2B) Conics, quadrics, and superquadrics The ray tracing primitives, described in Part 2A, have relatively simple mathematical definitions. This is what makes them attractive: the simple mathematical definition allows for simple ray-object intersection code. Following from this, it would seem logical to investigate other shapes with simple mathematical definitions. Spheres, cones and cylinders are part of a more general family of parametric surfaces called quadrics (N.B. tori are not quadrics). Quadrics are the 3D analogue of 2D conics. We describe these general families below, but it turns out that they are of little practical use. It would seem that the general quadrics are a "dead end" in graphics research.
Super-ellipsoids tend to be the only members of this family that are actually used, and even they are only used in very limited areas. The effect of n on a super-ellipsoid is roughly as follows: n=2 is a standard ellipsoid; n<2 is a more pointy version, the "points" being along the main axes; n>2 becomes closer to a box as n increases; n=1 is allegedly an octahedral shape; and n<1 is truly pointy along the main axes.
The interested student may like to have a quick look at Alan Barr's two papers on superquadrics. The papers can be found in the Computer Laboratory library in IEEE Transactions on Computer Graphics and Applications volume 1, number 1 (January 1981), pages 11-23, and volume 1, number 3 (July 1981), pages 41-47.
Brian Wyvill describes a use of super-ellipsoids on pages 264 and 265 of "A Computer Animation Tutorial" in Computer Graphics Techniques: Theory and Practice, Rogers and Earnshaw (editors), Springer-Verlag, 1990, ISBN 0-387-97237-4. ##NOTESONLY## This extract is included in the handout. ##-NOTESONLY##