T.
If a term typechecks in a context, then it will still
typecheck after reordering the variables in the context.
3. (Substitution) f T ~e:7and [,x: 7+ €' : 7 then
Mt le/xle : 7.
Subsituting a type-correct term for a variable will preserve
type correctness.

n

A Proof of Weakening

- Proof goes by structural induction
- Suppose we have a derivation tree of I', ' Fe: 7

- By case-analysing the root of the derivation tree, we
construct a derivation tree of I',x : 7/, " F e : 7, assuming
inductively that the theorem works on subtrees.

12

Proving Weakening, 1/4

———— Num ,
rr=n:N By assumption

rx:7" . "+Fn: o
X T n:N By rule Num

- Similarly for TRUE and FALSE rules

13

Proving Weakening, 2/4

rr~e:N rr-e:N
I',I"I—e1+ezzN

PLUS

F,F’I—equ
F,F’I—ez:N

Mrx:7" IM"kFe;: N
Mx:7",I"kFe;: N
rx:7".I"kFe; +e;: N

- Similarly for LEQ and AND rules

By assumption

Subderivation 1
Subderivation 2

Induction on subderivation 1
Induction on subderivation 2
By rule PLus

14

Proving Weakening, 3/4

F,F/}—eq:ﬁ r,r’,z:wezzn

LET
MEletz=ejine,:n By assumption
rree :mn Subderivation 1
rrz:.nke:n Subderivation 2
Fx:m TMke:n Induction on subderivation 1
Extended context
rx:7r, Mz m e, : N Induction on subderivation 2

Fx:7" Mkletz=ejine:n By rule LET

15

Proving Weakening, 4/4

z:7efll
_ VAR .
MEletz=ejine;:n By assumption
z:Tefl I By assumption

z:telx:7" " Anelement of a list is also in a bigger list
Mx:7" . I"kz:7 Byrule VAR

Proving Exchange, 1/4

NUM ,
Mx1:m,% 1, I"Fn:N By assumption

Num
r,X22T27X1Z7'1,r,|—nZN By rule Num

- Similarly for TRUE and FALSE rules

Proving Exchange, 2/4

Fx1:m,% :m,"Fe:N C,x1:m,% 1, "Fe: N

PLUS
MMte+e:N
By assumption
X :1,% :m,"Fe :N Subderivation 1
X :1m,% 1, "Fe: N Subderivation 2
M X):m,X:7m,,MN~e ;N Induction on subderivation 1
M X):m,X:m,,Ne; ' N Induction on subderivation 2

[, X 0, X 27'1,,r/ Fei+e:N By rule PLus

- Similarly for LEQ and AND rules

Proving Exchange, 3/4

C,x1:m,% m, e 1
r,X1 T, X0l Tz,r/,Z : 7'/ [e):m

LET
MEletz=ejine:n By assumption
Fx1:m,% :n, e 7 Subderivation 1
X :7m,% :Tz,r/,ZZTll—ez) Subderivation 2
X :m,X:m, " Fei:n Induction on s.d. 1
Extended context
—— i

[,X:1,X1 1T, rz:n Fe,: N Induction ons.d.?2
FXx:m,Xx:m,"Fletz=ejine:n By rule LET

19

Proving Exchange, 4/4

Z.TE F7x1 1T, X2 Tz,r/

VAR)
rr'ez:r By assumption

z:Tel,xy:m,%x:m, " Byassumption
z:tel,x:mx :m, " Anelementof alistis

also in a permutation of the list
X :7m,X :m,["+z:7 Byrule VAR

20

A Proof of Substitution

- Proof also goes by structural induction

- Suppose we have derivation trees ' e : 7 and
rx:7keée:7.

- By case-analysing the root of the derivation tree of
I x:7Fe 7 we construct a derivation tree of
I+ [e/x]e’ : 7/, assuming inductively that substitution
works on subtrees.

21

Substitution 1/4

———— Num .
Mx:7En:N By assumption
lke:r By assumption
Nr-n:N By rule Num

I+ [e/x]n: N Def. of substitution

- Similarly for TRUE and FALSE rules

22

Mx:7Fe: N
x:tTFei+e: N

Nx:7FHe: N

lFe: 7

x:7FHe: N
x:7Fe:N

I+ [e/x]e;: N

I [e/x]lex: N

[+ [e/x]e1+ [e/x]ex : N
M- le/x](e1+e2): N

- Similarly for LEQ and AND rules

By assumption: (1)

By assumption: (2)

Subderivation of (1): (3)
Subderivation of (1): (4)
Induction on (2), (3): (5)
Induction on (2), (4): (6)
By rule PLus on (5), (6)

Def. of substitution

Proving Substitution, 2/4

23

Proving Substitution, 3/4

Frx:the:7 F,x:r,z:r’l—ez:szET

Fx:thletz=ejine; ' m By assumption: (1)
lFe:r By assumption: (2)
Mx:7he:71 Subderivation of (1): (3)
Frx:mz:7"Fe:n Subderivation of (1): (&)

I+ le/xler: 7 Induction on (2) and (3): (4)
rz:vke:r Weakening on (2): (5)
rz:7,x:7key:n Exchange on (4): (6)
rz:7k[e/xlex: Induction on (5) and (6): (7)

n
[+ letz=[e/x]esin[e/x]e; : 7 By rule LET on (6), (7)
M-le/x|(letz=ejiney):n By def. of substitution 2%

Proving Substitution, 4a/4

z:7elx:7
—————— VAR .
Mx:thkz:7 By assumption

Ne:r By assumption

Case x =z
Fele/x]x:t By def. of substitution

25

Proving Substitution, 4b/4

z:7elx:7

VAR .
Mx:rtkFz:7 By assumption
Ne:7 By assumption
Casex #z:
z:7'erl sincex#zandz: 7 el x:r
rz:7'kz:.7 By rule VAR

M,z:7'F[e/x]z: 7" By def. of substitution

26

Operational Semantics

- We have a language and type system

- We have a proof of substitution

- How do we say what value a program computes?
- With an operational semantics

- Define a grammar of values

- Define a two-place relation on terms e ~ ¢’

- Pronounced as “e steps to "

27

An operational semantics

Values v == n | true | false
e~ €
; ANDCONG ————— ANDTRUE
e1Ney~ e;Ne truene~e
ANDFALSE

false A e ~ false
(similar rules for < and +)

e~ @
LETCONG

letz=e;ine,~ letz=¢€,ine,
1

LETSTEP

letz=vine,~ [v/Z]e; .

Reduction Sequences

- A reduction sequence is a sequence of transitions eg ~ e,
€1~ €y, ..., en_1 "~ €n.

- Aterm eis stuck if it is not a value, and there is no €’ such

thate ~ €
Successful sequence Stuck sequence
34+4)<(2+3
()=) B+4)A(2+3)
~ 7<(2+43)
7 <5 ~> 7/\(2"’3)
o= ~ 77
~ false

Stuck terms are erroneous programs with no defined
behaviour.

29

Type Safety

A program is safe if it never gets stuck.

1. (Progress) If - - e : 7 then either e is a value, or there
exists € such that e ~ €.

2. (Preservation) If -+ e:7and e~ € then -+ ¢e' : 1.

- Progress means that well-typed programs are not stuck:
they can always take a step of progress (or are done).

- Preservation means that if a well-typed program takes a
step, it will stay well-typed.

- So a well-typed term won't reduce to a stuck term: the
final term will be well-typed (due to preservation), and
well-typed terms are never stuck (due to progress).

30

Proving Progress

(Progress) If - - e : 7 then either e is a value, or there exists e’
such that e ~ €.

- To show this, we do structural induction on the derivation
of -Fe:r.

- For each typing rule, we show that either e is a value, or
can step.

31

Progress: Values

NUM _
-Fn:N By assumption

nis avalue Def. of value gramma

Similarly for boolean literals...

32

Progress: Let-bindings

ke T xX:they: 7

LET
Fletx=ejine : 7 By assumption: (1)
ket Subderivation of (1): (2)
X:They: 7 Subderivation of (1): (3)
e;~ e} or eq value Induction on (2)

Case ey~ € :

letx=-ejine,~ letx=e¢}ine, By rule LETCONG
Case eq value :

let x = e in e; ~ [e1/X]e; By rule LETSTEP

33

Type Preservation

(Preservation) If -+e: 7and e~ e then -+ ¢’ : 7.

1. We will use structural induction again, but on which
derivation?

2. Two choices: (1) -Fe:7and 2) e~ &
3. The right choice is induction on e ~ €

4. We will still need to deconstruct - F e : 7 alongside it!

34

Type Preservation: Let Bindings 1

e~ @

letx=ejine,~ letx=¢e}ine, Byassumption: (1)

ke T x:Tthkey: 7

‘Fletx=ejine : 7 By assumption: (2)
e~ e Subderivation of (1): (3)
ket Subderivation of (2): (4)
X:They: 7 Subderivation of (2): (5)
kel Induction on (3), (4): (6)

‘Fletx=¢eliney: 7’ Rule LET on (6), (4)

35

Type Preservation: Let Bindings 2

let x = v in ey ~~ [V1/X]€2

“FvioT X:Thkey: 7

letx=wviney: 7

“FvioT
X:They: 7

“Fwi/xley : 7

By assumption: (1)

By assumption: (2)

Subderivation of (2): (3)
Subderivation of (2): (&)

Substitution on (3), (4)

36

Conclusion

Given a language of program terms and a language of types:

- A type system ascribes types to terms
- An operational semantics describes how terms evaluate

- A type safety proof connects the type system and the
operational semantics

- Proofs are intricate, but not difficult

37

Exercises

1. Give cases of the operational semantics for < and +.
2. Extend the progress proof to cover e A €’.

3. Extend the preservation proof to cover e A €.

(This should mostly be review of IB Semantics of Programming
Languages.)

38

Type Systems

Lecture 2: The Curry-Howard Correspondence

Neel Krishnaswami
University of Cambridge

Type Systems for Programming Languages

- Type systems lead a double life

- They are a fundamental concept from logic and proof
theory

- They are an essential part of modern programming
languages

Natural Deduction

- In the early part of the 20th century, mathematics grew
very abstract

- As a result, simple numerical and geometric intuitions no
longer seemed to be sufficient to justify mathematical
proofs (eg, Cantor’s proofs about infinite sets)

- Big idea of Frege, Russell, Hilbert: what if we treated
theorems and proofs as ordinary mathematical objects?

- Dramatic successes and failures, but the formal systems
they introduced were unnatural - proofs didn't look like
human proofs

- In 1933 (at age 23!) Gerhard Gentzen invented natural
deduction

- “Natural” because the proof style is natural (with a little
squinting)

Natural Deduction: Propositional Logic

What are propositions?

- T is a proposition
- PAQ s a proposition, if Pand Q are propositions
- L is a proposition
- PV Qs a proposition, if P and Q are propositions

- P D Qs a proposition, if P and Q are propositions

These are the formulas of propositional logic (i.e., no
quantifiers of the form “for all x, P(x)" or “there exists x, P(x)").

- Some claims follow (e.g. PAQ D> QA P).
- Some claims don't. (e.g, T D 1)
- We judge which propositions hold, and which don't with

judgements
- In particular, “P true” means we judge P to be true.

- How do we justify judgements? With inference rules!

Truth and Conjunction

Tl

T true

P true Q true
PAQ true

Al

P A Q true P AQ true
—— AE — NE
P true Q true

Implication

- To prove P D Q in math, we assume P and prove Q

- Therefore, our notion of judgement needs to keep track of
assumptions as well!

- So we introduce V I P true, where V¥ is a list of
assumptions

- Read: “Under assumptions W, we judge P true”

Pew V., PF Qtrue
—— Hyp Dl
VW Ptrue VEPDAQtrue

V= PDAQtrue V- Ptrue
VY Qtrue

DE

Disjunction and Falsehood

WV Ptrue VU F Qtrue
——— Vh ——— Vb
Y PVAQtrue VI PVQtrue

VI PVvAQtrue V., PF Rtrue V., QF Rtrue

V= R true

VE

VU | true
(no intro for 1) VI R true

(PVQ)DR,PE Ptrue
(PVQ)DR,P-(PVQ)DRtrue (PVQ)DR,PFPVQtrue
(PVQ) DR,PF Rtrue
(PVvQ)DRFPDRtrue
(PVQ)DRE(PDR)A(QDR)true
“F((PVQ)DR)D((PDR)A(QDR))true

The Typed Lambda Calculus

Types X o= 1] XxY |0 | X+Y | X=>Y

Terms e x| () | (e,ey | fste | snde

abort | Le | Re | case(e,Lx — e',Ry —¢€")
M:X.e | eée

| Tox: X

Contexts T

A typing judgement is of the form T~ e : X.

Units and Pairs

— 1
()1

MNe: X r-e:y
M- {ee): XxY

x|

[Fe: XxY Fe: XxY
x E4 — xb

[+ fste: X lFsnde:Y

10

Functions and Variables

x:Xel x:XkFe:Y
——— Hvp -l
MN=x:X NMEXx:Xe: X—=Y

lFe: X—=Y ree:x
Free:y

—E

n

Sums and the Empty Type

N-e: X —e:Y
—+|1 - +|2
N=Le:X4+Y FRe: X+4+Y

Ne: X+Y Mx:Xkée:Z ry:Yre':z
I+ case(e,Lx —e',Ry —¢€"):Z

+E

[Fe:0

— 0OE
(no intro for 0) I+ aborte: Z

12

M:(X+Y) = Z (M X f(Lx), Ay : Y. f(Ry))

((X+Y)—>Z)—>(.X—>Z)><(Y—>Z)

You may notice a similarity here...!

13

The Curry-Howard Correspondence, Part 1

Logic Programming
Formulas Types

Proofs Programs

Truth Unit
Falsehood Empty type

Conjunction Pairing/Records
Disjunction Tagged Union
Implication Functions

Something missing: language semantics?

14

Operational Semantics of the Typed Lambda Calculus

Values v == () | (vW) | :A.e | Lv | Rv

The transition relation is e ~ €/, pronounced “e steps to e’".

