Operating Systems
Functions

Steven Hand
8 lectures for CST Ib and Diploma

Lent Term 2000

Handout 3

I/O Devices

e Typically several external 'devices’ which interact
with computer via I/O:

1.

Human readable: graphical displays, keyboard,
mouse, printers

. Machine readable: disks, tapes, CD, sensors

. Communications: line drivers, modems,

network interfaces

e T hey differ significantly from one another with
respect to

1.

SO o x W N

Data rate — several orders of magnitude
between keyboard and network

Application — affects policy
Complexity of control

Unit of transfer

Data representation

Error handling

Devices

How are devices accessed by programs:

e OS deals with processor and devices:

I/O instructions v. memory mapped (where?)
I/O hardware type (e.g. 10’s of serial chips)
polled v. interrupt driven

processor interrupt mechanism

e programs access virtual devices:

terminal streams not terminals
windows not frame buffer
event stream not raw mouse
files not disk blocks

printer spooler not parallel port

transport protocols not raw Ethernet

e Virtual devices implemented:

in kernel, e.g. files, terminal devices
in demons, e.g. spooler, windowing

in libaries, e.g. terminal screen control, sockets

3

Processor and Devices

Users must be prevented from accessing physical
devices and associated data structures:

e data protection: e.g. passwords typed in on
terminal

e bozo programmer: illegal sequence of actions to
an I/O device could lock processor

e multiplexing: concurrent use of device must be
properly controlled

How:
e trust: all device actions dealt with by kernel.
e Mmultiplexing: monitors, locks etc. in kernel

e typical mechanisms:

— make I/O instructions only available in
supervisor mode, and/or

— make I/O devices only available in supervisor
memory map (c/f memory management).

Polling

Continuously interrogate devices:

|
Kernel !
_______ |
. . > L >
DeviceDrivers | |l Il |- ma-n
ooiees (D& [o0] -+
RS

PANRN

A mechanism of limited use:

e how does the ‘user’ get a look in
— need to trust them.

e pOOr worst case response.
e how is priority done?

e but, very simple to program and can know worst
case performance

— in a terminal
— real time control

— dally in interrupt handler

Polling Example:
Serial Output

#define COM1 0Ox3F8
#define THR 0x0
##define LSR 0x5

#define COM1_THR (COM1+THR)
#define COM1_LSR (COM1+LSR)

/*
/*
/*
/ *
/*

COM1 Port Address

Xmit Holding Reg Offset
Line Status Reg Offset
THR Port Address

LSR Port Address

void serial_out(unsigned char c) {
while (! (inb(COM1_LSR) & 0x20)); /* Wait ’til THR free

outb(c, COM1_THR);

/* Put "c" into THR

while(! (inb(COM1_LSR) & 0x20)); /* Wait ’til "c" gone

}

On x86, inb/outb are part of instruction set. On other
architectures, need to provide mapping onto ‘physical’
addresses: e.g. on Alpha machines with alcor chipset:

#define ALCOR_IO 0x8580000000UL

unsigned int inb(unsigned long addr)

((addr << 5) + ALCOR_IO + 0x00);

{
long result = *(volatile unsigned int *)
result >>= (addr & 3) * 8;
return OxffUL & result;

}

*/
*/
*/

Interrupts

Polling poor = most OSs use interrupts.

Most modern processors provide at least a basic
interrupt mechanism:

e at end of each instruction, check interrupt line(s)
for pending interrupt

save program counter

e Save processor status

change processor mode

jump to well known address (or its contents)

Some processors provide:
e multiple levels of interrupts
e hardware vectoring of interrupts

e Mmode dependent registers

Direct Memory Access

Can reduce interrupt overhead with DMA:

e get the device to read and write processor memory
directly

e one interrupt at end of data transfer

e a generic DMA “command” might include:

source address

source increment / decrement / do nothing
sink address

sink increment / decrement / do nothing

transfer size

e DMA channels are often implemented on devices
themselves:

e.g. a disk controller
pass disk address, memory address and size

give instruction to read or write

e Also get “stand-alone” programmable DMA
controllers (e.g. PC-AT)

Interrupts: Implementation

Interrupt handler maps from h/w interrupts to ISR
invocations. Handler may need to:

save more registers
demultiplex interrupt in software

establish a language environment (e.g. a C run
time stack)

Interrupt Service Routines (ISRs):

device, not processor, specific (unless asm!)

for programmed I/O device:
— transfer data

— clear interrupt (sometimes a side effect of
transfer)

for DMA device:

— acknowledge transfer

request another transfer if any more I/O requests
pending on device

signal any waiting threads

enter scheduler or return

Question: who is scheduling who?

