Operating Systems
Functions

Steven Hand
8 lectures for CST Ib and Diploma

Lent Term 2000

Handout 4



Protection

Require protection against unauthorised:

e release of information
— reading or leaking data
— violating privacy legislation
— using proprietary software

— covert channels

e modification of information
— changing access rights

— can do sabotage without reading information

e denial of service
— causing a crash
— causing high load (e.g. processes or packets)

— changing access rights
Also wish to protect against the effects of errors:
e isolate for debugging

e isolate for damage control



Protection mechanisms impose controls on access

by SUBJECTS to OBJECTS

active passive
users memory
processes files
programs peripherals
discs
tapes

a thread a domain



Protection and sharing

Single user machine, no network connection, in a
locked room - protection is easy.

But want to:
e Share facilities - for economic reasons

e share and exchange data - applications
requirement

Some mechanisms we have already come across:

e user and supervisor levels
— usually one of each

— could have several (e.g. MULTICS rings)

e memory management hardware
— protection keys
— relocation hardware
— bounds checking

— separate address spaces

e files
— access control list

— groups etc



Design of protection system

Some others:

e lock the computer room (stop tampering with
hardware)

e restrict access to system software

e de-skill systems operating staff

e keep designers away from final system!

e legislate

e passwords (in general challenge / response)
e encryption (shared secret)

ref: Saltzer + Schroeder Proc. IEEE 634
ppl278-1308 Sept 75

e design should be public
e default should be no access
e check for current authority

e give each process minimum possible authority
4



mechanisms should be simple, uniform and built in
to lowest layers

should be psychologically acceptable
cost of circumvention should be high

minimize shared access



Authentication of User to
System

Passwords currently widely used:

e want a long sequence of random characters issued
by system, but:

— user would write it down

— allow user selection - will use dictionary word,
car registration, name of spouse

— encourage use of an algorithm to remember
password

e don't reflect on terminal, or overprint
e need to use encryption if line suspect

e Security of password file?

— only accessible to login program, e.g. CAP,
TITAN

— hold scrambled, e.g. UNIX
* only need to write protect file

*x need irreversible function (without password)
* Mmaybe ‘one-way’ function

* however, off line attack — use shadow
passwords



Authentication of User to
System

Passwords in UNIX:

e Simple for user to remember

arachnid

e sensible user applies an algorithm

lr!chn#d

e use password for ‘DES’ like encryption of well
known text

IML.DVMcz6Sh2

Really require unforgeable evidence of identity that
system can check:

e password
e id card inserted into slot
e fingerprint, voiceprint, face recognition

e SsSmart cards



Authentication of System to
user

User wants to avoid:
e talking to wrong computer
e right computer, but not the login program

Partial solution in olden days for directly connected
terminals ...

e make login character same as terminal attention

e Or, always do a terminal attention before trying
login

But, micros used as terminals:
e |ocal software may have been changed
e SO carry your own copy of the terminal program

e but hardware / firmware in public machine may
have been modified

Anyway, still have the problem of communication lines:

e simple wiretap



e workstation can see all packets on (certain types
of) network

e must use encryption and trust encryption device -
need smart cards



Mutual suspicion

e System of user
e Users of each other
e User of system

Called programs should be suspicious of caller (e.g. OS
calls)

Caller should be suspicious of called program
(e.g. Trojan horse or Virus)

Trojan horse:
e ‘useful’ looking program - a game perhaps

e when called by user (in many systems) inherits all
users privileges

e copy files
e modify files
e change password

e send mail



e.g. Multics editor Trojan horse, editor copied files as
well as edited.

Virus:
e usually starts off as Trojan horse

e self-replicating



Access matrix

Matrix of subjects v. objects
Subject or principal:

e users e.g. by uid

e executing process in a protection domain (UNIX 2,
MULTICS 8 rings)

e combinations
Objects:

o files

e devices

e domains / processes

e message ports

Matrix is large and sparse, two common
representations:

e by object: store list of subjects and rights with
each object
access control list

e by subject: store list of objects and rights with
each subject
capabilities



Access Control Lists

Often used in storage systems:

e system naming scheme provides for ACL to be
inserted in naming path, e.g. files

e if ACLs stored on disk, check is made in software
= must only use on low duty cycle

e for higher duty cycle must cache results of check

e e.g. Multics: open file = memory segment;
On first reference to segment:

— interrupt
— check ACL
— set up segment descriptor in segment table

— place segment information in cache

e Mmost systems check ACL
— when file opened for read or write

— when code file is to be executed

e access control by program, e.g. Unix
— exam prog, RWX by examiner, X by student

— data file, A by exam program, RW by examiner
e allows arbitrary policies ...