15

Operational Semantics: Units and Pairs

(no rules for unit)

e~ e} e~ e
(e1,e2) ~ (€],) (1, €2) ~ (v1,€))
fst <V1, V2> ~ V1 snd <V17 V2> ~
e~ ¢ e~ e

fste ~ fste’ snde~ snde’

Operational Semantics: Void and Sums

e~ e

aborte ~ aborte’

e~ e e~ e

Le~s Le Re~s Reé

e~ e

case(e,Lx — e, Ry — ;) ~ case(e’,Lx — e;,Ry —)

case(Lv,Lx — e,Ry — ey) ~ [v/X]e;

case(Rv,Lx — e1,Ry — e3) ~ [v/y]ex

Operational Semantics: Functions

e~ e e~ e

€16y ~ eﬁ e) V1€ ~ Vq 9/2

(M X.e)v~ [v/X]e

Five Easy Lemmas

1. (Weakening) If I, " Fe: XthenT,z: Z, " e: X

2. (Exchange) If T,y :Y,z: Z,T" e : X then
rz:Z,y:Y,l'te:X

3. (Substitution) If TFe: Xand I, x: Xk e :Ythen
M [e/xle’ Y.

4. (Progress) If - - e : X then e is a value, or e ~ €.

5. (Preservation) If - e : Xand e~ €/, then - €' : X.

Proof technique similar to previous lecture. But what does it
mean, logically?

19

Two Kinds of Reduction Step

Congruence Rules Reduction Rules
e~ @
(e1,€) ~ (€],) fst (v, v2) ~ v
ey~ e
Vi ey~ vy € (M X.e)v~ [v/x]e

- Congruence rules recursively act on a subterm
- Controls evaluation order

-+ Reduction rules actually transform a term
- Actually evaluates!

20

A Closer Look at Reduction

Let's look at the function reduction case:
(M :X.e)v~ [v/x]e
|

_>
“FXx:Xe: X=Y -Fv:X
F(M&X:Xev:y

—E

- Reducible term = intro immediately followed by an elim
- Evaluation = removal of this detour

21

All Reductions Remove Detours

fst (vq, o) ~ vy snd (vq,V2) ~ vy

case(Lv,Lx — e1,Ry — e) ~ [v/x]e;

case(Rv,Lx — ey,Ry — e3) ~ [v/y]ex

(M X.e)v~ [v/X]e

Every reduction is of an introduction followed by an eliminator!

22

Values as Normal Forms

Values v == () | (v,W) | &x:A.e | Lv | Rv

- Note that values are introduction forms
- Note that values are not reducible expressions
- So programs evaluate towards a normal form

- Choice of which normal form to look at it determined by
evaluation order

23

The Curry-Howard Correspondence, Continued

Logic Programming
Formulas Types
Proofs Programs
Truth Unit
Falsehood Empty type
Conjunction Pairing/Records
Disjunction Tagged Union
Implication Functions
Normal form Value
Proof normalization Evaluation

Normalization strategy Evaluation order

2%

The Curry-Howard Correspondence is Not an Isomorphism

The logical derivation:

P,P I Ptrue P,P = Ptrue
P,PEPAPtrue

has 4 type-theoretic versions:

XX,y XEGX) X x X XXy XE (YY) X x X

XX,y XEXGY) X x X x: Xy XE(y,x) : X x X

25

Exercises

For the 1, — fragment of the typed lambda calculus, prove type
safety.

1. Prove weakening.
2. Prove exchange.
3. Prove substitution.
4. Prove progress.
5.

Prove type preservation.

26

Type Systems

Lecture 3: Consistency and Termination

Neel Krishnaswami
University of Cambridge

From Type Safety to Stronger Properties

- In the last lecture, we saw how evaluation corresponded
to proof normalization

- This was an act of knowledge transfer from computation
to logic

- Are there any transfers we can make in the other
direction?

Logical Consistency

- An important property of any logic is consistency: there
are no proofs of L!

- Otherwise, the LE rule will let us prove anything.
- What does this look like in a programming language?

Types and Values

Types X o= 1| XxY |0 | X+Y | X=>Y
Values v == () | (v,v) | Ax:A.e | Lv | Rv

- There are no values of type 0
- l.e,, no normal forms of type 0
- But what about non-normal forms?

What Type Safety Does, and Doesn’t Show

- We have proved type safety:
- Progress: If - e : Xthen eis a value ore~ e’.
- Type preservation If - e : Xand e~ e’ then - - ¢’ : X.

- If there were a closed term of type 0, then progress means
it must always step (since there are no values of type 0)

- But the term it would step to also has type 0 (by
preservation)

- So any closed term of type 0 must loop - it must step
forever.

A Naive Proof that Does Not Work

Theorem: If - e : X then there is a value v such that e ~* v.
“Proof”: By structural induction on - e : X
2) (3)
/_/\ﬁ /_/A
[Fe: X—=Y r-e:Xx

(1) M-ee:vy Assumption

(4) e~*v Induction on (2)

(5) e ~*V Induction on (3)

(6) Fv:X—>Y Progress on (2), (4)

(7) -V :X Progress on (3), (5)

(8) Fv=XM:Xe: XY Canonical forms on (6)
(9) x:Xke':y Subderivation

(10) -V /x]e":Y Substitution

Can’t do induction on this!

A Minimal Typed Lambda Calculus

Types X == 1| X—=Y | O
Terms e == x| () | Mx:X.e | e | aborte
Values v == () | M:X.e

X:Xel

— v —
Mex:X M=) :1

XFe:Y lFe: X—=Y Nr-e: X
— | —E

NM=Xx:Xe: X—=Y F-ee:y

lFe:0

—— 0OE
I aborte: Z

e~ e

aborte ~ aborte’

e1~>eﬁ €2M€/2

er1e;~ € e Vi €3~ vy €

(M :X.e)v~ [v/x]e

Theorem (Determinacy): If e ~ ¢’ and e ~ ¢’ then e’ = ¢”

Proof: By structural induction on e ~» e’

Why Can’t We Prove Termination

- We can't prove termination by structural induction
- Problem is that knowing a term evaluates to a function
doesn’t tell us that applying the function terminates

- We need to assume something stronger

A Logical Relation

1. We say that e halts if and only if there is a v such that e ~* v.
2. Now, we will define a type-indexed family of set of terms:

- Halty =0 (i.e, for all e, e ¢ Haltg)
- e € Halty holds just when e halts.
- e € Halty_,y holds just when
1. e halts
2. Forall ¢, if e € Halty then (e €’) € Halty.

3. Hereditary definition:

- Halty halts

- Halty_,; preserves the property of halting

* Halt(151)—(1-1) Preserves the property of preserving the
property of halting...

Closure Lemma, 1/5

Lemma: If e ~ ¢’ then e’ € Halty iff e € Halty.

Proof: By induction on X:

- Case X =1, =

(1) e~é Assumption

(2) e € Halt; Assumption

(3) e ~*v Definition of Halty

(4) e~*v Def. of transitive closure, (1) and (3)
(5) eeHalty Definition of Halt;

10

Closure Lemma, 2/5

- Case X =1, «:

(1) e~é Assumption

(2) e eHaly Assumption

(3) e~*v Definition of Halt,

(4) eisnota value: Since e ~ ¢

(5) e~ e”ande” ~*v Definition of e ~* v

(6) e =¢€ By determinacy on (1), (5)
(7) e ~*v By equality (6) on (5)

(8) € e Halt Definition of Halt,

n

Closure Lemma, 3/5

- CaseX=Y = 27 =

(1)
()
(3)
(4)
(5)

e~ ¢
e’ € Halty_,;
el ~*v
YVt € Halty, e’ t € Halt;
e~*vy
Assume t € Halty:
et~ e't
e’ t € Halty
et e Halty
Vt € Halty, e t € Halt;
e € Halty_,

Assumption
Assumption
Def. of Halty_g

Transitive closure, (1) and (3)
By congruence rule on (1)

By (4)

By induction on (6), (7)

Def of Halty_,z on (5), (8)

12

Closure Lemma, 4/5

- Case X =Y = 7 <

(1) e~¢ Assumption
(2) e e Halty,; Assumption
(3) e~*v Def. of Halty_,
(4) VteHalty, etecHalt; 7
e is not a value Since (1)
(5) e~ e”ande’ ~*v Definition of e ~* v
(6) e'=¢€ By determinacy on (1), (5)
Assume t € Halty:
(7) et~ et By congruence rule on (1)
(8) et e Halty By (4)
e’ t € Halty By induction on (6), (7)

(9) Vte Halty, €t e Halty

(10) e e Halty_,; Def of Halty_,z on (5), (8)
13

Closure Lemma, 5/5

- Case X =0, =

(1)

(
(
(

2
3
4

)
)
)

e~ e

e’ € Haltg
eel
Contradiction!

- Case X =0, «:

(1)

(
(
(

2
3
4

)
)
)

e~ e

e € Haltg
ecl
Contradiction!

Assumption
Assumption
Definition of Haltg

Assumption
Assumption
Definition of Haltg

14

The Fundamental Lemma

Lemma:

If we have that:

*X1:X1,...,Xn : Xp Fe:Z and
- forie {1...n},-Fv;:X;and v; € Halty,

then [va/xa,...,Vn/Xn]e € Haltz

Proof:

By structural induction on x; : Xy,..., Xy : Xp Fe: 2!

15

The Fundamental Lemma, 1/5

-+ Case Hyp:
Xj:XjGX,‘:X,‘ ’
YP

(1) x: i,» F X X Assumption

—
(2) [vi/xilx = Def. of substitution
(3) vje Haltx, Assumption

—> .
(4) [vi/xilx; € Haltx, Equality (2) on (3)

The Fundamental Lemma, 2/5

- Case 1l
(1) xi:X+{:1 ! Assumption
(2) Wi/x]0) =(Def of substitution
(3)) ~*() Def. of transitive closure
(4) () € Halty Def. of Halty
(5) [m] () € Halt; Equality (2) on (4)

The Fundamental Lemma, 3a/5

- Case —l:

X,*:R/,y:Yi—e:Y

Xi:XiFXy:Y.e: Y7

— |

Xj:X,y:YFe:Z

e e

[Vi/xi]](Ay : Y.e) = Ay : Y.[vi/x|e
— . ——

Ay Yo [vi/xile ~* Ayt Y. [vi/xile

Assumption

Subderivation of (1)
Def of substitution
Def of closure

The Fundamental Lemma, 3b/5

Case —l:
(5) Assumet € Halty:
(6) t~*yy, Def of Halty
(7) vy € Halty Closure on (6)
(8) O : V. [u/xle) vy~ [fx,v/vle Rule
(9) [vi/xi, vy/v]e € Halt; Induction
(10) (Ay: Y. [m]e) t~ (Ay: V. [m]e) v, Congruence
(11) (\y:Y. [m]e) t € Haltz Closure
(12) Wt e Halty, (\y : Y. [vi/x]e) t € Halty

19

The Fundamental Lemma, 3c¢/5

Case —l:

(4) Ay:Y.[vi/xle~* Ay : Y. [vi/x]e Def of closure
s
(12) WVt e Halty, (\y: Y.[vj/x]]e) t € Haltz
—
(13) (\y:Y.[vi/x/]e) € Halty_,; Def. of Halty_,

20

The Fundamental Lemma, 4/5

- Case —E:
X XFe:Y—Z xiXre:y :
(1) Xj:XiFee:Z - Assumption
(2) m Fe:Y—Z Subderivation
(3) m ey Subderivation
(4) [m]e € Halty,, Induction
(5) Vte Halty, [v;/x]et € Halty Def of Halty_,
(6) [vi/xj]e’ € Halty Induction
(7) ([m]e) ([m]e’) € Halt; Instantiate (5) w/ (6)
(8) [vi/xil(e €) € Halt; Def. of substitution

21

The Fundamental Lemma, 5/5

- Case OE:
Xj . X,’ Fe:0 o
(1) x :Xi+aborte:Z Assumption
2) X X Fe:o Subderivation

(2)
(3) [W]e € Haltg Induction
B

(4) [vi/xile €0 Def of Haltg
(5) Contradiction!

22

Theorem: There are no terms - ~e: 0.

Proof:
(1) -Fe:0 Assumption
(2) e e Halt Fundamental lemma
(3) eco Definition of Haltg
(4) Contradiction!

23

Conclusions

- Consistency and termination are very closely linked

- We have proved that the simply-typed lambda calculus is
a total programming language

- Since every closed program reduces to a value, and there
are no values of empty type, there are no programs of
empty type

- We seem to have circumvented the Halting Theorem?

- No: we do not accept all terminating programs!

2%

Exercises

1. Extend the logical relation to support products
2. (Harder) Extend the logical relation to support sum types

25

Type Systems

Lecture 4: Datatypes and Polymorphism

Neel Krishnaswami
University of Cambridge

Data Types in the Simply Typed Lambda Calculus

- One of the essential features of programming languages is
data

- So far, we have sums and product types

- This is enough to represent basic datatypes

Booleans

Builtin Encoding
bool 141
true L ()
false R()
if ethen ¢’ else e’ | case(e,L_—€',R_—¢€")

I true : bool I - false : bool

I+ e: bool e :x ree’:x

I+ ifethen e elsee”: X

Builtin Encoding

char bool’ (for ASCII!)

