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Course Outline

. Introduction and Review.

OS functions & structures. Multiprocessor
schemes. Processes and threads.

CPU Scheduling.
Static/dynamic priority schemes. RT scheduling
(RM, EDF, etc.). SRT scheduling.

Memory Management.

Review: segmented/paged memory. Translation
schemes. Demand paging & replacement
strategies. Case studies. Other VM techniques.

Storage Systems.

Basic I/O revisited. Disks & disk scheduling.
Caching and buffering. Case studies. Filing
systems (FAT, FFS/EXT2, NTFS).

Protection.
Subjects and objects. Authentication schemes.
Capability systems.

Extensibility.
Motivation. Low-level, OS-level and user-level
techniques (and examples).



A Generic Operating System

.

e What is the OS?

App1l
App 2
App N

Operating System

S T

Hardware

— The “master control program™.
— A virtual machine.
— Everything shipped by a vendor.

— The management ...

e Objectives:
— convenience
— efficiency

— extensibility

e All about trade-offs ...



Historical Perspective

2000: W ndows 20007
1978: Uni x V7

1949: EDSAC
1996: NT 4
1977: VNS 1953: FMS
1981: DOS
1995: Wn 95
. 1961: CTSS
1974: CP/I M 1984: MacOS
1970: Uni x 1965: OS/ 360
1992: Li nux 1985: W ndows
1969: Multics
1990: OSF/ 1
1949: “Open Shop’" — team of people design,

build, operate & maintain computer.

1953: Batch Processing — “resident monitor”
schedules jobs and (later) CPU.

1961: Time-Sharing — fine-grained multiplexing;
job submission (and output) via terminals.

1981: Personal Computing — focus on single
user; easy to forget earlier lessons.



Hardware Protection
e We want to ensure that a buggy (or malicious)
application cannot:
— compromise the operating system.
— compromise other applications.
— deny others service (e.g. abuse resources)
e To solve this efficiently and flexibly, need hardware
support e.g. dual-mode operation.
e [hen:

— add memory protection hardware =
applications confined to subset of memory:

— make I/O instructions privileged =
applications cannot directly access devices;

— use a timer to force execution interruption =
OS cannot be starved of CPU.

e Dual-mode operation leads naturally to a
two-tiered OS structure ...



Kernel-Based Operating Systems

i§s
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Applications can’'t do I/O due to protection

= operating system does it on their behalf.

operating system:

Need secure way for application to invoke

= require a special (unprivileged) instruction to
allow transition from user to kernel mode.

Generally called a software interrupt since

operates similarly to (hardware) interrupt ...

Set of OS services accessible via software

interrupt mechanism called system calls.



System Call Implementation
Most processors have an instruction such as:

e Software Interrupt (SWI, INT)
e System Call (SYSCALL)
e TRAP
which forces the processor to defined state, i.e.
e save current (user) state
e enter supervisor mode
e jump to defined address

This provides (usually) a single point of entry to the
kernel where can check, e.q.

e if sensible arguments have been passed in,
e if process has the relevant access rights.

Entering supervisor mode typically allows the issuing of
instructions not possible in user mode:

e access to memory protection hardware
e access to I/O instructions or I/O address space

e setting interrupt level (disabling interrupts)



Syscall Implementation
- User Space -
#include <syscall.h>

int ThreadCreate(Asid asid, ThreadDesc *desc,
vir_bytes arg);

. <in syscall.h>

#define SC_NULL 1000
#define SC_SAS_KERNEL 1001
#define SC_GET_ENV 1002
#define SC_GET_STATISTICS 1003
#define SC_GET_SYSTYPE 1004
#define SC_THREAD_CREATE 1009
#define SC_THREAD_EXIT 1011
#define SC_THREAD_ID 1012
#define SC_BLOCK 1014

. etc...



