Operating Systems

Steven Hand
12 lectures for CST Ia

Easter Term 2000

Part II: Operating System Functions
(Handout 2 of 2)

Memory Management

e Every process needs memory for:
— instructions (“code” or “text"),
— static data (in program), and
— dynamic data (heap and stack).

e If multiprogramming = many processes in memory
simultaneously.

e [he memory magagement subsystem handles:
1. Relocation

Allocation

Protection

Sharing

Logical Organisation

S ok W N

Physical Organisation

Address Binding

Consider a set of application binaries on a queue on
disk, ready for execution

e A process may be loaded anywhere in physical
memory.

e T he application source refers to addresses
symbolically e.g. int count;

e [hese are bound to relocatable addresses by the
compiler, e.qg.
module_base = 50, count = module_base + 10

e Something (linkage editor or loader) will bind the
relocatable addresses to absolute addresses

Address binding addresses can occur:

e at compile time (requires knowledge of absolute
addresses)

e at load time: when program is first executed, work
out position in memory and process code to insert
correct addresses

e at runtime: if process is to be moved within
memory during execution then memory addresses
will need to be modified.

Dynamic Loading & Linking
Relatively new appearance in OS (early 80’s)

Allows a compiled binary to invoke, at runtime,
routines which are dynamically linked.

Typically implemented by set of stub routines and
a dynamic linker.

Needs O/S support because libraries can be
shared between multiple processes (and O/S is
only part of system that knows where all the
processes and libraries are ...).

Benefits:

1. Reduces size of binaries (on disk & in
memory).

2. Increased flexibility: e.g. a bug in system
libraries can be fixed without requiring all third
party binaries to be relinked.

3. Also get modularity / overlay support

Overlays

Up to now we have assumed that the entire image will
be in memory at once:

symbol table

common
subroutines

Free
Pass 2
Pass 1 . Memory

e Overlays permit a process to be bigger than
physical memory size or bigger than space
allocated to process.

e Only keep code and data in memory which are
required at the moment.

e When other bits of code/data are needed they are
loaded on top of existing code/data.

Logical vs Physical Addresses

| ogi cal physi cal
addr ess a&gress

MMU >

Memory

CPU i

transl ati on
faultl(to 0S)

Can avoid lots of problems by separating concept of
logical (virtual) and physical (“real”) addresses.

I.e. programs reference logical addresses, which are
somehow translated into physical addresses.

This means address binding problem solved:
e bind to logical addresses at compile-time.
e bind to real addresses at load time/run time.

Mapping of logical to physical addresses is done at
run-time by the Memory Management Unit (MMU)
hardware.

E.g. Segmentation

Relocation Register

\

|

no
CPU logical . + physical

Memory

/|

address \yes address

address fault

. Relocation register holds the value of the base

address owned by the process.

. Relocation register contents are added to each
memory address before it is sent to memory.

. E.g. DOS on 80x86 — 4 relocation registers

. Logical address is a tuple (s,o0).

. NB: Process never sees physical address — simply

manipulates logical addresses

Swapping

If the number of processes exceeds total physical
memory, then process can be swapped out to
secondary store (e.g. disk).

This makes space for a second process to enter
memory

When the original process is resumed it is swapped
back into memory

Can be used to preempt low priority tasks for high
priority tasks

When a process is rolled back in to memory then
it must be positioned at same physical address if
load/compile time relocation is used.

If runtime relocation is used then need to change
mapping in MMU to reflect new base and limit of
process.

Swapping (2)

How it works:

1. OS maintains a ready queue of processes on disk
which are ready to be executed.

2. When OS decides to run a process it calls
dispatcher to check whether process is in memory.

3. If not the dispatcher may need to swap out a
currently resident process and swap in the required
process.

Note that:

e Can cause very large context switch times = need
to make execution time long relative to swap time.

e user program needs to keep OS informed of how
much memory it is using.

e What if have pending I/O on a process to be
swapped?

e Standard swapping used on few systems in
practice (too slow, too difficult to implement).

e Modified swapping used on Unix; starts
automatically if memory use reaches a threshold.

9

Contiguous Allocation

Given that we want multiple virtual processors, how
can we support this in a single address space 7

Where do we put processes in memory ?

e OS typically in low memory due to location of
interrupt vectors

e Need to protect OS and user processes from
malicious programs

e Use base and limit registers in MMU — keep one
context per process

e Easiest way to divide memory is into multiple fixed
size partitions (e.g. OS/360 MFT).

e Each contains exactly one process

e When partition is free a new process can be
loaded. When process terminates its partition
becomes available to new process.

10

Static Multiprogramming

RUN Partitioned

Memory

Static allocation:

e partition memory and allocate pieces to different
job queues.

e associate jobs to a job queue and relocate (once)

e swap job to backing store when

— blocked on I/O (assumes I/O slower than
backing store).

— time sliced: larger the job, larger the time slice

e run job from another queue while swapping jobs

11

Static Multiprogramming (2)
We can make the system more dynamic
e uUse a relocating loader

— cost of relocation paid at each invocation

— allocate sections of store as required

e Or try for position independent code
— tedious and inefficient on most machines

— how would you implement position
independent data?

e in either case, still suffer from
— store fragmentation,

— cannot grow a partition.

