More Curried Functions

hd;

val it = fn : ’a list -> ’a

hd [op+,op—,op*,op div] (5,4);

val it = 9 : int
Here the type of hd is:

(int*int -> int) list -> int*int -> int

An analogy can be made with nested arrays, as in

Pascal:

A: array [1..10] of
array [1..10] of real

ALL1[5].

University of Cambridge Computer Lanboratory, February 3, 2000




Generic Sorting

fun insort lessequal =

let fun ins (x,[]) = [x]
| ins (x,h::t)=
if lessequal(x,h) then x::h::t
else h::ins(x,t)
fun sort []1 = []
| sort (x::1) = ins(x,sort 1)

in sort end;

val insort = fn :
(’a * ’a -> bool) —>
(’a 1list -> ’a list)

insort (op<=) [5,3,5,7,2,9];
val it = [2, 3, 5, 5, 7, 9] : int list
insort (op>=) [5,3,5,7,2,9];
val it = [9, 7, 5, 5, 3, 2] : int list

University of Cambridge Computer Lanboratory, February 3, 2000




A Summation Functional

fun sum f 0.0

| sum f f(m-1) + sum f (m-1);

> val sum

fn : (int -> real) -> int -> real

m—1
sum f m = Z f(2)
i=0

m—11—1

sum (sum f) m= Z Zf(])

i=0 =0

University of Cambridge Computer Lanboratory, February 3, 2000




Matrix Transpose

The map functional applies a function to every

element of a list

fun map f [] []
| map £ (h::t) (f h)::(map £ t);

Representing a matrix as a list of lists, the

following defines the transpose function.

fun transp ([l::.) = []
| transp rows =
(map hd rows)::
(transp (map tl rows));

fn : ’a list list -> ’a list list

University of Cambridge Computer Lanboratory, February 3, 2000




Matrix Multiplication

The dot product of two vectors as a curried

function:

fun dotprod [] []
| dotprod (hi::t1) (h2::t2)
hilxh2 + dotprod tl1 t2;

Matrix multiplication:

fun matmult (Arows, Brows) =
let val cols = transp Brows
in map (fn row => map (dotprod row)
Arows

end;

University of Cambridge Computer Lanboratory, February 3, 2000




The Fold Functional

foldl and foldr are built-in functionals which
can be defined as:

fun foldl f e [] = e
| foldl f e (h::t) =
foldl f f(e,h) t;

fun foldr f e [] = e
| foldr £ e (h::t) =
f(h, foldr f e t);

These can be used to give simple definitions of

many list functions
foldl op+ O
foldl (fn (_,n) => n+1) O

foldr op:: xs ys

University of Cambridge Computer Lanboratory, February 3, 2000




fun exists p [] false
| exists p (h::t) (p h) orelse

exists p t;

fn : (’a -> bool) -> ’a list -> bool

Determines whether there is any element in a list

that satisfies the predicate p.

fun filter p [] []
| filter p (h::t) = if p h then
h::(filter p t)
else filter p t;

fn : (’a -> bool) -> ’a list -> ’a list

University of Cambridge Computer Lanboratory, February 3, 2000