Syscall Implementation (ARM)
- User Space -

#include "syscall.h"

#define SYSCALL(routine, number) \

.global routine; \

routine: ; \
mov r12, \# number - 1000 ; \
swi number ; \
movs rl1b5, ri4

SYSCALL(_ThreadCreate, SC_THREAD_CREATE)

SYSCALL(_ThreadExit, SC_THREAD_EXIT)

SYSCALL(_ThreadId, SC_THREAD_ID)
SYSCALL(_Block, SC_BLOCK)
. etc
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Syscall Implementation
- Kernel -
File syscall.c (kernel)
typedef int (*IFP)();

IFP syscalls[256] = {

null, /* 0: Null */
sas_kernel, /* 1: SASKernel */
environ_get, /* 2: GetEnv */
GetStatistics, /* 3: GetStatistics */
get_systype, /* 4: GetSystype */
bad_sys, /* 5: %/

bad_sys, /*x 6: x/

bad_sys, /¥ T: x/

bad_sys, /* 8: x/

threadCreate, /* 9: ThreadCreate */
bad_sys, /* 10: ThreadFork (obsolete) */
threadExit, /* 11: ThreadExit */

. etc
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Syscall Implementation (ARM)

@ kK 5k %k %k %k %k %k %k %k %k

@ Supervisor
@ *kkskokokokokkkk

- Kernel -

3k 3k 3k 3k 3k 5k 5k 5k 5k 5k %k %k %k

Call Dispatch
ok 3k ok sk ok ok ok k ok ok sk ok k

@ NB: A SWI also causes interrupts to be disabled!

_do_swi:
cmp rl2, #0
blt do_user_sem
stmfd ri13!, {ri14}
ldr ri4, syscallptr
and ri2, ri12, #O0xff
1ldr r12, [r14, ri12, 1sl #2]
mov rid4, rib5
adds rl5, ri12, #3
1dr rl, _cur_thread
1dr ri, [r1, #76]
cmp rl, #1
ldmnefd r13!, {ri15}"
b _sleepy

syscallptr:

.word _syscalls

© ©

Q

©

© © © ©

r14 <- table base
Bounds check syscall #
Load relevant entry

Branch to routine +
enable ints, svr mode.

Check if thread now
marked as dying.
If not, return.
Else, terminate it.
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Microkernel Operating Systems

Device
Driver

Device
Driver

e Kernel schemes perceived as inflexible =
— Push some OS services into servers.

— Servers may be privileged (i.e. operate in
kernel mode).

e Increases both modularity and extensibility.

e Still access kernel via system calls, but need new
way to access servers:

= interprocess communication (IPC) schemes.
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Kernels versus Microkernels

Lots of IPC adds overhead

= microkernels usually perform less well.

Microkernel implementation sometimes tricky:
need to worry about synchronisation.

Microkernels often end up with redundant copies
of OS data structures.

today most common operating systems blur the
distinction between kernel and microkernel.

e.g. linux is “kernel”, but has kernel modules and
certain servers.

e.g. Windows NT was originally microkernel (3.5),
but now (4.0) pushed lots back into kernel for
performance.

Hence kernel for performance, but microkernel for
extensibility.
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Vertically Structured
Operating Systems

Device
Driver

.

e,

Shared
Library
Code

O.S.

-------

SyscaIIsI |Driver StubsI S/W

e Consider interface people really see, e.q.
— set of programming libraries / objects.

— a command line interpreter / window system.

e Separate concepts of protection and abstraction
= get extensibility, accountability & performance.

e Examples: Nemesis, Exokernel, Cache Kernel.
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Multiprocessor Operating Systems

e Multiprocessor OSs may be roughly classed as
either symmetric or asymmetric.
e Symmetric Operating Systems:

— identical system image on each processor =
convenient abstraction.

— all resources directly shared = high
synchronisation cost.

— typical scheme on SMP (e.g. linux, NT).

e Asymmetric Operating Systems:
— partition functionality among processors.
— better scalability (and fault tolerance?)
— partitioning can be static or dynamic.

— common on NUMA (e.g. Hive, Hurricane).

e AIlso get hybrid schemes, e.g. Disco.
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Operating System Functions

e Regardless of structure, OS needs to securely
multiplex resources, i.e.

1.
2.

protect applications from each other, yet

share physical resources between them.

e AIlso usually want to abstract away from grungy
hardware, i.e. OS provides a virtual machine:

share CPU (in time) and provide a virtual
processor,

allocate and protect memory and provide a
virtual address space,

present (relatively) hardware independent
virtual devices.

divide up storage space by using filing systems.

e And want to do above efficiently and robustly.
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Virtual processors

Why virtual processors?

e to provide the illusion that a computer is doing
more than one thing at a time;

e to increase system throughput (i.e. run a thread
when another is blocked on I/0O);

e to encapsulate an execution context;
e to provide a simple programming paradigm.

