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Memory Management

e Limited physical memory (DRAM), need space for:
— operating system image
— processes (text, data, heap, stack, ... )
— I/O buffers

e Memory management subsystem deals with:

— Support for address binding (i.e. loading,
dynamic linking).

— Allocation of limited physical resources.
— Protection & sharing of 'components’.

— Providing convenient abstractions.

e Quite complex to implement:
— processor-, motherboard-specific.

— trade-offs keep shifting.



Logical vs Physical Addresses (1)

Old systems directly accessed [physical] memory, which
caused some problems, e.g.
e Contiguous allocation:
— need large lump of memory for process
— with time, get [external] fragmentation
= require expensive compaction
e Address binding (i.e. dealing with absolute
addressing):
— “int x; x = 5;" — “movl $0x5, 7?7?"
— compile time = must know load address.
— load time = work every time.
— what about swapping?

Can avoid lots of problems by separating concept of
logical (virtual) and physical (“real”) addresses.



Logical vs Physical Addresses (2)
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Run time mapping from logical to physical addresses.
If make this per process then:

e Each process has own address space.

e Allocation problem split:
— virtual address allocation easy.

— allocate physical memory ‘behind the scenes’.

e Address binding solved:
— bind to logical addresses at compile-time.

— bind to real addresses at load time/run time.

Two variants: segmentation and paging.



Segmentation
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MMU has a set (> 1) of segment registers.

CPU issues tuple (s,0):
1. MMU selects segment s.
2. Checks o < limit.

3. If ok, forwards base+o to memory controller.
Nice logical view (protection & sharing)

Problem: still have [external] fragmentation.



Paging
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1. Physical memory: f frames each 2% bytes.

2. Virtual memory: p pages each 2° bytes.

3. Page table maps {0,...,p—1} > {0,...,f—1}
4. Allocation problem has gone away!

Typically have p > f = add valid bit to say if a given
page is represented in physical memory.

Problem: now have internal fragmentation.

Problem: protection/sharing now per page.



Segmentation versus Paging

| logical view allocation
Segmentation D
Paging D

= try combined scheme.

e E.g. paged segments (Multics, OS/2)

— divide each segment s; into k£ = [l;/2™] pages,
where [; is the limit (length) of the segment.

— have page table per segment.
D high hardware cost / complexity.
D not very portable.
e E.g. software segments (most modern OSs)

— consider pages [m,... ,m + 1] to be a segment.

— OS must ensure protection / sharing kept
consistent over region.

D loss in granularity.

relatively simple / portable.



Translation Lookaside Buffers

Typically #pages large = page table lives in memory.

Add TLB, a fully associative cache for mapping info:
e Check each memory reference in TLB first.

e If miss = need to load info from page table:
— may be done in h/w or s/w (by OS).

— if full, replace entry (usually h/w)

e Include protection info = can perform access
check in parallel with translation.

e Context switch requires [expensive] flush:
— can add process tags to improve performance.

— Y“global” bit useful for wide sharing.
e Use superpages for large regions.

e SO TLB contains n entries something like:

Data

Tag —_ 2kbits —_— — 2kbits —

V| G| PTag| Page Nunber | |Frame Nunber | S| K| R| W| X

Most parts also present in page table entries (PTES).
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Multi-Level Page Tables
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Modern systems have 232 or 294 byte VAS = have
between 222 and 242 pages (and hence PTES).

Solution: use N-ary tree (N large, 256—4096).

Keep PTBR per process and context switch.

Advantages: easy to implement; cache friendly.

Disadvantages:

— Potentially poor space overhead.

— Inflexibility: superpages, residency.

— Require d > 2 memory references.



Linear Page Tables
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e Modification of MPTs:

— pages of LPT translated on demand

— j.e. stages [, O and O not always needed.

Advantages:
— can require just 1 memory reference.

— (initial) miss handler simple.

e But doesn’t fix sparsity / superpages.

Guarded page tables (=~ tries) claim to fix these.
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Inverted Page Tables
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e Recall f < p = keep entry per frame.
e T hen table size bounded by physical memory!

e IPT: frame number is h(pn)
only one memory reference to translate.
no problems with sparsity.
can easily augment with process tag.