Interrupt Handler
Implementation

_do_irq:
sub ri14, ri14, #4 Q@ Fix up link register
stmfd r13!, {r0O-r6, ri12, ri4}

@ first time through loop - pick up current ints.

mov r4, #0x3200000 @ I0C Base
1drb r5, [r4, #0x14] @ IRQ Request A
1drb r6, [r4, #0x24] @ IRQ Request B

do_irq_loop:
tst r6, #0xO0a
blne _unexpected_hardware_signals
tst rb5, #0x80
beq I_3

mov r0, #0x20

strb r0, [r4, #0x18] @ disable this interrupt
bl _irq_atm_interface

10

Interrupt Handler
Implementation

I_3:
tst 1r6, #0x20 Q@ eXpansion Cards are on Bit 5
blne _xcb_interrupt @ ARM Podule Bus

tst 16, #0xcO @ kart ints are SRx & STx bits 6, 7
blne _kbd_irq @ Keyboard IRQ

tst 1r6, #0x04 @ R6551 on bit 2 SLCI - pin IL2
blne _r6551_irq @ Serial line controller

tst r5, #0x20 @ timer O is bit 5

beq I_2

mov r0O, #0x20
strb rO, [r4, #0x14] @ Clear timer

bl _inttimer @ Advance the clock
bl _clocksweep @ Any timers gone off?
I_2:

@ loop back in case there are more ints

ldrb r5, [r4, #0x14] @ IRQ Request A

1ldrb r6, [r4, #0x24] @ IRQ Request B

orrs rO, r5, r6

bne do_irq_loop @ something happening? go round

11

Interrupt Handler
Implementation

no_more_ints:
1dr r12, _cur_thread
cmp r12, #0
ldmeqfd r13!, {r0-r6,

1dr rO, I_RP Q
1ldr r1, [rO] Q
mov r2, #0

str r2, [r0] 6]
cmp rl, #0 Q@

ldmeqfd r13!, {r0-r6,

@ Regs are on stack.
ldmfd r13!, {rO-r6}
stmea r12!', {rO-rii}
ldmfd r13!, {rO,r1}
stmea r12!, {r0, ri3,
stmea ri12!, {ri}

@ Irgs off not fiqgs, S
teqp r15, #SUPER_MODE|
mov r0, rO

stmea ri12!, {ri13, ri4}
mov rO, #7

bl _scheduler

b _do_brick_wall

@ load current tcb
@ do we have a thread?
r12, ri5}~ @ nope - return

address of reschedule flag
load it

clear it
reschedule needed?
r12, ri5}~ @ nope - return

@ previous rO to r6

@ and save

@ previous rl1l2 and rib
r14}~ @ and save

@

save prev rlb

upervisor mode
IBIT @ 26-bit magic
@ nop
@ Supervisor ri13 and ri4
@ Setup '"reason" and
@ invoke scheduler

12

ISR Implementation

#define R6551_DATA ((volatile u_char *)0x33b0000) /* Data R/W
#define R6551_STATUS ((volatile u_char *)0x33b0004) /* Status R
#define R6551_CNTRL ((volatile u_char *)0x33b000c) /* Control R/W
#define R6551_CMD ((volatile u_char *)0x33b0008) /* Command R/W
#define R6551_RESET ((volatile u_char *)0x33b0004) /* Soft Reset W

#define CMD_IRQ_INIT 0x0a /* all ints off, RTS_bar low */
#define CMD_IRQ_OFF 0x0b /* TX ints off, DTR_bar low */
#define CMD_TIRQ_ON 0x07 /* TX ints on, DTR_bar low */