In modern systems virtual processors are implemented
via processes and threads:

e A process (or task) is a unit of resource ownership
— a process is allocated a virtual address space,
and control of some resources.

e A thread (or lightweight process) is a unit of
dispatching — a thread has an execution state
and a set of scheduling parameters.

e In general, have 1 process <+ n threads, n > 1

We may implement threads at user-level, at
kernel-level, or use a hybrid scheme.
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User-Level Threads

Kernel

Process Scheduler

Kernel unaware of threads’ existence.

Thread management done by application using a
thread library.

Pros: lightweight creation/termination; fast ctxt
switch (no kernel trap); application-specific
scheduling; OS independence.

Cons: non-preemption; blocking system calls;
multiple processors.

e.d. linux pthreads
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Kernel-Level Threads

Thread Scheduler

All thread management done by kernel.
No thread library (but augmented API).
Sched two-level, or direct.

Pros: can utilise multiple processors; blocking
system calls just block thread; preemption easy.

Cons: higher overhead for thread mgt and context
switching; less flexible.

e.g. Windows NT.
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Hybrid Schemes

e Three-level scheduling (Solaris 2):

1 kernel thread «< 1 LWP < n user threads
Use ULTs for lightweight operation.

Use LWPs to get multiprocessor benefit.

e First class threads (Psyche):

Kernel processes implement virtual processor.

User-level threads package does most but not
all thread management.

Shared data for user-kernel communication.

Kernel upcalls threads package on thread
block, timer expiration, etc.

e Scheduler activations:

Assigned by kernel to processor.

Kernel provides space for context, and does
context save (but not restore).

On CPU allocation or any event, upcall
user-level threads package.

On block, create new scheduler activation (i.e.
keep #scheduler activations constant).

In critical sections, kernel does restore.
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CPU Scheduling

For now assume a five-state model:

dispatch

admit release
Cew D—rReady

timeout
or yield

Blocked

The Operating System must:

e decide if a new thread should be admitted

e wake up blocked threads when appropriate.

e Clean up after threads terminate.

e choose amongst runnable thread = schedule
Typical scheduling objectives:

e Maximise CPU utilisation.

e Maximise throughput.

e Minimise average response time.

Also want to minimise overhead (space + time).
22



VP Data Structures

For each process have a process control block (PCB):
e Identification (e.g. PID, UID, GID)
e Memory management information.
e Accounting information.
e (Refs to) one or more TCBs ...
For each thread have a thread control block (TCB):
e T hread state.
e Context slot (perhaps in h/w).
e Refs to user (and kernel?) stack.
e Scheduling parameters (e.g. priority).

The scheduler is responsible for managing TCBs.
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Scheduler Data Structures

Ready Queue

admit dispatch release
E— 14

timeout or yield

Blocked Queue 1

1 event (1) - event-wait (1)

Blocked Queue 2

: event (2) . event-wait (2)

A

A

A.k
Blocked Queue N

event (n) - event-wait (n)

Inside scheduler maintain TCBs according to state:

A

e Runnable = “current_thread”

e Ready = on ready queue

e Blocked = on a blocked queue
Sometimes will have:

e Multiple current threads.

e Multiple ready queues.
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The Need for Swapping

dispatch
admit release

timeout

or yield event-wait

activate event

Blocked

suspend

e Many OSs constructed using the basic principles
described above

e However there is good justification for extending
the model:

— I/O devices are much slower than CPU
e Solution: swap a blocked process out to disk
e Add processes on disk to a suspend queue

Q: how much overhead from additional I/O?

Q: how to select process to suspend/activate?
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When do we schedule?

Can choose a new thread to run when:
1. a running thread blocks (running — blocked)
2. a timer expires (running — ready)
3. a waiting thread unblocks (blocked — ready)
4. a thread terminates (running — exit)

If only make scheduling decision under 1, 4 = have a
non-preemptive scheduler:

simple to implement
. | open to denial of service

| poor priority concept

| doesn’'t extend cleanly to MP

Most modern systems use preemptive scheduling:
solves above problems

D introduces concurrency problems ...
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Static Priority Scheduling
e All threads are not equal = associate a priority
with each, e.q.
. interrupt handlers (highest)
device handlers
pager and swapper
other OS daemons

interactive jobs

o KA WD = O

batch jobs (lowest)

e Scheduling decision simple: just select runnable
thread with highest priority.

e Problem: how to resolve ties?
— round robin with time-slicing
— allocate quantum to each thread in turn.

— Problem: biased towards CPU intensive jobs.
x per-thread quantum based on usage?

x ignore?
e Problem: starvation ...
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Dynamic Priority Scheduling

e Use same scheduling algorithm, but allow priorities
to change over time.
e e.g. simple aging:

— threads have a (static) base priority and a
dynamic effective priority.