_| no option on which frame to allocate

| dealing with collisions.

| cache unfriendly.
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Hashed Page Tables
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e HPT: simply extend IPT into proper hash table.

e i.e. make frame number explicit.
can map to any frame.

can choose table size.

__| table now bigger.

| sharing still hard.

|| still cache unfriendly, no superpages.

e Can solve these last with clustered page tables.
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Memory Hierarchy

Vi rt ual Real Mai n Backi ng
cache cache menory store
| : | , Z
| v v
|

: [
I I
|

CPU MV :
|
. |
! - [
I H- I
' H [
I H- I
! [
' [
! [
' [
| .

Vi rt ual . Real : Di sc
addr esses I addr esses . addresses

' [

Memory hierarchy on modern machine composed of
some subset of:

e CPU registers

e virtual cache(s)
e physical cache(s)
e Main memory

e backing store

Consider cost of context switch in such systems.
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Swapping

If the number of processes exceeds total physical
memory, then process can be swapped out to
secondary store (e.g. disk).

This makes space for a second process to enter
memory

When the original process is resumed it is swapped
back into memory

Can be used to preempt low priority tasks for high
priority tasks

When a process is rolled back in to memory then
it must be positioned at same physical address if
load/compile time relocation is used.

If runtime relocation is used then need to change
mapping in MMU to reflect new base and limit of
process.

14



Swapping (2)

How it works:

1. OS maintains a ready queue of processes on disk
which are ready to be executed.

2. When OS decides to run a process it calls
dispatcher to check whether process is in memory.

3. If not the dispatcher may need to swap out a
currently resident process and swap in the required
process.

Note that:

e Can cause very large context switch times = need
to make execution time long relative to swap time.

e user program needs to keep OS informed of how
much memory it is using.

e What if have pending I/O on a process to be
swapped?

e Standard swapping used on few systems in
practice (too slow, too difficult to implement).

e Modified swapping used on Unix; starts
automatically if memory use reaches a threshold.
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Virtual Memory

We have under our belts a range of techniques for
implementing memory management

Unfortunately most of these (as stated thus far)
require the entire process to be in memory to
execute

VM allows execution of processes which need not
be entirely in memory

Big improvement on manual scheme (overlays)
Commonly implemented by demand paging

On architectures with paged segmentation also
uses paging

On purely segmented architectures can use
demand segmentation
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Demand Paging
Processes reside on disk

To execute a process we swap it in in a lazy
fashion

Need to modify process page table to show which
pages are in memory

Use a valid/invalid bit scheme

Access to invalid page causes a page fault

Algorithm

. Check whether this was an invalid memory access
by process

. Invalid reference = Kkill process; otherwise page in
the desired page

. Find a free frame in memory (from free frame list)

. Start disk I/O to read desired page into the new
frame
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5. When I/0O finished modify process page table and
process control table to show new page valid

6. Restart the process on the instruction which
faulted

e Pure demand paging — never bring a page in until
required

e Hardware support for paging is same as for paging
with swapping



Performance Issues

e Compute the effective memory access time for
demand paged system

e Let p = P (Page Fault) (hopefully close to 0), m =
memory access time

e Effective access time = (1 —p) x m + p x t, where
t = page fetch time composed of

1.
2.
3.

4.
(a) Disk queueing time

(b) Disk seek time & latency

Trap into OS
Save user process state (registers, stack etc)

Determine whether fault is for legal page; find
its disk location

Schedule I/O from disk to free frame

(c) Transfer time

5.

(while waiting reschedule CPU to allow
another proc to run)

. On disk I/O complete interrupt, save current

process state

. Correct page and process tables with new page

information
18



8. Mark process as runnable

9. Restore user process state and restart
instruction

o Often better to copy all pages to swap at process
startup eg: BSD 4.3

Page fault rate

No. of frames



Page Replacement

e \We have assumed that a fault occurs for a page
at most once

e Memory is limited and processes cannot simply
grow forever

e Need to discard unused pages if total demand for
pages exceeds phys memory size

e Page replacement: find a currently unused frame
and free it:
1. Find the desired replacement page on disk