#define STATUS_IRQ_PEND 0x80 /* interrupt pending */
#define STATUS_TDRE 0x10 /* TDR empty => can send */
#define STATUS_IRQ_TDRE (STATUS_IRQ_PEND | STATUS_TDRE)

static char r6551_buf [R6551_BUFSIZE];

static int r65561_producer = 0;

static int r6551_consumer = O;

static int r6561_freespace = R6551_BUFSIZE;

void r6551_irq()

{
u_char ¢ = *R6551_STATUS;
if(!'(c & STATUS_IRQ_TDRE)) return;
/* need to send next data */
if (r6551_producer != r6551_consumer) {
*R6551_DATA = r6551_buf[r6551_consumer++];
if (r6551_consumer == R6551_BUFSIZE)
r6551_consumer = O;
r6551_freespace++;
} else { /* no data to tx - disable the interrupt */
*R6551_CMD = CMD_IRQ_OFF;
}
}

13

*/
*/
*/
*/
*/

I/O Buffering

e Important that a process waiting on I/O does not
consume excess system resources

e CPU should reschedule and run another process
e To avoid difficulties of page management OS can

use some form of buffering:

1. Single buffering — OS assigns a system buffer
to the user request

2. Double buffering — process consumes from
one buffer while system fills the next

3. Circular buffers — most useful for
burst-oriented 1/O
e Many aspects of buffering dictated by device type:
— character devices = line probably sufficient.
— network devices = bursty (time & space).
— block devices = lots of fixed size transfers.

— (last usually major user of buffer memory)

14

I/0O: Summary

e Messiest part of OS:
— huge variety of devices.

— large variety of device ‘“classes’ .

e Key design issues:

1. Efficiency

— Key performance issue is that of I/O
buffering

— Also important to schedule I/O to meet
performance requirements of system

2. Stability
— Need to handle heavy I/O loads.
— Decoupling ISR and device driver is good.
3. Generality

— Want to provide useful abstraction (e.g.
Unix files)

— But need to be careful don’t lose
performance/functionality (e.g. direct
access, asynchrony).

15

Disk I/O

Performance of disk I/O is crucial to
swapping/paging and file system operation

Key parameters:
1. Wait for controller and disk.
2. Seek to the appropriate disk cylinder

3. Rotational delay for the desired block to come
under the head

4. Data transfer

Performance depends critically on how the disk is
organised

actuator

read-write

16

Disk Scheduling

In a typical multiprogramming environment have
multiple users queueing for access to disk

Also have VM system requests to load/swap/page
processes/pages

We want to provide best performance to all users
— specifically reducing seek time component

Several policies for scheduling a set of disk
requests onto the device, e.q.

1.
2.

FIFO: perform requests in their arrival order

SSTF: if the disk controller knows where the
head is (hope so!) then it can schedule the
request with the shortest seek from the
current position

SCAN (“elevator algorithm’): relieves problem
that an unlucky request could receive bad
performance due to queue position

. C-SCAN: scan in one direction only

. N-step-SCAN and FSCAN: ensure that the

disk head always moves

17

Reference String = 55, 58, 39, 18, 90, 160, 150, 38, 184

Reference

0 —
Time

FIFO

a
o
|
[

= =

al o

o o
| |

200 +—

Reference

o
y

Time

n
o
|
[

SSTF

= =

Ql o

o o
| |

200 +—

Reference

o

Time

SCAN

an
o
|
[

= =

Ql o

o o
I |

Time

C-SCAN

Other Disk Scheduling Issues

e Priority: usually beyond disk controller’'s control.

— System decides to prioritise, for example by
ensuring that swaps get done before 1/0.

— Alternatively interactive processes might get
greater priority over batch processes.

— Or perhaps short requests given preference
over larger ones.
e SRT disk scheduling (e.g. Cello, USD):
— Per client/process scheduling parameters.
— Two stage: admission, then queue.

— Problem: overall performance?

e 2-D Scheduling:
— Try to reduce rotational latency.

— Typically require h/w support.

e Bad blocks:

— Remapping typically transparent = can undo
scheduling benefits.

18

Logical Volumes

Hard Disk A Hard Disk B
Partition A1
Partition A2 Partition B1
Partition A3 Partition B2

Modern OSs tend to abstract away from physical disk;
instead use logical volume concept.

e Partitions first step.

e Augment with “soft partitions”:
— allow v. large number of partitions on one disk.
— can customize, e.g. ‘“real-time” volume.