— if thread starved for k seconds, increment
effective priority.

— once thread runs, reset effective priority.

e e.g. computed priority:
— First used in Dijkstra's THE
— time slots: ..., ¢t, t+1, ...

— in each time slot ¢, measure the CPU usage of
thread j: u/

— priority for thread j in slot ¢ 4 1:
pi+1 — f(ugapg7ug_1apg_17 AR )

— e.g. p{_H = p{/Q + kui
— penalises CPU bound — supports I/O bound.
e today such computation considered acceptable ...
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Example: 4.3BSD Unix
Priorities 0—127; user processes > PUSER = 50.
Round robin within priorities, guantum 100ms.

Priorities are based on usage and “nice” value:
CPU;(i—1)

nticks

gives the priority of process 5 at the beginning of
interval 4, where nice; € [-20,20] is a (partially)
user controllable parameter.

P;(i) = Base; +

+ 2 X nice;

i.e. penalizes (recently) CPU bound processes in
favour of I/O bound ones.

CPU;(i) is incremented every tick in which process
7 is executing, and decayed each second using:

2 X load;
(2 xload;) + 1

CPU;(z) = CPU;(i — 1) + nice;

load;(i) is the sampled average length of the run
queue in which process j resides, over the last
minute of operation

so if e.g. load is 1 = ~ 90% of 1 seconds CPU
usage ‘“forgotten” within 5 seconds.
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Example: Windows NT 4.0

e Hybrid static/dynamic priority scheduling:
— Priorities 16—31: “real time" (static priority).
— Priorities 1-15: “variable” (dynamic) priority.
e Default quantum 2 ticks (~20ms) on Workstation,
12 ticks (~120ms) on Server.

e Threads have base and current (> base) priorities.

— On return from 1I/O, current priority is boosted
by driver-specific amount.

— Subsequently, current priority decays by 1 after
each completed quantum.

— Also get boost for GUI threads awaiting input:
current priority boosted to 14 for one quantum
(but quantum also doubled)

— Yes, this is true.

e On Workstation also get quantum stretching:

— Y ... performance boost for the foreground
application” (window with focus)

— fg thread gets double or triple quantum.

e Later we'll see another horrible scheduler hack ...
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Multiprocessor Scheduling (1)

e Objectives:
— Ensure all CPUs are kept busy.

— Allow application-level parallelism.

e Problems:
— Preemption within critical sections:
x thread A preempted while holding spinlock.
= other threads can waste many CPU cycles.

* Similar situation with producer/consumer
threads (i.e. wasted schedule).

— Cache Pollution:

x If thread from different application runs on a
given CPU, lots of compulsory misses.

x Generally, scheduling a thread on a new
processor is expensive.

— Frequent context switching:

* If number of threads greatly exceeds the
number of processors, get poor performance.
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Multiprocessor Scheduling (2)

Consider basic ways in which one could adapt
uniprocessor scheduling techniques:

e Central Queue:
simple extension of uniprocessor case.
load-balancing performed automatically.
| n-way mutual exclusion on queue.

| inefficient use of caches.

. | no support for application-level parallelism.

e Dedicated Assignment:

contention reduced to thread creation/exit.

better cache locality.
D lose strict priority semantics.

D can lead to load imbalance.

Are there better ways?
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Multiprocessor Scheduling (3)

e Processor Affinity:
— modification of central queue.

— threads have affinity for a certain processor =
can reduce cache problems.

— but: load balance problem again.

— make dynamic? (cache affinity?)

e ‘Take’ Scheduling:

— pseudo-dedicated assignment: idle CPU
“takes” task from most loaded.

— can be implemented cheaply.

— nice trade-off: load high = no migration.

e Coscheduling / Gang Scheduling:
— Simultaneously schedule “related” threads.
= can reduce wasted context switches.
— Q: how to choose members of gang?

— Q: what about cache performance?
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Example: Mach
Basic model: dynamic priority with central queue.

Processors grouped into disjoint processor sets:

— Each processor set has 32 shared ready queues
(one for each priority level).

— Each processor has own local ready queue:
absolute priority over global threads.

Contention-free sharing of
Quantum inversely proportional to load.