2. Select a free frame to use for incoming page
(a) if there is a free frame use it

(b) otherwise select a victim page to free

(c) write the victim page back to disk, mark it
as invalid in its process page tables

3. Read desired page into freed frame

4. Restart user process

e Overhead can be reduced by adding a ’'dirty’ bit to
pages (or to frames)
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Page Replacement Algorithms

o FIFO

— Keep a queue of pages to replace - earliest in
is first out

— Performance difficult to predict - no idea
whether page replaced will be used again or
not

— Discard is independent of page use frequency

e Optimal Algorithm

— Replace page which will not be used for
longest period of time

— Can only be done on statically determined
reference strings

— Serves as a good comparison for other
algorithms
e | east Recently Used

— Notice that OPT works on basis of when page
will be used whereas FIFO works on when the
page was brought into memory

— LRU replaces frame which has not been used
for longest

— Problem is to determine the LRU ordering
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Implementation — Counters

Give each page table entry a time of use field and
give CPU a logical clock (counter)

When page is referenced the PT entry is updated
to clock value

Replace page with smallest time value

Requires a sort to find minimum of page clock
values

Also adds a write to memory (PT) every page
reference

What about clock overflow 7

Implementation — Stack

Keep a stack of pages (doubly linked list) with
MRU page on top

Discard from bottom of stack

Requires changing pointers per reference
Appropriate with microcoded support

Still very slow without extensive hardware support
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Performance Comparison
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LRU Approximations

Many systems provide help in form of a reference
bit updated by hardware whenever page is touched

Allows us to determine set of active pages after
some time

Can discard unused pages (or not recently used)
Improvement if record reference bits periodically:

additional reference bits algorithm, e.g.

— OS maintains 8-bit value for each page;
initially zero.

— Periodically (e.g. 100ms) shift reference bit
onto high order bit of the byte.

— Select lowest value (or one of) to replace

Second Chance: use only reference bit

— Use FIFO to select candidate page for
replacement

— Before discard check its reference bit
— If reference bit is 0: discard

— If reference bit is 1: reset reference bit and add
page to FIFO queue with time = current time.
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— A page given a second chance is the last to be

replaced

— If reference bit is always being set, page will
never be replaced

— Often called clock since can consider current
pointer to be a hand sweeping around ...

Pages

Ref bits
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e Enhanced Second Chance:

Consider both reference bit and the page
modify bit — gives 4 (ordered) pairs

(0,0) - best page to replace

(0,1) - not recently used but modified — next
best

(1,0) - recently used but clean — probably code
in use

(1,1) - recently used and modified — bad
choice for replacement

e If no h/w provided reference bit can emulate:

to clear “reference bit"”, mark page no access.

if referenced = trap, update permissions,
resume.

to check if referenced, check if not still no
access.

can use sim. scheme for modified bit.



Other Schemes

Counting Algorithms — keep counter of number
of refs to each page

— LFU: replace page with smallest count

— MFU: replace highest count because low count
= most recently brought in.

Page Buffering Algorithms:
— Keep a min. number of victims in a free pool

— New page goes into a frame on the free list,
before writing out victim.

— Alternatively remember page contents of pages
in free pool

(Pseudo) MRU:
— Consider access of e.g. large array.

— Page to replace is one application has just
finished with, i.e. most recently used.

— e.g. track page faults and look for sequences.

— discard the k" in victim sequence.
Application-specific:
— provide hook for app. to suggest replacement.

— must be careful with denial of service ...
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Frame Allocation

Aims to solve the problem of how many (of the
available) frames to give to each process

Can we page OS code and data 7

Need a minimum number of free frames - required
by instruction set archictecture

Sometimes also care which frames we give to
which process (“page colouring’)

Allocation Algorithms

Obvious choice is to split m frames over n
processes as m/n, with m%mn in free pool

Alternatively allocate in a proportional fashion -
scale allocation by process sizes

When new process created each running process
loses some proportion of its frames

When there is competition for frames we can
choose between global and local
allocation/replacement
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T hrashing

>

thrashing

CPU utilisation

Degree of Multiprogramming

e If a process has too few (below min-free) frames
then it must be swapped out (eg low priority task)

e If a process continually page faults then thrashing
results

How does it occur ?