— aggregation: can make use of v. small
partitions.

e Overall gives far more flexibility:
— e.g. dynamic resizing of partitions

— e.g. Striping for performance.

E.g. IRIX x1m, OSF/1 1vm, NT FtDisk.

Other big opportunity is reliability ...

19

RAID

RAID = Redundant Arrays of Inexpensive Disks:

e Uses various combinations of striping and
mirroring to increase performance.

e Can implement (some levels) in h/w or s/w

e Many levels exist:

RAIDO: striping over n disks (so actually 'R)

RAID1: simple mirroring, i.e. write n copies of
data to n disks (where n is 2 ;-).

RAID2: hamming ECC (for disks with no
built-in error detection)

RAID3: stripe data on multiple disks and keep
parity on a dedicated disk. Done at byte level
= need spindle-synchronised disks.

RAID4: same as RAID3, but block level.

RAID5: same as RAID4, but no dedicated
parity disk (round robin instead).

o AUtoRAID trades off RAIDs 3 and 5.

20

Disk Cacheing
e Cache holds copy of some of disk sectors.

e Can reduce access time by applications if the
required data follows the locality principle

e Design Issues
— Transfer data by DMA or by shared memory 7
— Replacement strategy: LRU, LFU, etc.
— Reading ahead: e.g. track based.
— Write through or write back 7

— Partitioning? (USD ...)

e Typically O/S also provides a cache in s/w:
— May be done per volume, or overall.
— Also get unified caches — treat VM and FS
caching as part of the same thing.
e Software caching issues:
— Should we treat all filesystems the same?

— Do applications know better?

21

4.3 BSD Unix Buffer Cache

e Name? well buffers data to/from disk, and caches
recently used information.

e Modern Unix deals with logical blocks, i.e. FS
block within a given partition / logical volume.

e ‘“Typically” prevents 85% of implied disk transfers.

e Implemented as a hash table:
— Hash on (devno, blockno) to see if present.

— Linked list used for collisions.
e Also have LRU list (for replacement).

e Internal interface:
— bread(): get data & lock buffer.
— brelse(): unlock buffer (clean).
— bdwrite(): mark buffer dirty (lazy write).
— bawrite(): asynchronous write.

— bwrite(): synchronous write.
e Uses sync every 30 secs for consistency.

e Limited prefetching (read-ahead).

22

NT Cache Manager

e NT Cache Manager caches *“virtual blocks":

viz. keeps track of cache “lines” as offsets
within a file rather than a volume.

disk layout & volume concept abstracted away.
no translation required for cache hit.

can get more intelligent prefetching

e Completely unified cache:

cache “lines” all in virtual address space.

decouples physical & virtual cache systems:
e.g. virtually cache in 256K blocks, physically
cluster up to 64KbDb.

NT virtual memory manager responsible for
actually doing I/0O.

allows lots of FS cache when VM system
lightly loaded, little when system is thrashing.

is this good?

e NT also provides some user control:

if specify temporary attrib when creating file =
will never be flushed to disk unless necessary.

if specify write through attrib when opening a
file = all writes will synchronously complete.

23

File systems

What is a filing system:

e Directory service, provides
— naming mechanism
— access control
— existence control

— concurrency control

e Storage service, provides

— integrity, data needs to survive:
* hardware errors

* OS errors
* USer errors
— archiving

— mechanism to implement directory service
What is a file?
e an ordered sequence of bytes (UNIX)

e an ordered sequence of records (ISO FTAM)

24

File Mapping Algorithms

How is a file mapped to blocks:
1. chaining in the material
2. chaining in a map
3. table of pointers to blocks
4. extents
Aspects to consider:
e integrity checking after crash
e automatic recovery after crash

e cfficiency for different access patterns
— of data structure itself

— of IO operations to access it
e ability to extend files

e efficiency at high utilization of disk capacity

25

Chaining in the Media

Directory File
Entries Bl ocks

e
e

Each disk block has pointer to next block in file.
Can also chain free blocks.

e OK for sequential access — poor for random access

e cost to find disk address of block n in a file:
— best case: n disk reads

— worst case: n disk reads

e Some problems:
— not all of file block is file info

— integrity check tedious ...