Applications provide hints to improve scheduling:

1. Discouragement hints: used to reduce penalty
for spinlocks, etc.

2. Handoff hints: improve producer/consumer
synchronisation.

Simple gang scheduling used for allocation.
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Real-Time Systems

Produce correct results and meet predefined
deadlines.

“Correctness” of output related to time delay it
requires to be produced, e.g.

— nuclear reactor safety system

— JIT manufacturing

— video on demand

Typically distinguish hard (HRT) and soft
real-time (SRT):

HRT — output value = 100% before the
deadline, O (or less) after the deadline.
SRT — output value = 100% before the

deadline, (100 - kt)% if t seconds late.
Building such systems is all about predictability.

It is not about speed.
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Real-Time Scheduling

e Basic model:

— consider set of tasks T;, each of which requires
s; units of CPU time before a (real-time)
deadline of d;.

— often extended to cope with periodic tasks:
require s; units every p; units.
e Best-effort techniques give no predictability

— in general priority specifies what to schedule
but not when or how much.

— i.e. CPU allocation for thread t;, priority p;
depends on all other threads at ¢; s.t. p; > p;.

— with dynamic priority adjustment becomes
even more difficult.

= need something different.
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Static Offline Scheduling

Advantages:
e LOow run-time overhead.
e Deterministic behavior.
e System-wide optimization.
e Resolve dependencies early.
e Can prove system properties.
Disadvantages:
o Inflexibility.
e Low utilisation.
e Potentially large schedule.
e Computationally intensive.

In general, offline scheduling only used when
determinism is the overriding factor, e.g. MARS.
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Static Priority Algorithms

Most common is Rate Monotonic (RM)

e Assign static priorities to tasks at off-line (or at
‘connection setup’), high-frequency tasks receiving
high priorities.

e the tasks processed with no further rearrangement
of priorities required (= reduces scheduling
overhead).

e optimal, static, priority-driven alg. for preemptive,
periodic jobs: i.e. no other static algorithm can
schedule a task set that RM cannot schedule.

e Admission control: the schedule calculated by RM
is always feasible if the total utilisation of the
processor is less than In2

e for many task sets RM produces a feasible
schedule for higher utilisation (up to ~ 88%); if
periods harmonic, can get 100%.

e Predictable operation during transient overload.
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Dynamic Priority Algorithms

Most popular is Earliest Deadline First (EDF):

e Scheduling pretty simple:
— keep queue of tasks ordered by deadline

— dispatch the one at the head of the queue.

e EDF is an optimal, dynamic algorithm:
— It may reschedule periodic tasks in each period

— If a task set can be scheduled by any priority
assignment, it can be scheduled by EDF

e Admission control: EDF produces a feasible
schedule whenever processor utilisation is < 100%.

e Problem: scheduling overhead can be large.

e Problem: if system overloaded, all bets are off.
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Priority Inversion

e All priority-based schemes can potentially suffer
from priority inversion:

e c.g. consider low, medium and high priority
processes called P, P, and P, respectively.
1. First P, admitted, and locks a semaphore S.
2. Then other two processes enter.

3. P, runs since highest priority, tries to lock S
and blocks.

4. Then P, gets to run, thus preventing P, from
releasing S, and hence P, from running.
e Usual solution is priority inheritence:

— associate with every semaphore § the priority
P of the highest priority process waiting for it.

— then temporarily boost priority of holder of
semaphore up to P.

— can use handoff scheduling to implement.

e NT “solution”: priority boost for CPU starvation
— checks if d ready thread not run > 300 ticks.

— if so, doubles quantum & boosts priority to 15
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Multimedia Scheduling

e Increasing interest in multimedia applications (e.g.
video conferencing, mp3 player, 3D games).

e Challenges OS since require presentation (or
processing) of data in a timely manner.

e OS needs to provide sufficient control so that
apps behave well under contention.

e Main technique: exploit SRT scheduling.

e Effective since:

— The value of multimedia data depends on the
timeliness with which it is presented or
processed.

= Real-time scheduling allows applications to
receive sufficient and timely resource allocation
to handle their needs even when the system is
under heavy load.

— Multimedia data streams are often somewhat
tolerant of information loss.

= informing applications and providing soft
guarantees on resources are sufficient.

e Still ongoing research area ...
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Example: Atropos (Nemesis)

R e e —

I i

Deschedule g Run |

: > Wait i
Interrupt or " '
System Call - Block i

use a variant of EDF: QoS maps to (p,s,X)
expose CPU via activations
admission control in system domain

actual scheduling is easy (~200 lines C)
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