1. Kernel monitors CPU utilisation; if it is too low,
increase MPL by starting a new process

2. Say we are using global page replacement — a
process begins to demand more pages, taking
from other processes
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. But the other processes need those pages, so they
fault to bring them back in

. Number of runnable processes drops (since they're
all waiting on 1/0O)

. CPU utilisation drops

. GOTO 1

To prevent thrashing need to give process as
many pages as it " needs”

How do we know what that is?



Locality of Reference
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Locality of reference: in a short time interval, locations
referenced by a program tend to be grouped into a few
regions in its address space.

e procedure being executed

e ... Sub-procedures

e ... data access

e ... stack variables

Note: have locality in both space and time.
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Working Set

Problem of more “simultaneously’” accessed pages
than physical pages:

Define the Working Set (Denning ACM SIGOPS 1967)

e set of pages that a process needs in store at ‘“the
same time” to make any progress

e Vvaries between processes and during execution

e assume process moves through phases, and in
each of which get locality.

e OS can try to prevent thrashing by maintaining
sufficient pages for current phase.

e In general can be used as a scheme to determine
allocation for each process.
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Calculation of Working Set

L261577777516234123444343444132456 ...

A A

WS(t1) = {6, 1, 5, 7} WS(t2) = {3,4}

Define window size A of most recent page refs
If a page is "in use” it is in the working set
Gives an approximation to locality of program

Given the size of the working set for each process
WSS;, can compute total frame demand D

If D > m we are in danger of thrashing — suspend
a process

Alternatively use page fault frequency (PFF) of
process
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Prepaging

Pure demand paging causes a large number of PF
when process starts

Can remember the WS for a process and pre-page
the required frames when process is resumed (eg
after suspension)

When process is started can pre-page by adding
its frames to free list

Page Sizes

How do we select a page size (given no hardware
constraints)?

Typical values are 512 to 16K bytes

Trade off size of PT and degree of fragmentation
due to page size

Historical trend towards larger page sizes

Today many processors (e.g. alpha, x86, ARM)
have multiple page sizes: tricky for O/S to use ...
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Other Performance Issues

Program structure
Language choice

I/O Interlock - need to lock some pages in
memory during DMA

Can lock a page brought in for a low priority
process

VM is the anithesis of (hard) RT systems work —
must lock all pages.

For SRT, trade-offs may be available (e.q.
self-paging in Nemesis).
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Demand Segmentation
Infrequently used, OS/2 is an example on the 286

No hardware support for paging - but supports
segments

OS keeps a segment descriptor table which
provides info on what is in memory etc

On a segment fault, the required segment is
brought in, replacing some other segment

May need to compact memory to fit in a segment
which is coming in
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Case Study 1: Unix

e Swapping allowed from very early on.

e Kernel Per-process info. split into two kinds:
— proc and text structures always resident.
— page tables, user structure and kernel stack
could be swapped out.
e Swapping performed by special process: the
swapper (usually process 0).

— periodically awaken and inspect processes on

disk.
— choose one waiting longest time and prepare
to swap in.

— victim chosen by looking at scheduler queues:
try to find process blocked on I/O.

— other metrics: priority, overall time resident,
time since last swap in (for stability).

e From 3BSD / SVR2 onwards, implemented
demand paging.

e Today swapping only used when dire shortage of
physical memory.
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Unix: Address Space

4 Gb

Reserved
3Gb
""""""""""""""""""" System
Kernel
2Gb
.......Kemel Stack
User Structure
User Stack P1
1Gb :
_.Dynamic Data (Heap) | pq
Static Data + BSS
ocb | Text (Program Code)

4.3 BSD Unix address space borrows from VAX:
e 0Gb—1Gb: segment PO (text/data, grow upward)
e 1Gb—2Gb: segment P1 (stack, grows downward)
e 2Gb—3Gb: system segment (for kernel).