A (true,false, false, false, false, false, true)
'B' (true,false, false, false, false, true, false)

- This is not a wieldy encoding!
- But it works, more or less

- Example: define equality on characters

The STLC gives us:
- Representations of data
- The ability to do conditional branches on data
- The ability to do functional abstraction on operations

- MISSING: the ability to loop

Unbounded Recursion = Inconsistency

MLf:X—=Yx:Xkte:Y
= funy,yfx.e: X—=Y

FIX

e/ A e//

(funx_yfx.e)e ~ (funx_yfx.e)e”

(funxyfx.e)v~ [funxsyfx.e/f,v/x]e

- Modulo type inference, this is basically the typing rule
Ocaml uses
- It permits defining recursive functions very naturally

The Typing of a Perfectly Fine Factorial Function

Ak fact:int — int AFn-1:int
A+ fact(n — 1) : int
At nxfact(n —1) : int

A

I fact:int — int,n:int Fifn=0then 1else n x fact(n — 1) : int

I funipe_int factn.if n = 0 then 1else n x fact(n — 1) : int

A Bad Use of Recursion

f:1—=0x:1f:1—-0 f:1—=0,x:1Fx:1
f:1—=0x:1-fx:0
cEfuniofx.fx:1—=0

(funisofx.fx) () [funisofXx.fx/f,
(funisofXx.fx) (
[funi—o fx.fx/f,

(fumsofx.fx) (

) /X1(fx)
) /X1(fx)

nm < m <

~ o~ ~—

Numbers, More Safely

lFe:N
—— NI, — Nl
N-z:N MN=s(e):N
NFeg: N NFe: X MLx:XkFe: X

I+ iter(eg,z — e1,5(x) = €2) : X

ey ~ €}

iter(ep,z — e1,5(x) — ey) ~ iter(ef,z — eq,5(x) — €3)

iter(z,z — e1,s(x) = €2) ~ e

iter(s(v),z — er,s(x) — ey) ~ [iter(v,z — e1,5(x) — e2)/X]ez

Expressiveness of Godel's T

- Iteration looks like a bounded for-loop

- It is surprisingly expressive:

n+m 2 iter(n,z — m,s(x) — s(x))
nxm £ iter(n,z — z,5(x) = m+x)
pow(n,m) £ iter(m,z — s(z),s(x) — n x x)

- These definitions are primitive recursive

- Our language is more expressive!

The Ackermann-Péter Function

A(0,n) = n+1
A(m +1,0) = A(m,1)
Am+1,n+1) = A(m,A(m+1,n))

- One of the simplest fast-growing functions
- It's not “primitive recursive” (we won't prove this)

- However, it does terminate

- Either m decreases (and n can change arbitrarily), or
- m stays the same and n decreases
- Lexicographic argument

10

The Ackermann-Péter Function in Godel's T

repeat : (N—- N)—->N-—>N
repeat 2 M. An.iter(n,z — f,s(x) — fox)

ack : N->N—=N
ack Am. An.iter(m,z — (Ax.s(x)),s(r) — repeatr)n

[I>

- Proposition: A(n,m) = acknm
- Note the critical use of iteration at “higher type”
- Despite totality, the calculus is extremely powerful

- Functional programmers call things like iter recursion
schemes

n

Data Structures: Lists

MN-e: X e :listX
——— LISTNIL - LISTCONS
MEJ): listx F-e:e:listx

= eq: listX Mlke : Z Fx:Xr:Zke:Z7

I+ fold(eo,[] — e, x:r—ey):2Z

LISTFOLD

12

Data Structures: Lists

ey ~ €} e~ €]

9012€1M€6:2€1 Vo::QqMVOSZQQ

/

fold(eo, [] = e1,x :: r — e) ~ fold(ep, [| — e, x :: 1 — &)

fold([],[] — e, x = r =€) ~ ey

R £ fold(V,[] = e, x 1 — e))

fold(v:: V,[] = ey, x::r — e)) ~ [v/x,R/r]e;

13

Some Functions on Lists

length
length

append
append

map
map

||[> oo |||> oo

H[> oo

listX - N
Axs. fold(xs, [] = z,x =2 r — (1))

list X — listX — listX
M. Ays. fold(xs,[] = ys,x i r— x::r)

(X —=Y) = listX — listY
M. xs. fold(xs, [= [, x = r— (fx) 1)

14

A Logical Perversity

- The Curry-Howard Correspondence tells us to think of
types as propositions
- But what logical propositions do N or listX, correspond to?
- The following biconditionals hold:
+1 <<= N

-1 < listX
N < listX

- So N is “equivalent to” truth?

15

A Practical Perversity

map : (X—Y)— listX — listY

JAN

map = M. Axs.fold(xs,[] = [[,x:=:r— (fx)::r)

- This definition is schematic - it tells us how to define map
for each pair of types X and Y

- However, when writing programs in the STLC+lists, we must
re-define map for each function type we want to apply it at

- This is annoying, since the definition will be identical save
for the types

The Polymorphic Lambda Calculus

Types A = o | A—=B | Va.A
Terms e == x| AXx:A.e | ee | Na.e | eA

- We want to support type polymorphism
- append : Va. lista — lista — lista
- map: Va.VB. (o — B) — lista — listg
- To do this, we introduce type variables and type
polymorphism
- Invented (twice!) in the early 1970s

- By the French logician Jean-Yves Girard (1972)
- By the American computer scientist John C. Reynolds (1974)

Well-formedness of Types

Type Contexts © == - | ©,«
a€c® © F Atype © F B type
©F atype ©F A — Btype
©,aF Atype
©FA— Btype

- Judgement © - A type checks if a type is well-formed
- Because types can have free variables, we need to check if
a type is well-scoped

Well-formedness of Term Contexts

Term Variable Contexts ' == - | ILx:A

© T ctx © Atype
©F - ctx ©FT,x:Atype

- Judgement © T type checks if a term context is
well-formed

- We need this because contexts associate variables with
types, and types now have a well-formedness condition

19

Typing for System F

X:Ael
O TEx:A

© F Atype ©,Ix:Ake:B
©,TFX:Ae:A—B

O;T+-e:A—=B Orre:A

O;Tee:B
,a;Tke:B ©;TFe:Va.B © F Atype
©; I+ Aa.e:Va.B O;l'-eA:|[A/a]B

- Note the presence of substitution in the typing rules!
20

The Bookkeeping

- Ultimately, we want to prove type safety for System F

- However, the introduction of type variables means that a
fair amount of additional administrative overhead is
introduced

- This may look intimidating on first glance, BUT really it's
all just about keeping track of the free variables in types

- As a result, none of these lemmas are hard - just a little
tedious

21

Structural Properties and Substitution for Types

1. (Type Weakening) If ©,©@" - A type then ©, 5,0’ I- A type.

2. (Type Exchange) If ©, 8,v,©’ - A type then
©,7,8,0 - Atype

3. (Type Substitution) If © - A type and ©, « I B type then
© - [A/a]B type

- These follow the pattern in lecture 1, except with fewer

cases

- Needed to handle the type application rule

22

Structural Properties and Substitutions for Contexts

1. (Context Weakening) If ©,0" F T ctx then ©, a, © - T ctx

2. (Context Exchange) If ©, 8,~,©' F T ctx then
©,7,5,0 T ctx

3. (Context Substitution) If © - A type and ©,a I I type then
© + [A/a]l type

- This just lifts the type-level structural properties to
contexts

23

Regularity of Typing

Regularity: If©@ T ctxand ©;T e : Athen © | A type
Proof: By induction on the derivation of ©;T e : A

- This just says if typechecking succeeds, then it found a
well-formed type

24

Structural Properties and Substitution of Types into Terms

- (Type Weakening of Terms) If ©,©’ - T ctx and
0,0 ;TFe:Athen©,0,0 ;T Fe:A.

- (Type Contraction of Terms) If ©,a, 8,©’ T ctx and
0,a,8,0T+e:Athen©,8,0,0" ;T Fe:A.

- (Type Substitution of Terms) If ©,a T ctx and © - A type
and ©,a;THe:Bthen ©;[A/a]l F[A/ale : [A/a]B.

25

Structural Properties and Substitution for Term Variables

- (Weakening of Terms) If © - T, ctx and © F B type and
O;IIM~e:Athen®;ly:BI"Fe:A

- (Contraction of Terms) If © - T,y : B,z : C, I’ ctx and
O;ly:B,z:CI"+e:A then©;l,z:Cy:BT"Fe:A

- (Substitution of Terms) If ©@ - T, x: Actxand ©;T - e: A
and ©;I,x: Ak e :Bthen ©;T +[e/x]e' : B.

- There are two sets of substitution theorems, since there
are two contexts

- We also need to assume well-formedness conditions

- But the proofs are all otherwise similar

26

Conclusion

- We have seen how data works in the pure lambda calculus

- We have started to make it more useful with
polymorphism

- But where did the data go in System F? (Next lecture!)

27

Type Systems
Lecture 5: System F and Church Encodings

Neel Krishnaswami
University of Cambridge

System F, The Girard-Reynolds Polymorphic Lambda Calculus

Types A = a| A=-B | Va. A
Terms e = X | M:Ae| ee | Na.e | eA
Type Contexts © == - | ©,«a
Term Contexts I == - | ILx:A
Judgement Notation
Well-formedness of types © F Atype

Well-formedness of term contexts | © - T ctx
Term typing OFT:eA

Well-formedness of Types

a €0 © F Atype © F B type
O F a type ©FA— Btype
©,aF Atype
©FA— Btype

- Judgement © - A type checks if a type is well-formed
- Because types can have free variables, we need to check if
a type is well-scoped

Well-formedness of Term Contexts

Term Variable Contexts ' == - | ILx:A

© T ctx © Atype
©F - ctx ©FT,x:Atype

- Judgement © T type checks if a term context is
well-formed

- We need this because contexts associate variables with
types, and types now have a well-formedness condition

Typing for System F

X:Ael
O TEx:A

© F Atype ©,Ix:Ake:B
©,TFX:Ae:A—B

O;T+-e:A—=B Orre:A

O;Tee:B
,a;Tke:B ©;TFe:Va.B © F Atype
©; I+ Aa.e:Va.B O;l'-eA:|[A/a]B

- Note the presence of substitution in the typing rules!

Operational Semantics

Values v == XM:A.e | Aa.e
/ /
— CONGFUN — CONGFUNARG
€0 €1~ €; € Vo €1~ Vg &
FUNEVAL

(M Ae)v~ [v/x]e

e~ e

— — CONGFORALL FORALLEVAL
eA~ e'A (Aa.e)A~ [A/ale

The Bookkeeping

- Ultimately, we want to prove type safety for System F

- However, the introduction of type variables means that a
fair amount of additional administrative overhead is
introduced

- This may look intimidating on first glance, BUT really it's
all just about keeping track of the free variables in types

- As a result, none of these lemmas are hard - just a little
tedious

Structural Properties and Substitution for Types

1. (Type Weakening) If ©,©@" - A type then ©, 5,0’ I- A type.

2. (Type Exchange) If ©, 8,v,©’ - A type then
©,7,8,0 - Atype

3. (Type Substitution) If © - A type and ©, « I B type then
© - [A/a]B type

- These follow the pattern in lecture 1, except with fewer
cases

- Needed to handle the type application rule

Structural Properties and Substitutions for Contexts

1. (Context Weakening) If ©,@" - T ctx then ©,«, ©' F T ctx

2. (Context Exchange) If ©, 8,v,©" - T ctx then
©,7,5,0 - T ctx

3. (Context Substitution) If © - A type and ©,a F T type then
© [A/a]l type

- This just lifts the type-level structural properties to
contexts

+ Proof via induction on derivations of © I ctx

Regularity of Typing

Regularity: If©@ T ctxand ©;T e : Athen © | A type
Proof: By induction on the derivation of ©;T e : A

- This just says if typechecking succeeds, then it found a
well-formed type

Structural Properties and Substitution of Types into Terms

- (Type Weakening of Terms) If ©,©’ - T ctx and
0,0 ;TFe:Athen©,0,0 ;T Fe:A.

- (Type Contraction of Terms) If ©,a, 8,©’ T ctx and
0,a,8,0T+e:Athen©,8,0,0" ;T Fe:A.

- (Type Substitution of Terms) If ©,a T ctx and © - A type
and ©,a;THe:Bthen ©;[A/a]l F[A/ale : [A/a]B.

10

Structural Properties and Substitution for Term Variables

- (Weakening of Terms) If © - I, [’ ctx and © I~ B type and
O;IM"~e:Atheno;ly:B,I"e:A

- (Contraction of Terms) If © =T,y : B,z : C,I’ ctx and
O;My:B,z:CI"'re:Athen©;l,z:C,y:B["Fe:A

- (Substitution of Terms) f @ F T, x:Actxand ©;T e : A
and ©;I,x: A€ :Bthen ©;T +[e/x]e' : B.

n

- There are two sets of substitution theorems, since there
are two contexts

- We also need to assume well-formedness conditions

- But proofs are all otherwise similar to the simply-typed
case

12

Type Safety

Progress: If ;- e : A then either e is a value or e ~ €.

Type preservation: If ;- Fe:Aand e~ e then ;- ¢ : A

13

Progress: Big Lambdas

Proof by induction on derivations:
) ®3)

w-kFe:Va.B - Atype

(1) -FeA:[A/a]B Assumption
(4) e~ e oreisavalue Induction on (2)
Case on (&)
(5) Casee~ e :
(6) eA~s @A by CONGFORALL on (5)
(7) Case e is a value:
(8) e=ANAa.e By canonical forms on (2)
(9) (Aa.e)A~ [A/ale By FORALLEVAL

14

Preservation: Big Lambdas

By induction on the derivation of e ~ €’

FORALLEVAL 4
(1) (Aa.e)A~ [A/ae Assumption
©)
—
o;-Fe:B (4)
—
- Aa.e:Va. B - Atype
(2) o (Aa.e)A: [A/a)B Assumption

(5) - -F[A/ale:[A/a]B Type subst. on (3), (4)

15

Church Encodings: Representing Data with Functions

- System has the types Va.Aand A — B

- No booleans, sums, numbers, tuples or anything else
- Seemingly, there is no data in this calculus

- Surprisingly, it is unnecessary!