26

Chaining in a map

Directory nNgrpmlr; Di sc bl ocks

i)

Maintain the chains of pointers in a map (in memory),
mirroring disk structure.

e disk blocks only contain file information

e integrity check easy: only need to check map

e handling of map is critical for
— performance: must cache bulk of it.

— reliability: must replicate on disk.

e cost to find disk address of block n in a file:
— best case: n memory reads

— worst case: n disk reads

27

Table of pointers

Directory Tabl e of Di sc bl ocks
Poi nters

access cost to find block n in a file

— best case: 1 memory read

— worst case: 1 disk read
integrity check easy: only need to check tables
free blocks managed independently (e.g. bitmap)

table may get large = must chain tables, or build
a tree of tables (e.g. UNIX inode)

access cost for chain of tables? for hierarchy?

28

Extent lists

Directory Iéixts;[an?]; Di sc bl ocks

Use of contiguous blocks can increase performance ...
e list of disk addresses and lengths (extents)

e access cost: [perhaps] a disk read and then a
searching problem, O(log(number of extents))

e can use bitmap to manage free space (e.g. QNX)

e System may have some maximum #textents
— could copy file (i.e. compact into one extent)

— or could chain tables or use a hierarchy as for
table of pointers.

29

File meta-data 1

What information is held about a file?
e times: creation, access and change?
e access control: who and how
e location of file data (see above)
e backup or archive information
e concurrency control
What is the name of a file?

e Simple system: only name for file is human
comprehensible text name
e perhaps want multiple text names for file
— soft (symbolic) link: text name — text name
— hard link: text name — file id
— if we have hard links, must have reference
counts on files
Together with the data structure describing the disk
blocks, this information is known as the file meta-data.

30

File meta-data 11

Directory File File
Entries Node Dat a
foo RW..... ~ [11 11]
~ e s | e | o |
----- = e i S E—
" T | 11]
bar R 1

Where is file information kept:
e no hard links: keep it in the directory structure.

e hard links, keep file info separate from directory
entries

— file info in a block: OK if blocks small (e.g.
TOPS10)

— or in a table (UNIX i-node / v-node table)

e on OPEN, (after access check) copy info into
memory for fast access

e on CLOSE, write updated file data and meta-data
to disk

How do we handle caching meta-data?

31

Directory Name Space

e simplest - flat name space (e.g. Univac Exec 8)
e two level (e.g. CTSS, TOPS10)

e general hierarchy
— a tree,
— a directed (acyclic) graph (DAG)

e sStructure of name space often reflects data
structures used to implement it

— hierarchical name space <« hierarchical data
structures

— but, could have hierarchical name space and
huge hash table!

General hierarchy:
e reflects structure of organisation, users’ files etc.

e name is full path name, but can get rather long:
€.g. /Jusr/groups/X11R5/src/mit/server/os/4.2bsd/utils.c

— offer relative naming
— login directory

— current working directory

32

Directory Implementation

e directories often don't get very large (especially if
access control is at the directory level rather than
on individual files)

often quick look up

D directories may be small compared to
allocation unit

e But: assuming small dirs means lookup is naive =
trouble if get big dirs:
— optimise for iteration.

— keep entries sorted (e.g. use a B-Tree).

e Query based access:
— Split filespace into system and user.
— User wishes ‘easy’ retrieval.

— What about access control?

33

Immutable files

Do away with concurrency problems — use write once
files with atomic close! Implemented by:

e COpY on write
e multiple version numbers: foolll, foo!l2

e invent new version number on close (i.e. sequence
all close operations)

Problems:

e disk space
— only keep last k versions (archive rest?)
— have a explicit keep call
— share disk blocks between different versions —
complicated file system structures

e name without version usually means ‘latest’ —
ambiguous

e and the Killer ... directories aren’'t immutable!

34

But:

concurrency control only required on version
number

could be used (for files) on unusual types of media
— write once optical disks

— erasable disks

— remote servers (e.g. Cedar FS)

provides an audit trail

— required by the spooks

— often implemented on top of normal file
system; e.g. UNIX RCS

coming back into vogue (e.g. Elephant)

Multi-level stores

Archiving (c.f. backup); keep frequently used files on
fast media, migrate others to slower (cheaper) media.
Can be done by:

e user — encouraged by accounting penalties

e system — migrate files by periodically looking at
time of last use

e Ccan provide transparent naming but not
performance!