Address translation done in hardware LPT:
e System page table always resident.
e PO, P1 page tables in system segment.
e Segments have page-alighed length.
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Unix: Page Table Entries

VLD FOD FS

31130 27 26125124123 2120 0
Resident 1| AXS| M| O| x| xxx| Frame Nunber
Demand Zero O[AXS| x |20 xxxx.......... XXXX
Fill from File O|AXS|x|1]1 Bl ock Nunmber

Transit/Sampling |0 | AXS[ M| 0 | x [ xxx| Frame Nunber

On backing store | 0| AXS[x|0|x|0000.......... 0000

PTEs for valid pages determined by h/w.
If valid bit not set = use up to OS.
BSD uses FOD bit, FS bit and the block number.

First pair are “fill on demand”:
— DZ used for BSS, and growing stack.
— FFF used for executables (text & data).

— Simple pre-paging implemented via klusters.
Sampling used to simulate reference bit.

Backing store pages located via swap map(s).

35



Unix: Paging Dynamics

e Physical memory managed by core map:
— array of structures, one per cluster.

— records if free or in use and [potentially] the
associated page number and disk block.

— free list threads through core map.

e Page replacement carried out by the page daemon.

— every 250ms, OS checks if “enough’ (viz.
lotsfree) physical memory free.

— if not = wake up page daemon.

e Basic algorithm: global [two-handed] clock:
— hands point to different entries in core map

— first check if can replace front cluster: if not,
clear its “reference bit” (viz. mark invalid).

— then check if back cluster referenced (viz.
marked valid); if so given second chance.

— else flush to disk (if necessary), and put cluster
onto end of free list.

— move hands forward and repeat ...

e System V Unix uses an almost identical scheme ...
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Case Study 2: VMS
VMS released in 1978 to run on the VAX-11/780.

Aimed to support a wide range of hardware, and a
job mix of real-time, timeshared and batch tasks.
This led to a design with:

— A Jocal page replacement scheme,

— A quota scheme for physical memory, and

— An aggressive page clustering policy.

First two based around idea of resident set:

— simply the set of pages which a given process
currently has in memory.

— each process also has a resident-set limit.

Then during execution:
— pages faulted in by pager on demand.
— once hit limit, choose victim from resident set.

= minimises impact on others.

Also have swapper for extreme cases.
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VMS: Paging Dynamics
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e Basic algorithm: simple [local] FIFO.

Resi dent
Set (P2)

e Suckful = augment with software *victim cache”:
— Victim pages placed on tail of FPL/MPL.
— On fault, search lists before do 1/0.

e Lists also allow aggressive page clustering:
— if IMPL| > hi, write (|[MPL|— 1lo) pages.

— Get ~100 pages per write on average.
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VMS: Other Issues

e Modified page replacement:

— introduce callback for privileged processes.

prefer to retain pages with TLB entries.

e Automatic resident set limit adjustment:

system counts #page faults per process.
at quantum end, check if rate > PFRATH.
if so and if “enough” memory = increase RSL.
swapper trimming used to reduce RSLs again.

NB: real-time processes are exempt.

e Other system services:

$SETSWM: disable process swapping.
$LCKPAG: lock pages into memory.

$LKWSET: lock pages into resident set.

e VMS still alive: recent versions updated to
support 64-bit address space.
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Other VM Techniques

Once have MMU, can (ab)use for other reasons

e Assume OS provides:
— system calls to change memory protections.

— some way to “catch” memory exceptions.
e This enables a large number of applications.

e €.g. concurrent garbage collection:
— mark unscanned areas of heap as no-access.
— if mutator thread accesses these, trap.

— on trap, collector scans page(s), copying and
forwarding as necessary.

— finally, resume mutator thread.

e e.g. incremental checkpointing:

— at time t atomically mark address space
read-only.

— on each trap, copy page, mark r/w and
resume.

no significant interruption.
more space efficient
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Single Address Space
Operating Systems

Emerging large (64-bit) address spaces mean SAS
plausible once more:

Separate concerns of “what we can see” and
“what we are allowed to access”.

Advantages: easy sharing (unified addressing).

Problems:
— address binding issues return.

— cache/TLB setup for MVAS model.

Distributed shared virtual memory:
— turn a NOW into a SMP.

— how seamless do you think this is?

Persistent object stores:
— support for pickling & compression?

— garbage collection?

Sensible use requires restraint ...
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