- Discovered in 1941 by Alonzo Church

- The idea:

1. Data is used to make choices

2. Based on the choice, you perform different results

3. So we can encode data as functions which take different
possible results, and return the right one

Church Encodings: Booleans

I true : bool I - false : bool

I+ e: bool r-e:x r-e”:x
I+ ifethen e elsee” : X

- Boolean type has two values, true and false
- Conditional switches between two X's based on e's value

Type Encoding

bool L2 Vaa—-a—a

True 2 Ao M a)y aX

False 2 A XMa oy
A

if ethen e’ else e’ : X exe' e

Evaluating Church conditionals

if true then e’ else e’ : A

if false then e’ else e’ : A

true Ae’ e’

(Aa. M :a. Ay - a.x) Ae e’
(M ANy Ax)e e’

Ay :A.e)e’

el

true Ae’ e’

(Aa. Xy a.y)Ae e’
(A :A Ay :Ay) e e’

Ay Ay) e’

e//

Church Encodings: Pairs

Type

Encoding

XxY

(e.€)
fste
snde

| [

Va.(X =Y —a) =«
A AR : X =Y — a.kee
e X (AX: X Ay :Y.x)
eY(M: X Ay:Y.y)

19

Evaluating Church Pairs

fst{e,e’) = (e, &) X(Mx:X.Ay:Y.x)
= (A AR: X =Y = a.kee) X (Ax: X Ay :Y.X)
= (AR:X=Y—=XRee)(M: X Ay:Y.x)
= (M: X Ay:Y.x)ee
= (\:Y.ee
e

snd{e,e’) = (e, &) Y(M: X Ay:VY.y)
= (A AR:X—=Y—= a.kee)Y(M: X Ay:VY.y)
(AR:X—=Y—=Y.Ree) (M: X Ay:Y.y)
= (M: X Ay:VY.y)ee
(

20

Church Encodings: Sums

Type Encoding

X+Y Va.X—a) = (Y= a) =«
Le AN N X—a. Ag:Y— a.fe
Re A N X—a.\g:Y—a.ge

case(e,Lx — e;,Ry —») : Z

eZ(M:X—=Ze)(\:Y—Ze)

21

Evaluating Church Sums

case(Le,Lx — e;,Ry —ey): Z

=(Le)Z(M:X—=Ze) (\y:Y—Ze)

=N A : X = a.\g: Y — a.fe)
Z(AX:X—)Z.&) (/\y Y—)Z.ez)

=N X—=2ZXg:Y—Zfe)
(M:X—=Ze) (\y:Y—Ze)

=(A\g:Y—=Z (M:X—=Zey)e)
(\v:Y—=Ze)

=(M:X—Z.ej)e

= [e/x]e

22

Church Encodings: Natural Numbers

Type Encoding

N Va.a = (o = a) > «

z N NZ:a. XS a— a.z

s(e) N Xz :a.Xs:a—a.S(eazs)

iter(e,z — ez, s(x) = es) : X eXez(Ax: X es)

23

Evaluating Church Naturals

iter(z,z — ez, s(x) — es)
=zXez (M X.es)
=(ANa. \Z:a.Xs:a— a.z2)Xez (Ax: X es)
=(A2: X As: X = X.2)e; (Mx: X.es)

AS X — X.ez) (Ax: X.es)

ez

2%

Evaluating Church Naturals

iter(s(e),z — ez, s(x) — es)
= (s(e)) Xez (Ax: X.es)
=(Na.AZ:a.Xs:a— a.s(eazs))Xe, (Ax: X es)
=(AZ: X As: X—=>X.s(eXzs))e;(Mx: X.es)
=(As: X = X.s(eXe;s))(Mx: X es)
= (M : X es) (eXe; (Mx: X es)))

= (M : X es) iter(e,z — ez, 5(x) — es)

= [iter(e,z — e,,5(X) — es)/X]es

25

Church Encodings: Lists

Type Encoding

listX Va.a—-X—a—a)—=a

(] AN An:a. Xc: X—a—a.n

exe AN dn:a.dXc:X—a—ace(eanc)

fold(e,[] = en,xir—ec):Z=eZey (MX: X Ar:Z.ec)

26

Conclusions

- System F is very simple, and very expressive
- Formal basis of polymorphism in ML, Java, Haskell, etc.

- Surprise: from polymorphism and functions, data is
definable

27

Exercises

= @ N

Prove the regularity lemma.
Define a Church encoding for the unit type.
Define a Church encoding for the empty type.

Define a Church encoding for binary trees, corresponding
to the ML datatype
type tree = Leaf | Node of tree x X % tree.

28

Type Systems

Lecture 6: Existentials, Data Abstraction, and Termination
for System F

Neel Krishnaswami
University of Cambridge

Polymorphism and Data Abstraction

- So far, we have used polymorphism to model datatypes
and genericity

- Reynolds's original motivation was to model data
abstraction

An ML Module Signature

- We introduce an abstract

module type BOOL = sig type t

type t
val yes : t
val no : t
val choose
t ->'a->'a ->

- There are two values, yes
and no of type t

- There is an operation
'3 choose, which takes a t
and two values, and

switches between them.

end

An Implementation

module M1 : BOOL = struct

type t = unit option

let yes = Some ()

let no = None

let choose v ifyes ifno =
match v with
| Some () -> ifyes
| None -> ifno

- Implementation uses
option type over unit

- There are two values, one
for true and one for false

- choose implemented via
pattern matching

end

Another Implementation

module M2 : BOOL = struct
type t = int

let yes = 1 - Implement booleans with
let no = 0 integers
let choose b ifyes ifno = - Use1for true, O for false
if b = 1 then - Why is this okay? (Many
ifyes more integers than
else booleans, after all)
ifno

end

Yet Another Implementation

module M3 : BOOL = struct

type t =
{f : 'a. 'a > 'a > 'a}-lnuﬂementboomanswhh
let yes = Church encoding (plus
{f = fun a b -> a} some Ocaml hacks)
let no =

- |Is this really the same type

{f = fun a b -> b} . :
as in the previous lecture?

let choose b ifyes ifno =
b.f ifyes ifno
end

A Common Pattern

- We have a signature — BOOL — with an abstract type in it

- We choose a concrete implementation of that abstract
type

- We implement the other operations (yes, no, choose) of
the interface in terms of that concrete representation

- Client code cannot identify the representation type
because it sees an abstract type variable t rather than the
representation

Abstract Data Types in System F

Types A == ... | Ja. A
Terms e == ... | pack,g(A,e) | let pack(a,x)=ein ¢
Values v = pack,g(A,Vv)

©,a - Btype O F Atype ©;T'Fe:[A/a]B -
©; T F pack, g(A,e) : Ja. B

©;TFe:da.A O,a;T,x:Ake :C @}—CtypeaE
O;T F let pack(a,X) =eine : C

Operational Semantics for Abstract Types

e~ e

pack, (A, e) ~ pack, g(A,¢€’)

e~ e

let pack(a, x) = eint~ let pack(a,x) =€’ int

let pack(e, x) = pack, g(A,v) in e~ [A/a,v/X]e

Data Abstraction in System F

-_We have a signature with

/an abstract type in it
©,a F Btype - We choose a concrete
OFA type/implementation of that

©;T'+e:[A/a]B abstract type

©;T + pack, g(A,e) : F\We implement the

operations of the interface

O;Ne:Jda.A in terms of the concrete
O, [x:Ak¢€:C representation
EM Client code sees an
©;T I let pack(a,x) =eine : C abstract type variable a

rather than the
representation

Abstract Types Have Existential Type

- No accident we write Ja. B for abstract types!

- This is exactly the same thing as existential quantification
in second-order logic

- Discovered by Mitchell and Plotkin in 1988 - Abstract
Types Have Existential Type

- But Reynolds was thinking about data abstraction in
1976...7

10

A Church Encoding for Existential Types

©,a Btype © F Atype ©;f't+e:[A/a]B .
©;T + pack, g(A,e) : Ja.B

O:le:Ja.B O,a;T,x:BFe:C @I—CtypezlE
O;l F let pack(a,x) =eine : C

Original ‘ Encoding
Ja. B VB. (Ya.B — B) —
pack, g(A,e) NB.AR :Ya.B— .RAe

let pack(a,x) =eine : C e C(Aa. Xx:B.¢)

n

Reduction of the Encoding

let pack(a, x) = pack, g(A,e)ine :C
= pack, g(A,e) C (Aa.) \x: B.¢€)
= (AB.AR:Ya.B— 3.RAe)C (Aa.X\x:B.€)
=(AR:Va.B— C.kRAe) (Aa. x: B.¢)
=(Na.Xx:B.e)Ae
= (M:[A/a]B.[A/ale)) e
= [e/X][A/ale’

12

System F, The Girard-Reynolds Polymorphic Lambda Calculus

Types A = a | A—=B | Va.A
Terms e == x | Mx:A.e | ee | Na.e | eA
Values v = XM:A.e | Aa.e
/ /
ey ~ eo e~ ej
———— CONGFUN —— CONGFUNARG
€0 €1~ €y e Vo 81~ Vg €]
FUNEVAL

(M :A.e)v~ [v/x]e

e~ ¢
—— CONGFORALL FORALLEVAL
eA~ e A (Aa.e)A~ [A/ale

13

So far:

> WP S

We have seen System F and its basic properties

Sketched a proof of type safety

Saw that a variety of datatypes were encodable in it

We saw that even data abstraction was representable in it

We asserted, but did not prove, termination

14

Termination for System F

- We proved termination for the STLC by defining a logical
relation
- This was a family of relations
- Relations defined by recursion on the structure of the type
- Enforced a “hereditary termination” property
- Can we define a logical relation for System F?
- How do we handle free type variables? (i.e., what's the
interpretation of «?)
- How do we handle quantifiers? (i.e., what's the
interpretation of YaA?)

15

Semantic Types

A semantic type is a set of closed terms X such that:

- (Halting) If e € X, then e halts (i.e. e ~* v for some v).
- (Closure) If e~ €, then e’ € X iffe € X.

ldea:

- Build generic properties of the logical relation into the
definition of a type.

- Use this to interpret variables!

Semantic Type Interpretations

a €O O F Atype O+ B type ©,aF Atype
© F atype ©FA — Btype ©FA — Btype

- We can interpret type well-formedness derivations

- Given a type variable context ©, we define will define an
interpretation 6 as a map from dom(©) to semantic types.

Interpretation of Types

[©F atype] 6 = 6(o)
e halts A
[e-HA—Btype] 0 = <(e| Ve' e[OFAtype]o.
(e€') e [©F Btype] 6
e halts A \
[©FVa.Btype] 8 = e| VA X e SemType.
(eA) € [©,aF Btype] (6,X/a)

Note the lack of a link between A and X in the Va. B case

Properties of the Interpretation

- Closure: If 6 is an interpretation for ©, then [© - A type] 0
is a semantic type.

- Exchange: [©,«, 3,0 - A type] = [©, 8,a,©" - A type]
- Weakening: If © - A type, then
[©,aF Atype] (6,X/a) =[© F A type] 6.
- Substitution: If © - A type and ©, a - B type then
[©F[A/a]Btype] 0 = [©,a - Btype] (6,[© F A type] 6)

Each property is proved by induction on a type
well-formedness derivation.

19

Closure: (one half of the) V Case

Closure: If @ interprets ©, then [© I Va. A type] 6 is a type.

Suffices to show: if e~ €, then e € [© - Va. A type] 6 iff
e’ € [©F Va.A type] 6.

o N O U1 &~ W N B O

e~ ¢
e € [©F Va.Atype] ¢
V(C,X). €' Ce [©,aF Atype] (6,X/«)
Assume (C, X)
e Ce[0,at Atype] (6,X/a)
eC~eC
eCe[O,at Atype] (0,X/a)
V(C, X). eCe [©,aF Atype] (0,X/a)
ec[©FVYa.Atype] 0

Assumption
Assumption
Def.

By 2
CONGFORALL ON 0
Induction on 4,5

From 7

20

Substitution: (one half of) the V case

[©,aFV3.Btype] (0,[© F Atype] 6) =[O F [A/a](V5. B) type] 0

1. We assume e € [©,a V3. Btype] (0,[© F A type] 6)
2. We want to show: e € [© F [A/a](VS. B) type] 6.
3. So from 1
V(C,X). eCe[©,,8F Btype] (0,[© F Atype] 0,X/5).
4. For 2, it suffices to show:
V(C,X). eCe O, 8+ [A/a](B) type] (6,X/5).
- Assume (C, X)
- SoeCe[O,a,6F Btype] (0,[0© F Atype] 6,X/05)
- Exchange: eC e [©, 8, a F Btype] (0,X/5,[© F A type] 0)
- Weaken:
eCe[©,8,at Btype] (6,X/5,[0, 8+ Atype] (6,X/8))

- Induction: eC € [©, 8 [A/a]B type] (8,X/3))

The Fundamental Lemma

If we have that

o r
——
C QR X AL Xn cAp e B

- ©OFT ctx
- @ interprets ©

- Foreach x; : Aj € T, we have e¢; € [© - A, type] ¢
Then it follows that:

. [C1/Oé1,...,Ck/ak][&/Xq,...,en/Xn]e S ﬂ@ ~B type]] 0

22

Questions

1. Prove the other direction of the closure property for the
O F Va. A type case.

2. Prove the other direction of the substitution property for
the © Va. A type case.

3. Prove the fundamental lemma for the forall-introduction
case ©:T F Aa.e : Va.A.

23

Type Systems

Lecture 7: Programming with Effects

Neel Krishnaswami
University of Cambridge

Wrapping up Polymorphism

System F is Explicit

We saw that in System F has explicit type abstraction and

application:
©,a;T+e:B ©;l'+e:Va.B © F Atype
©;T+Aa.e:Va.B ©;TFeA:[A/a]B

This is fine in theory, but what do programs look like in
practice?

System F is Very, Very Explicit

Suppose we have a map functional and an iskven function:

map : Va.VB.(a— B) = lista — listg
istven : N — bool

A function taking a list of numbers and applying isEven to it:
map N boolisEven : listN — listbool
If you have a list of lists of natural numbers:

map (listN) (listbool) (map N bool isEven)
: list (ListN) — list (list bool)

The type arguments overwhelm everything else!

Type Inference

- Luckily, ML and Haskell have type inference

- Explicit type applications are omitted — we write
map iskven instead of map N bool iskven

- Constraint propagation via the unification algorithm
figures out what the applications should have been

Example:

map ?a ?b iskven Introduce placeholders ?a and ?b

map ?a ?b : (?a —»7?b) — list?a — list?b

isEven : N — bool So ?a —?b must equal N — bool

?a =N,?b = bool Only choice that makes ?a —+?b = N — bool

Effects

The Story so Far...