Integrate multi-level store and ideas from immutable
files, e.g. Plan-9:

o file servers with fast disks
e write once optical juke box
e every night, mark all files immutable

e start migration of files which changed the previous
day to optical disk

e access to archive explicit
e.g. /archive/12Jan2000/users/smh/ ...

35

Integrity: Backups

Backup; keep (recent) copy of whole file system to
allow recovery from:

e CPU software crash

e bad blocks on disk

e disk head crash

e fire, war, famine, pestilence
What is a recent copy:

e in real time systems (e.g. airline booking) recent
means mirrored disks

e daily usually sufficient for 'normal’ machines
Can use incremental technique, e.g.

e full dump performed daily or weekly
— copy whole file system to another disk or tape
— could take hours [esp. if copy across a network]

— best done while file system live (although can
give us consistency problems).

36

e incremental dump performed hourly or daily

— only copy files and directories that have
changed since the last time.

— can either mark files explicitly (perhaps at log
out), or use last modification time in file
meta-data.

e e.g9. 3-level scheme

Si ze
of
Dunp

level |0 1 22221222

e to recover:
— first restore full dump,

— then add in incrementals.

Ruler Function

Tapeto use
N oW A

0 I|I I|I Ill‘lll Ill‘lll Ill‘lll

12345678 ...

Operation Day Number

e Want to minimise #tapes needed, time to backup

e \Want to maximise the time a file is held on backup

— Number days starting at 1

— On day n use tape t such that 2! is highest
power of 2 which divides n

— whenever we use tape t, dump all files
modified since we last used that tape, or any
tape with a higher number

e If file is created on day ¢ and deleted on day d a
dump version will be saved substantially after d

e the length of time it is saved depends on d — ¢ and
the exact values of ¢, d

37

Integrity: Processor crash

If the processor terminates unexpectedly — OS bug,
power failure — the main problem is that modified data
structures exist in memory and have not been
completely written to disk.

e most failures affect only files being modified

e as disk is still intact, can usually recover a more
recent version of file system from its state than
from backup

e at start up after a crash run a disk scavenger

— try to recover data structures from memory
(bring back core memory!)

— get current state of data structures from disk

— identify inconsistencies (may require operator
intervention)

— isolate suspect files and reload from backup

— correct data structures and update disk

e usually much faster and better (i.e. more recent)
than recovery from backup.

38

e Can make scavenger’s job simpler:
— replicate vital data structures
— spread replicas around the disk
— provide redundancy in data structures for
consistency check
e even better: use journal [or log] file to assist with
recovery.

— record all meta-data operations in an
append-only [infinite] file.

— ensure log records always written prior to
actual modification.

— allows very fast recovery after a crash (e.g. a
few seconds).

— e.d. NTFS, XFS.

Log-Structured File Systems

Radically different file system design:
e Premise 1: CPUs getting faster faster than disks.
e Premise 2: memory cheap = large disk caches
e Premise 3: large cache = most disk reads ‘free’”.
= performance bottleneck is writing & seeking.
Basic idea: solve write/seek problems by using a log:

e log is [logically] an append-only piece of storage
comprising a set of records.

e all data & meta-data updates written to log.

e periodically flush entire log to disk in a single
contiguous transfer:

— high bandwidth transfer.

— can make blocks of a file contiguous on disk.
e have two |logs = one in use, one being written.

What are the problems here?

39

1. How do we find data in the log?

e can keep basic UNIX structure (inodes, indirect
blocks, etc)

e then just need to find a file’'s inode = use
inode map

e inode maps live in fixed region on disk.

2. What do we do when the disk is full?

e Nneed asynchronous scavenger to run over old
logs and free up some space.

e two basic alternatives:

1.
2.

compact live information to free up space.

thread log through free space.

e Neither great = use segmented log:

divide disk into large fixed-size segments.

compact within a segment, thread between
segments.

when writing use only clean segments
occasionally clean segments

choosing segments to clean is hard ...

Log-structured file systems are the subject of ongoing
debate in the OS community ...