10



Capabilities

Capabilities associated with active subjects, so:
e Store in address space of subject
e must make sure subject can’t forge capabilities
e casily accessible to hardware

e can be used with high duty cycle
e.dg. as part of addressing hardware

— Plessey PP250
— CAP I, II, III

— IBM system /38
— Intel IAPX432

e have special machine instructions to modify
(restrict) capabilities

e support passing of capabilities on procedure
(program) call

Can also use software capabilities:
e checked by encryption

e nice for distributed systems

11



Implementations
Tagged Architectures (e.g. IBM system/38):

e all words in memory and the processor registers
are tagged as containing either data or a capability

e tag stays with contents on all copy operations
e system checks ALU operations for validity
Capability segments (e.g. CAP):

e capabilities for code segment held in special
capability segment

e only a restricted set of operations are allowed on
capability segments

e provide a cache of entries in capability segments in
special capability registers

e USe associative store, per domain capability list,
central capability list

e add enter capability
Software schemes (e.g. EROS)
e require capabilities for all system services

e fake out enter via IPC.

12



Password Capabilities

Capabilities nice for distributed systems but:
— messy for application, and

— revocation is tricky.
Could use timeouts (e.g. Amoeba).
Alternatively: combine passwords and capabilities.

Store ACL with object, but key it on capability
(not implicit concept of “principal” from OS).

Advantages: revocation possible, multiple “roles”
available.

Disadvantages: still messy (use 'implicit’ cache?).

13



Covert channels

Information leakage by side-effects.
At the hardware level:

e Wwire tapping

e monitor signals in machine

e modification to hardware

e electromagnetic radiation of devices
By software:

e leak a bit stream as:

file exists page fault compute for a while
no file no page fault sleep for a while

e system may provide statistics
e.g. TENEX password cracker using system
provided count of page faults

In general, guarding against covert channels is
prohibitively expensive.

14



Extensibility

What's it about?
e Fixing mistakes.
e Supporting new features (or hardware).

e Efficiency, e.g.
— packet filters

— run-time specialisation

e Individualism, e.g.

— per-process thread scheduling algorithms.

— customizing replacement schemes.

— avoiding “shadow paging” (DBMS).
How can we do it?
e give everyone their own machine.
e allow people to modify the OS.
e allow some of the OS to run outside.

e reify separation between protection and
abstraction.

15



Low-Level Techniques

Give everyone their own [virtual] machine:

e lowest level s/w does:
— virtual h/w

— (simple) secure multiplexing.
= get N pieces of h/w from one.

Then simply run OS on each of these N:
can pick and choose operating system.

can even recompile and “reboot” OS without
logging ofF.

D how big is a sensible value for N7

D layer violations...
e Examples: VM 370, VMWare, [SIimOS7?]

e Can also get N from M, e.g. Disco.

16



Kernel-Level Schemes (1)

Often don’t require entirely new OS:
e Just want to replace/modify some small part.

Allow portions of OS to be dynamically [un]loaded.

e e.g. linux kernel modules
— requires dynamic relocation and linking.
— once loaded must register.

— support for [un]loading on demand.

e.d. NT services and device drivers
— well-defined entry / exit routines.

— can control load time & behaviour.

However there are some problems, e.g.
— requires clean [stable?] interfaces

— specificity: usually rather indiscriminate.

e ... and the big one: security.
— who can you trust?

— who do you rate?

17



Kernel-Level Schemes (2)

Various schemes exist to try to avoid security problems:
e Trusted compiler [or CA] + digital signature.
e Proof carrying code.

e Sandboxing:

— limit [absolute] memory references to
per-module [software] segments.

— use trampolines for other memory references.

— may also check for certain instructions.

e e.9g. SPIN (U. Washington)
— based around Modula-3 & trusted compiler

— allows *“handlers” for any event.

e Still problems with dynamic behaviour (consider
handler while(1);) = need more.

e e.g. Vino (Harvard)
— uses ‘“grafts” = sandboxed C/C++ code.
— timeouts protect CPU hoarding.

— in addition supports per-graft resource limits
and transactional “undo’” facility.

e Lots of work ...

18



User-Level Schemes

Can avoid complexity by putting extensions in
user-space:

e e.9. u-kernels + IDL (Mach, Spring)
e still need to handle timeouts / resource hoarding.

Alternatively reconsider split between protection and
abstraction : only former need be trusted.

e e.g. Exokernel:
— run most of OS in user-space library.
— leverage DSL /packet filters for customization.

— can get into a mess (e.g. UDFs).

e e.g. Nemesis:

— guarantee each application share of physical
resources in both space and time.

— use IDL to allow user-space extensibility.

— still requires careful design ...

e Is this the ultimate solution?

19



Summary & Outlook

An operating system must:
1. securely multiplex resources.

2. provide / allow abstractions.

Major aspect of OS design is choosing trade-offs.
— e.g. protection vs. performance vs. portability

— e.g. prettiness vs. power.

Future systems bring new challenges:
— scalability (multi-processing/computing)
— reliability (computing infrastructure)

— ubiquity (heterogeneity/security)

Lots of work remains ...

20