- We introduced the simply-typed lambda calculus
- ..and its double life as constructive propositional logic
- We extended it to the polymorphic lambda calculus

- ..and its double life as second-order logic

This is a story of pure, total functional programming

- Sometimes, we write programs that takes an input and
computes an answer:
- Physics simulations
- Compiling programs
- Ray-tracing software
- Other times, we write programs to do things:
- communicate with the world via I/0 and networking
- update and modify physical state (eg, file systems)
- build interactive systems like GUIs
- control physical systems (eg, robots)
- generate random numbers

- PL jargon: pure vs effectful code

Two Paradigms of Effects

- From the POV of type theory, two main classes of effects:
1. State:

- Mutable data structures (hash tables, arrays)
- References/pointers

2. Control:

- Exceptions
- Coroutines/generators
- Nondeterminism

- Other effects (eg, 1/0 and concurrency/multithreading)
can be modelled in terms of state and control effects

- In this lecture, we will focus on state and how to model it

let r = ref 5;;
val r : int ref = {contents = 5}

#lr;;

- :int = 0

r :=Ir + 15;;
- :unit = ()

!'r;;

- :int = 20

- We can create fresh reference with ref e
- We can read a reference with !e

- We can update a reference withe := e

A Type System for State

Types X = 1| N|X=Y]| refX
Terms e == () | n| Mx:Xe]|eée
| newe | le | e=¢ ||

Values % O | n| Mx:Xe |l
Stores o = .| ol:iv
Contexts r o= -] Mnx:X

Store Typings X == - | X, [:X

Operational Semantics

(0;€e9) ~ <a'; 66> (0;e1) ~ <U’; eﬁ>

(o;e0e1) ~ (o' eper) (o;:vo) ~ (o’;voer)

(o; (A X.e)v) ~ (o;[v/X]e)

- Similar to the basic STLC operational rules

- Threads a store o through each transition

Operational Semantics

(g:€) ~ (d’;€) [& dom(o)
(o;newe) ~ (o’;newe’) (o;new V) ~ {(a,1:v);[)
(g:€) ~ (o’ €) l:veo
(o;1e) ~ (o';1€") (o 1) ~ (o; V)
(o;eq) ~ <O'/; e6> (o;e1) ~ <U'; e§>
(0,60 :=e1)~ (o', =€) (0:v0 =€) ~ (o' vp =€)

((o,L:v,0)i L=V~ {(o,1:V,0"): ()

10

Typing for Terms

x:Xerl
Hyp — 1l

S - N
YTk x:X YLTE() >:T'+n:N

Y;Mx:Xke:Y
YTEXMX: Xe: X=Y

— |

>:FT'Fe: X—=Y Y rke: X
Y Ttee:y

—E

- Similar to STLC rules + thread X through all judgements

n

Typing for Imperative Terms

Y:fke: X Y:Fe:refX
REFI —— REFGET
Y:ITFnewe:refX Y:ITEle: X
Y:Ie:refX YITHe:X
REFSET
YTFe:=¢:1
[: XeX
——— REFBAR
Y:IEL:refX

- Usual rules for references

- But why do we have the bare reference rule?
12

Proving Type Safety

- Original progress and preservations talked about
well-typed terms e and evaluation steps e ~ ¢’

- New operational semantics (o; e) ~ (¢’; ') mentions
stores, too.
- To prove type safety, we will need a notion of store typing

13

Store and Configuration Typing

(o:€) : (T:X)

Yo' Y Yook v:X
STORENIL STORECONS
YhEo Y (o L:v) (2 X)

>hFo: X Y.-ke: X
(o;e) : (;X)

CONFIGOK

- Check that all the closed values in the store ¢’ are
well-typed

- Types come from ¥’, checked in store ¥

- Configurations are well-typed if the store and term are

well-typed "

A Broken Theorem

Progress:
If (o;e) : (X;X) then e is a value or (o;e) ~ (d';€').
Preservation:

If (o;e) : (X;X) and (o;e) ~ (o’; €') then (¢/; ¢') : (¥; X).

- One of these theorems is false!

15

The Counterexample to Preservation

Note that

1. (snew()): (-;ref1)
2. (snew())~ ((L:());l) forsome

However, it is not the case that

(L:();) (- ref1)

The heap has grown!

Store Monotonicity

Definition (Store extension):

Define > < ¥/ to mean thereisa ¥X” such that ¥ = ¥,¥".
Lemma (Store Monotonicity):

If ¥ < ¥'then:

1. IfX:TFe: XthenX:TFe: X

2. |fZ|_O'O : ZO then Z/I_O'o : ZO.
The proof is by structural induction on the appropriate
definition.

This property means allocating new references never breaks
the typability of a term.

Substitution and Structural Properties

- (Weakening)

fX: M MFe:XthenX;l,z: Z,"Fe: X
- (Exchange)

f;My:Y,z:Z"be:XthenX; I, z: Zy:Y.["Fe: X
- (Substitution)

IfX;F-e:Xand ;M x: XF e : Zthen X;T + [e/x]e’ : Z.

Type Safety, Repaired

Theorem (Progress):
If (o;e) : (¥X;X) then eis a value or (o;e) ~ (d';€').
Theorem (Preservation):

If (o; e) : (£;X) and (o; e) ~ (o’; €’) then there exists ¥’ > ¥
such that (o’; ¢’) : (¥’; X).

Proof:

- For progress, induction on derivation of ;- e : X

- For preservation, induction on derivation of
(0,) ~ (0" €)

19

A Curious Higher-order Function

- Suppose we have an unknown function in the STLC:
f[(1—=1)—-=1—>N

- Q: What can this function do?

- A: It is a constant function, returning some n

- Q: Why?

- A: No matter what f(g) does with its argument g, it can

only gets () out of it. So the argument can never influence
the value of type N that f produces.

20

The Power of the State

count : (=1 —=1)—N

count f = letr:refN=new0in
letinc:T—1=Xz:1.r:=Ir+1in
flinc)

- This function initializes a counter r

- It creates a function inc which silently increments r
- It passes inc to its argument f

- Then it returns the value of the counter r

- That is, it returns the number of times inc was called!

21

Backpatching with Landin’s Knot

1 let knot : ((int -> int) -> int -> int) -> int -> int =
2 fun f ->

3 let r = ref (fun n -> 0) in

4 let recur = fun n -> !r n in

5 let () =r := fun n -> f recur n in
6 recur

1. Create a reference holding a function
2. Define a function that forwards its argument to the ref

3. Set the reference to a function that calls f on the
forwarder and the argument n

4. Now fwill call itself recursively!

22

Another False Theorem

Not a Theorem: (Termination) Every well-typed program
- Fe: Xterminates.

- Landin’s knot lets us define recursive functions by
backpatching
- As a result, we can write nonterminating programs

- So every type is inhabited, and consistency fails

23

Consistency vs Computation

- Do we have to choose between state/effects and logical
consistency?

- Is there a way to get the best of both?
- Alternately, is there a Curry-Howard interpretation for
effects?

- Next lecture:

- A modal logic suggested by Curry in 1952
- Now known to functional programmers as monads
- Also known as effect systems

2%

Questions

1. Using Landin’s knot, implement the fibonacci function.

2. The type safety proof for state would fail if we added a
C-like free() operation to the reference API.
21 Give a plausible-looking typing rule and operational
semantics for free.
2.2 Find an example of a program that would break.

25

Type Systems

Lecture 8: Using Monads to Control Effects

Neel Krishnaswami
University of Cambridge

Last Lecture

1 let knot : ((int -> int) -> int -> int) -> int -> int =
2 fun f ->

3 let r = ref (fun n -> 0) in

4 let recur = fun n -> !r n in

5 let () =r := fun n -> f recur n in
6 recur

1. Create a reference holding a function
2. Define a function that forwards its argument to the ref

3. Set the reference to a function that calls f on the
forwarder and the argument n

4. Now fwill call itself recursively!

Another False Theorem

Not a Theorem: (Termination) Every well-typed program
- Fe: Xterminates.

- Landin’s knot lets us define recursive functions by
backpatching
- As a result, we can write nonterminating programs

- So every type is inhabited, and consistency fails

What is the Problem?

1. We began with the typed lambda calculus
We added state as a set of primitive operations

We lost consistency

= & N

Problem: unforseen interaction between different parts of
the language

-+ Recursive definitions = state + functions

5. Question: is this a real problem?

What is the Solution?

+ Restrict the use of state:

1. Limit what pointers can store (eg, only to booleans and
integers)

2. Restrict what pointers can refer to (eg, in core safe Rust)

3. We don’t have time to pursue these in this course

- Mark the use of state:
- Distinguish between pure and impure code
- Impure computations can depend on pure ones

- Pure computations cannot depend upon
- Aform of taint tracking

Monads for State

Types X == 1| N|X=>Y | refX | TX
Pure Terms e == () | n| M:Xe|ee | L[| {t}
Impure Terms t newe | le | e:=¢

| letx=e;t | returne
Values v o= () | n| MX:Xe | | {t}
Stores o = -|ol:v
Contexts r == .| nx:X

Store Typings ¥ == - | L, [:X

Typing for Pure Terms

x:Xefl
T Hvp — - N
YirEx:X STE(O 1 >:'n:N
;[x:XkFe:Y YTFe: X—Y Yre:X
—| —E
Y TEX:Xe: X=>Y Y:Tkee:Y
[:XeX Y rEt=X
—— REFBAR — Tl
Y.k L:refx IEA{t:TX

- Similar to STLC rules + thread X through all judgements
- New judgement >; [t = X for imperative computations

Typing for Effectful Terms

Yr-t=X
Y:T'Fe: X Y:T'Fe:refx
REFI ——— REFGET
Y. Fnewe = refX . FEle—X
Y:Tke:refX Y ke X
REFSET
Y TFe:=¢ +1
Y:TFe: X Y;FFe:TX . Ix:XHt+Z
TRET TLET
Y. Freturne - X Y Tkletx=e; t+7

- We now mark potentially effectful terms in the judgement
- Note that return e isn’t effectful - conservative
approximation! 7

A Two-Level Operational Semantics: Pure Part

ey~ €g e~ €

eo €1~ €p e Vo €1~ Vo €] (M : X.e)v~s [v/x]e

- Similar to the basic STLC operational rules

- We no longer thread a store o through each transition!

A Two-Level Operational Semantics: Impure Part, 1/2

e~ e [& dom(o)
(o;newe) ~ (o;newe’) (o;newV) ~ {(o,[:v);return l)
e~ e l:veo
(g;1e) ~ (o;le) (o;1l) ~ {o; return v)
ey~ €p e~ e
(0:€0 :=e1) ~ (o, €y :=e1) (o;Vo :=e1) ~ (o; v =€)

{(o,L:v,0");l:=V) ~ (0,1 V', 0"); return ()

A Two-Level Operational Semantics: Impure Part, 2/2

e~ e

(o; returne) ~ (o;returne’)

e~ e

(o;letx=¢e; t) ~ <a; let x = €'; t>

(o;let x = {returnv}; t1) ~ (o; [v/X]t7)

(o;to) ~ (o' to)
(o;letx = {to}; tr) ~ (o';letx = {tp}; t1)

10

Store and Configuration Typing

(o:€) : (T:X)

Yo' Y Yook v:X
STORENIL STORECONS
YhEo Y (o L:v) (2 X)

YhFo: X ookt X
(o, 1) : (X;X)

CONFIGOK

- Check that all the closed values in the store ¢’ are
well-typed

- Types come from ¥’, checked in store ¥

- Configurations are well-typed if the store and term are

well-typed "

Substitution and Structural Properties, 1/2

- Pure Term Weakening:
fX: M MFe:XthenX;l,z: Z,"Fe: X

- Pure Term Exchange:
f,My:v,z:Z're:XthenL;lz:Z,y:Y,"Fe: X
- Pure Term Substitution:
IfX;FTFe:Xand &;T,x: XFe' :Zthen ;T + [e/x]e’ : Z

12

Substitution and Structural Properties, 2/2

- Effectful Term Weakening:
fX, M M=t=XthenX;I,z: Z,I'=t+ X
- Effectful Term Exchange:
f,My:Y,z:ZI'tt+=XthenX; I, z: Zy:Y,"Ft+X
- Effectful Term Substitution:
IfE,FFe:Xand &M x: XFt+Zthen ;T F [e/x]t + Z

13

Proof Order

1. Prove Pure Term Weakening and Impure Term Weakening
mutually inductively

2. Prove Pure Term Exchange and Impure Term Exchange
mutually inductively

3. Prove Pure Term Substitution and Impure Term
Substitution mutually inductively

Two mutually-recursive judgements = Two
mutually-inductive proofs

14

Store Monotonicity

Definition (Store extension):

Define > < ¥/ to mean thereisa X’ suchthat ¥’ =%, ¥".
Lemma (Store Monotonicity):

If ¥ < ¥’ then:

1. fXTrFe: Xthen¥;T'e: X

2. fX;THt+XthenY; T+t X

3. |f2|—00 120 then le—ao 1 20.
The proof is by structural induction on the appropriate
definition. (Prove 1. and 2. mutually-inductively!)

This property means allocating new references never breaks
the typability of a term.

15

Type Safety for the Monadic Language

Theorem (Progress):
If (o;t) : (£;X) thent =returnv or (c;t) ~ (o’;t').
Theorem (Preservation):

If (o;t) : (¥;X) and (o;t) ~ (o’; t') then there exists ¥’ > *
such that (o/; t') : (¥/; X).

Proof:

- For progress, induction on derivation of ¥; -+t = X

- For preservation, induction on derivation of
(0,) ~ (0" €)

What Have we Accomplished?

- In the monadic language, pure and effectful code is strictly
separated

- As a result, pure programs terminate

- However, we can still write imperative programs

Monads for 1/0

Types X o= 1| N|X=>Y| ToX

Pure Terms e == () | n| Mx:Xe|ee | {t}
Impure Terms t = printe | letx=e; t | returne
Values v o= () | n| MX:Xe | {t}
Contexts r] Ixe X

Monads for 1/0: Typing Pure Terms

x:Xel
Hyp — 1l — NI
Mex:X e :1 N-=n:N
Mx:XkFe:Y MN-e: X—Y r-e':x
—l —E
Fr=Xx:Xe: X—=Y FFee':y
M=t+=X
— T
ME{t}:TX

- Similar to STLC rules (no store typing!)

- New judgement I' - t = X for imperative computations
19

Typing for Effectful Terms

[Fe:N
——— TPRINT
I printe =1
[Fe:X [Fe:TX MKx: XHt=+Z
— TRET TLET
I returne = X MN-letx=e t+7

- TRET and TLET are identical rules

- Difference is in the operations — printe vs get/set/new

20

Operational Semantics for |/O: Pure Part

ey ~ € e~ e

ep e~ ef e Vo €1~ Vg €] (M :X.e)v~ [v/x]e

- |dentical to the pure rules for state!

21

Operational Semantics for |/O: Impure Part

e~ e

(w; printe) ~ (w; printe’) (w; printn) ~ ((n :: w);return ())
e~ e e~ e

(w;returne) ~ {(w; returne’) (wiletx = e; t) ~ (w;letx = €'; t)

(w; let x = {returnv}; t7) ~ (w;[v/x]t1)

(w; to) ~ (w'; tg)

(wiletx = {to}; tr) ~ (i letx = {to}; t)

- State is now a list of output tokens

- All rules otherwise identical except for operations .

Limitations of Monadic Style: Encapsulating Effects

1 let fact : int -> int = fun n ->

2 let r = ref 1 in

3 let rec loop n =

4 match n with

5 | @ -> Ir

6 | n ->1let () =r := !'r * n in
7 loop (n-1)

8 in

9 loop n

- This function use local state
- No caller can tell if it uses state or not
- Should it have a pure type, or a monadic type?

23

Limitations of Monadic Style: Encapsulating Effects

1 let rec find' : ('a -> bool) -> 'a list -> 'a =
2 fun p ys ->

3 match ys with

s | [] -> raise Not_found

5 | v :: ys -> if p y then y else find' p ys

- let find : ('a -> bool) -> 'a list -> 'a option =

8 fun p xs ->
9 try Some (find' p xs)
10 with Not_found -> None

- find' has an effect - it can raise an exception
- But find calls find"', and catches the exception

- Should find have an exception monad in its type?
2%

Limitations of Monadic Style: Combining Effects

Suppose you have two programs:

1 pl : (int -> ans) state
2 p2 : int 1o

- we write a state for a state monad computation
- we write b io foraI/O monad computation

- How do we write a program that does p2, and passes its
argument to p1?

25

Checked Exceptions in Java

- Java checked exceptions implement a simple form of effect
typing

- Method declarations state which exceptions a method can
raise

- Programmer must catch and handle any exceptions they
haven't declared they can raise

- Not much used in modern code - type system too
inflexible

26

Effects in Koka

- Koka is a new language from Microsoft Research

- Uses effect tracking to track totality, partiality, exceptions,
|/0, state and even user-defined effects

- Good playground to understand how monadic effects
could look like in a practical language

- See: https://www.rise4fun.com/koka/tutorial

27

https://www.rise4fun.com/koka/tutorial

Questions

For the monadic I/O language:

1. State the weakening, exchange, and substitution lemmas
2. Define machine configurations and configuration typing

3. State the type safety property

28

Type Systems

Lecture 9: Classical Logic

Neel Krishnaswami
University of Cambridge

Where We Are

We have seen the Curry Howard correspondence:

- Intuitionistic propositional logic «+— Simply-typed lambda

calculus
- Second-order intuitionistic logic «— Polymorphic lambda

calculus
We have seen effectful programs:

- State
- 1/0
- Monads

But what about:

- Control operators (eg, exceptions, goto, etc)
- Classical logic

A Review of Intuitionistic Propositional Logic

Pew
—— HypP — TI
VY Ptrue VT true
VI Ptrue VY F Qtrue | U Py AP, true :
A NE;
Wk PAQtrue W P; true '
U, P Qtrue VI PDQtrue VU Ptrue

Dl DE
VI P>DAQtrue U Q true

Disjunction and Falsehood

WV Ptrue VU F Qtrue
——— Vh ——— Vb
Y PVAQtrue VI PVQtrue

VI PvAQtrue V. PF Rtrue V., QF Rtrue

VI R true

VE

VU | true
(no intro for 1) VI R true

Intuitionistic Propositional Logic

- Key judgement: ¥ - R true
- “If everything in W is true, then R is true”
- Negation =P is a derived notion
- Definition: =P =P — L
- “Not P" means “P implies false”
- To refute P means to give a proof that P implies false

What if we treat refutations as a first-class notion?

A Calculus of Truth and Falsehood

Propositions A == T | AAB| L | AvB | -A
Truecontexts I == - | T,A
False contexts A == - | AA

Proofs MAFA true IfTistrue and A isfalse, A is true

Refutations M AFAfalse IfTistrue and A is false, A is false
Contradictions T:;AF contr T and A contradict one another

- —A is primitive (no implication A — B)

- Eventually, we'll encode itas AV B

Ael

——————— HvP
I AFA true

- TP
(No rule for L) AT true

I AFA true I AF B true
AFAAB true

AP

I AFA true [AFB true
VP, VP,
AFAVB true AFAVB true

I AF Afalse -
MAF-A trueﬁ 6

Refutations

AeA
— Hyp
AR Afalse
— IR
(No rule for T) I AF L false
I AFAfalse I AF Bfalse "
v
AFAVBfalse
I AFAfalse I A F B false
AR4 ARz
M AFAABfalse I AFAABfalse

I AFA true .
I A F —A false 7

75% of the Way to Classical Logic

Connective | To Prove To Refute
T Do nothing | Impossible!
AANB Prove A and | Refute A or
prove B refute B
1 Impossible! | Do nothing
AV B Prove A or Refute A and
prove B refute B
—A Refute A Prove A

Something We Can Prove: A entails ——A

— Hyp
A: -+ A true

A; -+ —A false
A; - —=—A true

-

Something We Cannot Prove: ——A entails A

77

—-—A;- F A true

- There is no rule that applies in this case
- Proofs and refutations are mutually recursive

- But we have no way to use assumptions!

10

Something Else We Cannot Prove: A A B entails A

77

ANB;-FA true
- This is intuitionistically valid: Ax : A x B.fstx

- But it's not derivable here

- Again, we can't use hypotheses nontrivially

n

A Bold Assumption

- Proofs and refutations are perfectly symmetrical
- This suggests the following idea:

1. To refute A means to give direct evidence it is false

2. This is also how we prove —A

3. If we show a contradiction from assuming A is false, we
have proved it

4. If we can show a contradiction from assuming A is true, we
have refuted it

A A contr [A; A F contr
I AFA true I AR Afalse

12

Contradictions

M AFA true A Afalse
I A F contr

CONTR

- A contradiction arises when A has a proof and a refutation

13

Double Negation Elimination

—-—A; A - A false
——A;A A true
——A; A+ ——A true ——A; A - ——A false
—-—A; At contr
——A;- A true

14

Projections: A A B entails A

AN B; A Afalse
ANB;AEAANB true ANB;AEAABfalse
AN B;AF contr
AAB;-FA true

15

Projections: AV B false entails A false

A;AV BEA true
A;AV BE AV Bfalse A;AVBEAVB true
A;AV B F contr
<AV BF Afalse

The Excluded Middle

AV -AL Afalse
<AV -AE A true
AV -AERAV -A true SAV-AE AV -Afalse
AV -AE contr
AV A true

Proof (and Refutation) Terms

Propositions A
True contexts I
False contexts A
Values e

Continuations R

Contradictions ¢

T|AAB| L |AVvB | —-A

| Tox: A

| AjucA

O | (ee) | Le | Re | not(k)
uu s A.c

[l | [kR,R] | fstk | sndk | not(e)
ux:A.c

(e la k)

Expressions — Proof Terms

X:Ael
AFX:Atrue

Hyp

TP

(No rule for 1) AR ()T true

MAFe:Atrue AR e :Btrue
M AF (e e):ANBtrue

AP

M AFe:Atrue At e:Btrue
VP, VP,
AFLe:AvVBtrue AFRe:AVBtrue

MAFR:Afalse
I A not(R) : —A true 19

Continuations — Refutation Terms

X:AeA
MAFx:Afalse

Hyp

1R
(No rule for T) AR : L false
Ak R:Afalse I AFFK :Bfalse "
v
MAE [l?,/?’] : AV Bfalse
MAFFR:Afalse AR Fk:Bfalse
AR4 ARy
M AFfstk:AABfalse MAFsndk:AABfalse

AFe:Atrue
[A not(e) : —A false 20

Contradictions

AFe:Atrue AR R:Afalse
I AF (e |aR) contr

CONTR

A, u:AlF ccontr IHx:A Al ccontr
AR pu:A.c:Atrue AR pux:A.c:Afalse

21

Operational Semantics

((e1,€2) [ang fStR) = (e1a k)
((e1,€2) |ang SNAR) — (es [k)
(Lelave [Ri Ry = (ela ki)
(Relavs [Ri,R2]) = (elp k)
(not(R) [-a not(e)) — (e a k)
(pu = Aclak) — [R/ulc

(efapx:A.C) — [e/x]c

22

A Bit of Non-Determinism

(uu :A.clapx Ay — 72

- Two rules apply!

- Different choices of priority correspond to evaluation
order

- Similar situation in the simply-typed lambda calculus
- The STLC is confluent, so evaluation order doesn’'t matter

- But in the classical case, evaluation order matters a lot!

23

Metatheory: Substitution

- IfII;AFe:Atrue then
1. IfMx:A;AFe : CtruethenT; A F [e/x]e’ : Ctrue.
2. IfT,x: A, A k:Cfalse then T; A+ [e/x]k : C false.
3. If I,x: A; A+ ccontrthen T; A F [e/x]c contr.

< If I A R:Afalse then
1. IfT; A u: Ak e : Ctrue then T; A+ [R/ule’ : C true.
2. If ;A x: A R : Cfalse then T; A+ [R/u]k : C false.
3. If ;A u: Ak ccontrthen T; A & [R/u]c contr.

- We also need to prove weakening and exchange!
- Because there are 2 kinds of assumptions, and 3 kinds of

judgement, there are 2 x 3 = 6 lemmas!

2%

What Is This For?

- We have introduced a proof theory for classical logic
- Expected tautologies and metatheory holds...

- ..but it looks totally different from STLC?

- Computationally, this is a calculus for stack machines

- Related to continuation passing style (next lecture!)

25

Questions

1. Show that =A Vv B, A; -+ B true is derivable
2. Show that =(-=A A =B);- = AV B true is derivable

3. Prove substitution for values (you may assume exchange
and weakening hold).

26

Type Systems

Lecture 10: Classical Logic and Continuation-Passing Style

Neel Krishnaswami
University of Cambridge

Proof (and Refutation) Terms

Propositions A
True contexts I
False contexts A
Values e

Continuations R

Contradictions ¢

T|AAB| L |AVvB | —-A

| Tox: A

| AjucA

O | (ee) | Le | Re | not(k)
uu s A.c

[l | [kR,R] | fstk | sndk | not(e)
ux:A.c

(e la k)

Expressions — Proof Terms

X:Ael
AFX:Atrue

Hyp

TP

(No rule for 1) AR ()T true

MAFe:Atrue AR e :Btrue
M AF (e e):ANBtrue

AP

M AFe:Atrue At e:Btrue
VP, VP,
AFLe:AvVBtrue AFRe:AVBtrue

AR kR:Afalse
I A not(R) : —A true 2

Continuations — Refutation Terms

X:AeA
MAFx:Afalse

Hyp

1R
(No rule for T) AR : L false
Ak R:Afalse I AFFK :Bfalse "
v
MAE [l?,/?’] : AV Bfalse
MAFFR:Afalse AR Fk:Bfalse
AR4 ARy
M AFfstk:AABfalse MAFsndk:AABfalse

AFe:Atrue
[A not(e) : —A false 3

Contradictions

AFe:Atrue AR R:Afalse
I AF (e |aR) contr

CONTR

A, u:AlF ccontr IHx:A Al ccontr
AR pu:A.c:Atrue AR pux:A.c:Afalse

Operational Semantics

((e1,€2) [ang fStR) = (e1|a k)
((e1,€2) |ang SNAR) — (e, |g R)
(Lelave [Ri Ry = (ela ki)
(Relavs [R1,Ra]) = (es ko)

(not(R) |-a not(e)) +— (e a k)

(uu :A.c|a k) — [R/u]c

(e|aux:A.c) — [e/X]c

Type Safety?

Preservation If -;- - ¢ contr and ¢ ~ ¢’ then -;- I ¢’ contr.
Proof By case analysis on evaluation derivations!

(We don't even need induction!)

Type Preservation

<<e% €2> |A/\B fst ’?> s <€1 ‘A f’?>

Q))
I AF (e,e)) : AABtrue I Ak fstk: AABfalse

[A E ({e1,e2) |ans TSLR) contr
®3)

——
[AFe:Atrue [AFe:Btrue
I Al (er,e) : AABtrue

(4)
——N——
AR FR:Afalse
AR4
M AFfstk:AABfalse

- (er |a R) contr

Assumption

Assumption

Analysis of (1)

Analysis of (2)

By rule on (3), (
7

Progress?

Progress? If -;- - ¢ contr then ¢ ~ ¢ (or ¢ final).

Proof:

1. A closed term c is a contradiction
2. Hopefully, there aren't any contradictions!

3. So this theorem is vacuous (assuming classical logic is
consistent)

Making Progress Less Vacuous

Propositions A == ... | ans
Values e == ... | halt
Continuations kR == ... | done

A+ halt:anstrue At done: ans false

Progress

Progress If -;- F ¢ contr then ¢ ~ ¢’ or ¢ = (halt |ans dOne).

Proof By induction on typing derivations

10

The Price of Progress

ILA; A+ ans true I,A; A+ ans false

I AAF ans true I A,AF ans false I A; A+ contr
I A,A+ contr I A Afalse
I AFA true I AF—A true

IAFAASA true

- As a term:
(uu = A.(halt | done), not(ux : A. (halt | done)))

- Adding a halt configuration makes classical logic
inconsistent — A A —A is derivable

n

Embedding Classical Logic into Intuitionistic Logic

- Intuitionistic logic has a clean computational reading
- Classical logic almost has a clean computational reading

- Q: Is there any way to equip classical logic with
computational meaning?

- A: Embed classical logic into intuitionistic logic

12

The Double Negation Translation

- Fix an intuitionistic proposition p
- Define “quasi-negation” ~Xas X — p

- Now, we can define a translation on types as follows:

(A = A
Te = 1
(AANB)° = A°xB°
L° =P

(AVB) = ~n(A°+ B°)

13

Triple-Negation Elimination

In general, =——X — X is not derivable constructively. However,
the following is derivable:

Lemma For all X, there is a function tne : (~~~X) — ~X

...Fg: X—=p oo BExe X
R:mrn X, X:X,q:~XEQgx:p
R:romX X XEAG.g X ~ooX
R:~r~~X x: XER(ANG.GX) D
ki~~~ X EAXXCR(AG.ga) @ ~X
“F AR AG.R(AG.qa) : (X)) — ~X

tne

14

Intuitionistic Double Negation Elimination

Lemma For all A, there is a term dney such that
- dney 1 ~~A° — A°
Proof By induction on A.

dner = M. ()

B dnea (Ak. g (Ap. R (fstp))),
weme = /\p.< dneB()\l?.q()\p.l?(sndp)))>

dne; = Ag.q(M.x)
dneave = Aq:~~~~(A°V B°).theqg
~———
(AVvB)°
dne_a = Ag:~~(~A%).tneqg
N——

(=4)°

15

Double Negation Elimination for L

qg:(p—=p)—=px:pkx:p
qg:(p—p)—pFq:(p—p)—p q:(p—=p)—=pEAX:p.Xx:p
q:(p—=p)—=pFqgx:p.x):p
FAG:(p—=p) = p.qM:p.X):((p—>p)—=p)—Pp
“EAG i ~~p.g(AXpX) s ~ep =D
EAG o~ Ll g(MX i paX) t e 0 — L°

Translating Derivations

Theorem Classical terms embed into intutionistic terms:

1. IfI;AFe:Atruethen e, ~AF e°: A°.
2. IfI A kR:Afalse then I, ~A F R° : ~A°.
3. IfIAFccontrthen e, ~AFc®:p.

Proof By induction on derivations — but first, we have to define
the translation!

Translating Contexts

Translating Value Contexts:

(M,x:A)° = T°x:A°

Translating Continuation Contexts:

~(Mox:A) = ~Ix: ~A°

Translating Contradictions

AFe:Atrue MAFFR:Afalse
I AF (e|aR) contr

CONTR

Define:
(elaR) = R°e°

19

Translating (Most) Expressions

X° = X

()° = 0

<e1’ez>o = <e70ae2o>

(Le)® = Ak:~(A°+B°).k(Le%)
(Re)° = Ak:~(A°+B°).k(Re)
(not(R)° = K°

20

Translating (Most) Continuations

X° = X
10° = AX:ans.x
[R1,R2]° = AR:~~(A°+ B°).
R (A A° + B°.

case(i,Lx — Ry x,Ry — RS y))
(fstk)° = Ap: (A° x B°).R°(fstp)
(sndR)® = Ap:(A° x B°).k°(sndp)
(not(e))® = AR:~A°.Re°

~—

(=4)°

21

Translating Proof by Contradiction

A u:AlE ccontr
IAFpu:A.c:Atrue

1 Te,~(Ayu:A)Fc®:p Assumption
2 T, ~Au:~A°HC:p Def. of ~ on contexts
3 O ~AF A ~AS.CO: ~A® 5 p =y
L TP ~AF AU ~A°.CO 0 ~nA° Def. of ~ on types
5 T°,~AFdnea(Au:u:~A°c?):A° —E
So we define

(uu : A.c)® =dnea(Au : ~A°.C°)

22

Translating Refutation by Contradiction

MLx:A, Ak ccontr
AR px:A c:Afalse

1. We assume I, x : A°, ~AFc°:p
2.50T° x:A°, ~AFCc°:p

3. SO, ~AFM:A°C°:A° =D
4, SOTO, ~AF X : A% O ~A°

So we define
(ux:A.C)° = Mx:A°.c°

23

Consequences

- We now have a proof that every classical proof has a
corresponding intuitionistic proof

- So classical logic is a subsystem of intuitionistic logic

- Because intuitionistic logic is consistent, so is classical
logic

- Classical logic can inherit operational semantics from
intuitionistic logic!

2%

Many Different Embeddings

- Many different translations of classical logic were
discovered many times
- Gerhard Gentzen and Kurt Godel
- Andrey Kolmogorov
- Valery Glivenko
- Sigekatu Kuroda

- The key property is to show that ~~A° — A° holds.

25

The Godel-Gentzen Translation

Now, we can define a translation on types as follows:

—-A° = ~A°

Te = 1

(AANB)” = A°xB°

L° = p

(AVB)®? = ~(~A°x ~B°)

- This uses a different de Morgan duality for disjunction

26

The Kolmogorov Translation

Now, we can define another translation on types as follows:

i i
ADB = ~~(A®— B*)
Te — o]
(AAB)® = ~~f(A® x B*)
1° = ~~1
(AVB)® = ~~(A®+B°)

- Uniformly stick a double-negation in front of each
connective.
- Deriving ~~A® — A® is particularly easy:
- The tne term will always work!

27

Implementing Classical Logic Axiomatically

- The proof theory of classical logic is elegant
- Itis also very awkward to use:

- Binding only arises from proof by contradiction
- Difficult to write nested computations
- Continuations/stacks are always explicit

- Functional languages make the stack implicit

- Can we make the continuations implicit?

28

The Typed Lambda Calculus with Continuations

Types X
Terms e

Contexts T

T XxY | O | X4+Y | XY | X

x| () | (e,ey | fste | snde

abort | Le | Re | case(e,Lx — e',Ry — €")
M:X.e | eée

throw(e,e’) | letcontx. e

| Tox: X

29

Units and Pairs

— 1
()1

MNFe: X r-e:y
M- {ee): XxY

x|

[Fe: XxY [Fe: XxY
x E1 T s

-fste: X Fsnde:Y

30

Functions and Variables

X:Xel x:XkFe:Y
—— Hvp -l
MN=x:X NMEXx:Xe: X—=Y

lFe: X—=Y r-e:x
Free:y

—E

31

Sums and the Empty Type

N-e: X —e:Y
—+|1 - +|2
N=Le:X4+Y FRe: X+4+Y

Ne: X+Y Mx:Xkée:Z ry:Yre':z
I+ case(e,Lx —e',Ry —¢€"):Z

+E

Fe:0

—— 0OE
(no intro for 0) I+ aborte: Z

32

Continuation Typing

MLu:—-XkFe:X NFe: =X r-e:x
CONT THROW
I+ letcontu: X.e: X [+ throwy(e,e’) : Y

33

Double-negation elimination:

dney : —-—X—=X
dnex £ ARk:-—X.letcontu : —=X. throw(k, u)

The Excluded Middle:
t: XV =X
t = letcontu : =(X Vv —X).

throw(u, R (letcontqg : =—X.
throw(u, L (dnex q)))

34

Continuation-Passing Style (CPS) Translation

Type translation:

-X® = ~onoX®
X—=Y = ~~X* =Y
1° =~

(XxY)® = ~~(X*xY°)
0° = ~~0

X+Y)® = ~~(X*+Y*)

Translating contexts:
(T,x:A)® = T*x:A®

35

The CPS Translation Theorem

Theorem If T=e: XthenT®Fe®: X°.

Proof: By induction on derivations — we “just” need to define
e*.

36

The CPS Translation

(M :X.e)*
(er€2)°

AR.XR
AR.R ()
AR. e (Ax. e2°* (A\y. R(X,Y)))
AR.e® (Ap. R (fstp))
Ak.e® (A\p.k(sndp))
AR.e® (Ax. R (Lx))
AR.e* (Ay. R (Ry))
AR.e® (Av. case(v,
Lx = ejk
Ry — e3R)
AR.R(AX: X®.e®)
AR.eS (Af. e (Ax. R(fx)))

37

The CPS Translation for Continuations

(letcontu : =X.e)* = AR.[(Ag.qR)/u](e®)

throw(es, e;)* = tne(e})es

- The rest of the CPS translation is bookkeeping to enable
these two clauses to work!

38

Questions

1. Give the embedding (ie, the e® and k° translations) of
classical into intuitionistic logic for the Godel-Gentzen
translation. You just need to give the embeddings for
sums, since that is the only case different from lecture.

2. Using the intuitionistic calculus extended with
continuations, give a typed term proving Peirce’s law:

(X=Y)=X)=X

39

Type Systems

Lecture 11: Applications of Continuations, and Dependent
Types

Neel Krishnaswami
University of Cambridge

Applications of Continuations

Applications of Continuations

We have seen that:

- Classical logic has a beautiful inference system

- Embeds into constructive logic via double-negation
translations

- This yields an operational interpretation

- What can we program with continuations?

The Typed Lambda Calculus with Continuations

Types X
Terms e

Contexts T

T XxY | O | X4+Y | XY | X

x| () | (e,ey | fste | snde

abort | Le | Re | case(e,Lx — e',Ry — €")
M:X.e | eée

throw(e,e’) | letcontx. e

| Tox: X

Continuation Typing

MLu:—-XkFe:X NFe:—X r-e: X
CONT THROW
I+ letcontu: —X.e: X I+ throwy(e,e’) : Y

Continuation API in Standard ML

1 signature CONT = sig
2 type 'a cont
3 val callcc : ('a cont -> 'a) -> 'a
4 val throw : 'a cont -> 'a -> 'b
5 end
SML ‘ Type Theory
'a cont —A
throw k v throw(k, v)

callcc (fn x => e) | letcontx: —X. e

An Inefficient Program

1 val mul : int list -> int

2

3 fun mul [] =1

1 | mul (n :: ns) = n * mul ns

- This function multiplies a list of integers
- If 0 occurs in the list, the whole result is 0

A Less Inefficient Program

1 val mul' : int list -> int

2

3 fun mul' [] =1

4 | mul' (0@ :: ns) =0

5 | mul' (n :: ns) = n * mul ns

- This function multiplies a list of integers
- If 0 occurs in the list, it immediately returns 0
- mul' [0,1,2,3,4,5,6,7,8,9] will immediately return
- mul' [1,2,3,4,5,6,7,8,9,0] will multiply by 0, 9
times

Even Less Inefficiency, via Escape Continuations

1 val loop = fn : int cont -> int list -> int

2 fun loop return [] 5 1l

3 | loop return (0 :: ns) = throw return 0

4 | loop return (n :: ns) = n % loop return ns

5

6 val mul_fast : int list -> int

7 fun mul_fast ns = callcc (fn ret => loop ret ns)

- Loop multiplies its arguments, unless it hits 0

- In that case, it throws 0 to its continuation

- mul_fast captures its continuation, and passes it to
loop

- So if Loop finds 0, it does no multiplications!

McCarthy’s amb Primitive

- In 1961, John McCarthy (inventor of Lisp) proposed a
language construct amb
- This was an operator for angelic nondeterminism

1 let val x = amb [1,2,3]
2 val y = amb [4,5,6]
3 in

1 assert (x vy = 10);
5 (X, y)

6 end

7 (* Returns (2,5) =*)

- Does search to find a succesful assignment of values
- Can be implemented via backtracking - using
continuations

The AMB signature

1 signature AMB = sig

5 (* Internal implementation x)

3 val stack : int option cont list ref
4 val fail : unit -> 'a

5

6 (* External API =)

7 exception AmbFail

8 val assert : bool -> unit

9 val amb : int list -> int

10 end

Implementation, Part 1

exception AmbFail

- AmbFail is the failure

exception for unsatisfiable
computations

- stack is a stack of

val stack
int option cont list ref
= ref []
fun fail () =
case !stack of
[] => raise AmbFail

| (k :: ks) => (stack := ks;
throw k NONE)

backtrack points

fail grabs the topmost
backtrack point, and
resumes execution there

- assert backtracks if its

fun assert b =
if b then () else fail()

condition is false

10

Implementation, Part 2

amb [] backtracks

immediately!

P b [] Fail () next y k pushes
Lorunan - rat k onto the backtrack
2 | amb (x :: xs) =
5 let fun next y k = stack, and returns
4 (stack := k :: !stack; SOME 'y
5 SOME y) - Save the backtrack
o n /point, then see
7 case callcc (next x) of if we immediately
s SOME v => ve—

9 | NONE => amb xs . ' .
o . T ifwe are resuming

from a backtrack
point and must try

the other values »

1 fun test2()

2 let val x = amb [1,2,3,4,5,6]
3 val y = amb [1,2,3,4,5,6]
1 val z = amb [1,2,3,4,5,6]
5 in

6 assert(x + vy + z >= 13);
7 assert(x > 1);

8 assert(y > 1);

9 assert(z > 1);

10 (x, vy, z)

11 end

12

13 (* Returns (2, 5, 6) *)

12

Conclusions

- amb required the combination of state and continuations

- Theorem of Andrzej Filinski that this is universal

- Any “definable monadic effect” can be expressed as a
combination of state and first-class control:

- Exceptions

- Green threads

- Coroutines/generators

- Random number generation
- Nondeterminism

13

Dependent Types

The Curry Howard Correspondence

Logic \ Language

Intuitionistic Propositional Logic | STLC

Classical Propositional Logic STLC + 15 class continuations
Pure Second-Order Logic System F

- Each logical system has a corresponding computational
system

- One thing is missing, however
- Mathematics uses quantification over individual elements

- Eg, Vx,y,z,n € N. if n > 2 then x" + y" # 72"

14

A Logical Curiosity

Fe:N
——— NI, — Nl
MFz:N MFs(e): N

Fep: N e : X F,X:Xl—eszNE

I+ iter(eg,z — e1,5(x) = €3) : X

- Nis the type of natural numbers

- Logically, it is equivalent to the unit type:
- (MX:1.2): 1= N
- (M:N.()):N—1

- Language of types has no way of distinguishing z from s(z).

15

Dependent Types

- Language of types has no way of distinguishing z from s(2).

- So let's fix that: let types refer to values
- Type grammar and term grammar mutually recursive

- Huge gain in expressive power

An Introduction to Agda

- Much of earlier course leaned on prior knowledge of ML
for motivation

- Before we get to the theory of dependent types, let's look
at an implementation

- Agda: a dependently-typed functional programming
language

- http:
//wiki.portal.chalmers.se/agda/pmwiki.php

http://wiki.portal.chalmers.se/agda/pmwiki.php
http://wiki.portal.chalmers.se/agda/pmwiki.php

Agda: Basic Datatypes

1 data Bool : Set where
2 true : Bool
3 false : Bool

- Datatype declarations give
constructors and their
types

- Functions given type

signature, and clausal
definition

5 not : Bool = Bool
¢ not true = false
7 not false = true

Agda: Inductive Datatypes

1

10

11

data Nat Set where
Z Nat
S Nat > Nat
+ : Nat » Nat » Nat
z m=m
s n m=s (n +m)
x Nat » Nat 2 Nat
z m= z
s n m=m=+ (n x m)

- Datatype constructors can

be recursive

- Functions can be recursive,

but checked for
termination

19

Agda: Polymorphic Datatypes

10

11

data List (A : Set) : Set where
[1 : List A
, : A > List A > List A

app : (A : Set) » List A » List A » List A
app A [] ys = ys
app A (x , xs) ys = x , app A XS ys

app' : {A : Set} » List A » List A > List A
app' [1 ys =ys
app' (x , xs) ys = (x , app' xs ys)

- Datatypes can be polymorphic
- app has F-style explicit polymorphism

- app' has implicit, inferred polymorphism
20

Agda: Indexed Datatypes

1 data Vec (A : Set) : Nat » Set where
2 []1 : Vec A z
3 ~,_ : {n : Nat} > A > Vec An > Vec A (s n)

- This is a length-indexed list

Cons takes a head and a list of length n, and produces a
list of length n + 1

. The empty list has a length of 0

21

Agda: Indexed Datatypes

1 data Vec (A : Set) : Nat 2> Set where
2 [] : Vec A z
3 ,_: {n : Nat} > A > Vec An > Vec A (s n)

5 head : {A : Set} » {n : Nat} » Vec A (s n) > A
¢ head (x , xs) = x

- head takes a list of length > 0, and returns an element
- No [] pattern present
- Not needed for coverage checking!

- Note that {n:Nat} is also an implicit (inferred) argument

22

Agda: Indexed Datatypes

1 data Vec (A : Set) : Nat » Set where
2 [1 : Vec A z
3 _,_ + {in : Nat} > A > Vec An > Vec A (s n)

5 app : {A : Set} > {nm : Nat} >

6 Vec An > Vec Am=> Vec A (n + m)
7 app [] ys = ys

s app (x , xs) ys = (x , app Xs ys)

- Note the appearance of n + min the type

- This type guarantees that appending two vectors yields a
vector whose length is the sum of the two

23

Agda: Indexed Datatypes

1 data Vec (A : Set) : Nat - Set where
2 [1 : Vec A z

3 _,_ + {n : Nat} > A > Vec An > Vec A (s n)
4

5 -- Won't typecheck!

¢ app : {A : Set} > {nm : Nat} »

7 Vec An>Vec Am=> Vec A (n + m)

s app [] ys = ys
o app (x , XS) ys = app XS ys

- We forgot to cons%

- This program won't type check!
- Static typechecking ensures a runtime guarantee

2%

The Identity Type

data = {A : Set} (a : A) : A > Set where
refl : a = a

- a = bisthe type of proofs that a and b are equal
- The constructor ref1 says that a term a is equal to itself
- Equalities arising from evaluation are automatic

- Other equalities have to be proved

25

An Automatic Theorem

data = {A : Set} (a : A) : A > Set where
refl : a = a

+ : Nat » Nat » Nat
Z +m=m
sn+m=s (n+m)

z-+-left-unit : (n : Nat) » (z + n) = n
z-+-left-unit n = refl

z + nevaluateston

- So Agda considers these two terms to be identical

26

A Manual Theorem

data = {A : Set} (a : A) : A > Set where
refl : a = a

cong : {A B : Set} > {a a' : A} >

(f : A>B)>(a=a')>(fa=fa')
cong f refl = refl
z-+-right-unit : (n : Nat) = (n + z) = n

z-+-right-unit z = refl
z-+-right-unit (s n) = cong s (z-+-right-unit n)

< We prove the right unit law inductively
- Note that inductive proofs are recursive functions

-_To do this, we need to show that equality is a congruence
27

The Equality Toolkit

data = {A : Set} (a : A) : A > Set where
refl : a = a

sym : {A : Set}
a=b=>0bDb
sym refl = refl

{a b : A} >
a

m oL

trans : {A : Set} > {a b c : A} >
az=b>»>b=zc»ac=c
trans refl refl = refl

cong : {A B : Set} > {a a' : A} >
(f:A>B)>(az=a')>(fa=fa")
cong f refl = refl

- An equivalence relation is a reflexive, symmetric transitive
relation
- Equality is congruent with everything
28

Commutativity of Addition

z-+-right : (n : Nat) > (n + z) = n
z-+-right z = refl
z-+-right (s n) =

cong s (z-+-right n)

- First we prove that adding

SEEREGIT £ EZ Tn:+N;§§ (s (sm) Zeroon therightdoes
s-+-right z m = refl nothing
s-+-right (s n) m =
cong s (s-+-right n m) - Then we prove that
o successor commutes with
eomm s L e addition
+-comm z j = z-+-right j - Then we use these two
+-comm (s 1) j = trans p2 p3 . .
where pL : (1 + 3) = (j + 1) facts to inductively prove
pl = +-comm i j commutativity of addition
P2 : (s (i + J)) = (s (j + 1))
p2 = cong s pl
p3 : (s (j + 1)) = (§ + (s 1))
p3 = s-+-right j i 29

Conclusion

- Dependent types permit referring to program terms in

types
- This enables writing types which state very precise
properties of programs
- Eg, equality is expressible as a type

- Writing a program becomes the same as proving it correct
- This is hard, like learning to program again!

- But also extremely fun...

30

Type Systems

Lecture 12: Introduction to the Theory of Dependent
Types

Neel Krishnaswami
University of Cambridge

Setting the stage

- In the last lecture, we introduced dependent types

- These are types which permit program terms to occur
inside types

- This enables proving the correctness of programs through
type checking

Syntax of Dependent Types

Terms Ae X

011
ee | M:A.e | Nx:AB
refle | subst[x:A.B](e,e') | (e=¢€:A)

Contexts ' == - | I,Xx:A

- Types and expression grammars are merged

- Use judgements to decide whether something is a type or
a term!

Judgements of Dependent Type Theory

Judgement Description
I+ Atype Als a type
N-e:A e has type A

A =Btype | Aand B are identical types
lFe=¢e':A | eande are equal terms of type A
I ok Iis a well-formed context

The Unit Type

Type Formation

I=1type
Introduction

Fr=(:1

(No Elimination)

Function Types

Type Formation

= Atype I x:AF Btype
I=1Tx:A.Btype

Introduction

= Atype x:AF-e:B
F=Xx:Ae:Tlx:AB

Elimination

Fe:Mx:A.B r-e :A
F-ee :[e/x]B

Equality Types

Type Formation
[~ Atype F-e:A r-e:A
[(e=¢€:A)type

Introduction
[Fe: A

Mrefle:(e=e:A)

Elimination
[A type
x:AFBtype ThHe:(eg=e:A) e’ :[e1/x|B
I+ subst[x : A. B](e, ') : [e2/x]B

(Equality elimination not the most general form!)

Variables and Equality

X:Ael

—— VAR
MEXx:A

FlFe:A = A=Btype
~e:B

What Is Judgmental Equality For?

[Fe:A =A=Btype
M-e:B

- THE typing rule that makes dependent types expressive
- THE typing rule that makes dependent types difficult

- It enables computation inside of types

Example of Judgemental Equality

1 data Vec (A : Set) : Nat 2 Set where
2 [1 : Vec A z
3 ~,_ + {n : Nat} > A > Vec A n > Vec A (s n)

5 _+_ : Nat » Nat 2> Nat
6 Z +m=m
7 sn+m=s (n +m)

o append : {A : Set} > {nm : Nat} »

10 Vec An > Vec Am=> Vec A (n + m)
1 append [] ys = ys

12 append (x , xs) ys = (x , append xs ys)

Suppose we have:

1 xs : Vec A (s (s z))
> ys : Vec A (s (s z))

s 2s : Vec A (s (s (s (s 2))))
5 2zZS = append Xs ys

- Why is this well-typed?
- The signature tells us
append xs ys : Vec A ((s (s z)) + (s (s z)))

- This is well-typed because (s (s z)) + (s (s z))
evaluatesto (s (s (s (s z))))

10

Judgmental Type Equality

N=A=Xtype x:AFB=Ytype
ME1=1type FETIx:A.B=TIx: X.Ytype

[Fe:A The:A The:A The:A
F-A=A type [Fer=e):A TFey=¢6,:A
F-(er=e:A)= (e =€, : A) type

n

Judgmental Term Equality: Equivalence Relation

[He: A lrFe=¢€e:A
lFe=e:A Fr-ef=e:A

FrFe=¢e:A r-ef=e":A
rMN-e=¢e":A

12

Judgmental Term Equality: Congruence Rules

X:AeTl

FrE)=(:1 NlEx=x:A

l-e;=¢e;:MNx:AB ey, =¢€5:A

l-e e, =eje):[e/x|B

M-A=Atype MNx:A-e=¢e':B FlFe=¢e:A
M=Xx:Ae=XM:A.¢e :MNx:AB I-refle=refle’: (e=e:A)

M-A=Atype Mx:AlFB=B type
lep=ej:(e=¢€e:A) Tre=¢€):[e/x|B
I+ subst[x : A. B](eq, e;) = subst[x : A". B'|(e, €,) : [¢'/x]B

13

Judgemental Equality: Conversion rules

FEXx:Ae:Nx:AB TrHe:A Tk[e/x]e:[e/X]B
Fr=(\x:Ae)e =[e/xle: [e'/X]B

[+ subst[x: A.B](refle’,e) : [¢//x]B T Fe:[e/x]B
[+ subst[x : A. B](refle’,e) = e : [¢//x]|B

lFe=¢€:A - A=Btype
FrFe=¢e:B

14

Context Well-formedness

I ok I+ Atype
- ok Ix:Aok

15

Metatheory: Weakening

Lemma: If I F C type, then

1. fIr,I"=AtypethenTl,z: C,[" - Atype
2. 1fI"Fe:Athenl,z:C,\"'Fe: A

3.
4
5

IfI,I"+-A=BtypethenTl,z:C,I"HA=Btype

.MfrMFe=¢e:Athenl,z:CI"'Fe=¢:A
If " okthenl,z: C,I" ok

Proof: By mutual induction on derivations in 1-4, and a
subsequent induction on derivations in 5

Metatheory: Substitution

Ifr'Fe' :C then

1. IfMz: C,I"+Atype then T, [e//z][" + [€'/z]A type
2.1fMz:CI"+e:Athen T, [e/Z]l" I [€//z]e : [€'/z]A
3. IfI,z: C,I" - A= Btype then
r,[e/z]l"t [e'/z]A = [€'/z]B type
4 IfIr,z:C,I"+ e =e;:Athen
M [e/z]l"t+[e'/z]er = [€'/z]e, : [€'/Z]A
5. 1fM,z:C,I" okthen I, [e'/z][" ok
Proof: By mutual induction on derivations in 1-4, and a
subsequent induction on derivations in 5

Metatheory: Context Equality

Lemma: If [= C = C type then

1.1l z:
2. 1fI,z:
3.
4
5

Ifr,z:

Ifr,z:
Ifr,z:

C,I"FAtypethenl,z: C, "+ Atype
C,I"Fe:Athenl,z: (', I"Fe:A
C,I"'FA=Btypethenl,z:C, "+ A=Btype
CI'kei=ey:Athenl,z: C,"kFej=e; - A
C,I"okthenTl,z:C, "ok

Proof: By mutual induction on derivations in 1-4, and a
subsequent induction on derivations in 5

Metatheory: Regularity

Lemma: If I ok then:

1. IfTFe:AthenT - Atype.
2. IfTHFA=Btypethenl FAtypeandl F Btype.

Proof: By mutual induction on the derivations.

19

Reflections on Regularity

Calculus ‘ Difficulty of Regularity Proof
STLC Trivial
System F Easy

Dependent Type Theory | A Lot of Work!

- Dependent types make all judgements mutually recursive

- Dependent types introduce new judgements (eg,
judgemental equality)

- This makes establishing basic properties a lot of work

20

Advice on Language Design

- In your career, you will probably design at least a few
languages

- Even a configuration file with notion of variable is a
programming language

- Much of the pain in programming is dealing with the
“accidental languages” that grew up around bigger

languages (eg, shell scripts, build systems, package
manager configurations, etc)

21

A Failure Mode

Lectures=1 2 3 456 7 8 9 10 11 12
LectureNames=$(patsubst %, lec-%.pdf, ${Lectures})
HandoutNames=$(patsubst %, lec-%-handout.pdf, ${Lectures})

lec-%-handout.pdf: lec-%.tex lec-%.pdf defs.tex
AAIcaq wandout—header.teﬁ $< H $(patsubst %.pdf, %.tex, $a@)

A“IxelateA %shell—escapel$(patsubst %.pdf, %.tex, $a)
"“Ixelatex |-shell-escape| $(patsubst %.pdf, %.tex, $a)

- Observe the specialized variable bindings %, $< etc
- Even ordinary variables ${foo} are recursive
- Makes it hard to read, and hard to remember!

22

Takeaway Principles

The highest value ideas in this course are the most basic:

1. Figure out the abstract syntax tree up front

2. Design with contexts to figure out what variable scoping
looks like

3. Sketch a substitution lemma to figure out if your notion of
variable is right

4. Sketch a type safety argument

23