Such systems are still used; especially when the
demands on the system are known in advance, e.d.

e embedded systems

e real time control systems

12

Dynamic Partitioning

Get more flexibility if allow partition sizes to be
dynamically chosen (e.g. OS/360 MVT) :

e OS keeps table of which areas of mem are
available and which occupied.

e When a new process arrives it searches for a hole
large enough for the process, and updates its
table.

e Free space left becomes a hole.

e At any time OS has list of available holes. When
process arrives if a hole is too big it is split in two,
and remainder returned to the free list.

e When process terminates it frees its memory onto
the free list.

13

o —
2300K

Scheduling Example

2000K

P3
2000K
P2 —
1000K
P1 P1
400K
OS oS

2560K

2300K

2560K
]
P3 P3

1700K
— P4
1000K
P1 —
400K
(O

P3

2000K

P4 P4
1000K
900K
—_— P5
400K
oS oS

e Consider machine with total of 2560K memory.

e Operating System requires 400K.

e The following jobs are in the queue:

Process Memory Time
P 600K 10

P> 1000K 5

P3 300K 20

Py 700K 3

Ps 500K 15

14

Free Space Management

e Could use a bitmap: one bit for each “chunk” of
memory.

e Problem: finding contiguous set of n chunks.

e Instead, use one or more linked lists, e.d.

[0000]0C04 | +— 22003810 | +—{ 4790 IglEb

:4 BOFO [B130 [+—[D708 [FFFF [F+—n

e Several mechanisms for determining which hole to
use for new process:

— First fit: stop searching as soon as big enough
hole is found

— Best fit: search entire list to find “best” fitting
hole.

— Worst fit: allocate largest hole (again must
search entire list).

e Can use buddy system to make allocation faster.

15

External Fragmentation

P4 PS

P6
/] /| /T
P3 P3

P3 P3 P3
P2
P4 P4 P4 P4
/|
P1 P1 P1 — 1 s o5
0S 0S 0S oS 0S 0S

e Dynamic partitioning algorithms suffer from
external fragmentation: as processes are loaded
they leave little fragments which may not be used.

e EXxternal fragmentation exists when the total
available memory is sufficient for a request, but is
unusable because it is split into many holes.

e Can also have problems with tiny holes

Solution: compact holes periodically.

16

Compaction

2100K

21OOK- 2100K o
900K 1900K
P4
1500K
1200K- 1200K
1000KE=—"3 P4 | 1000k P3
800K
P3 P4
600K 600K 600K
500K 500K|__P2 500K|__P2
P1 P1 P1
300K 300K 300K 300K
0 OS 0 oS 0 oS 0 oS

Choosing optimal strategy quite tricky ...

Note that:
e Require run-time relocation.

e Can be done more efficiently when process is
moved into memory from a swap.

e Some machines used to have hardware support
(e.g. CDC Cyber).

Also get fragmentation in backing store, but in this
case compaction not really viable ...

17

Paging

Another solution is to allow a process to exist in
non-contiguous memory

e Divide physical memory into blocks of fixed size,
called frames

e Divide logical memory into blocks of same size
called pages

e Backing store also composed of blocks of same
Size as frames

e Now need hardware support for paging: each
address generated by CPU is composed of a page
number p and page offset o.

e Page number p used as index into page table.

e Page table contains address f of each page in
physical memory

18

;/////////////////

4
4
/
4
4
4
/
4
4
4
/
4
4
4
4

CPU

Paging (2)

R R,

N
N
N
N
N
N
N
N
N
N
N
N
N
§
N
Y

P

0 f

| ogi cal

o)

Memory

addr ess PageTabIe physi cal address

e Potentially have virtual address space >> than

physical one (i.e. can have |p| > |f]).

= need valid bit to say if a given page is represented
in physical memory.

19

Paging (3)

Virtual Memory

Page O .
Page 1 \ Physical Memory
Page 2 0
Page 3 \\\\\\\\\‘1 " Page 4 1
Page 4 \\\\\\\\‘1 6 FUE 5|
\ 1] 2 3
1 1 Page O 4
5
Page 1 6
7
8

Page n-1

Pros and Cons:

Memory allocation easier.
D OS must keep page table per process

No external fragmentation (in physical memory).
D But get internal fragmentation.

Clear separation between user and system view.

D Additional overhead on context switching

20

Structure of the Page Table

Different kinds of hardware support can be provided:

e Simplest case — page table is a set of dedicated
registers

e Each memory reference goes through these so
they must be fast

e OS dispatcher/scheduler loads the registers on
context switch

e Fine if the page table is small ... but what if have
large number of pages 7

e Alternatively keep Page Table Base Register
(PTBR) per process

e Standard solution is to use a Translation
Lookaside Buffer (TLB)

21

TLB Operation

V

%

=
| CPU o)
Y/

é TLB — gé
: D J p4d [T4 o f 0

| ogi cal address :
physi cal address
Page Table
p\|
> i

e On memory reference present TLB with logical
memory address

e If page table entry for the page is present then get
an immediate result

e If not then make memory reference to page tables,
and update the TLB

22

TLB Issues

Updating TLB may be difficult if it is full: need to
discard some reference.

Context switch may requires TLB flush so that
next process doesn’'t use wrong page table entries.

Today many TLBs support process tags to
improve performance.

Hit ratio defined to be percentage of time a page
entry is found in TLB

e.g. consider TLB search time of 20ns, memory
access time of 100ns, and a hit ratio of 80%

assuming one memory reference required for page
table lookup, the effective memory access time is
0.8 x 120 4+ 0.2 x 220 = 140ns.

Increase hit ratio to 98% gives effective access
time of 122ns — only a 13% improvement.

23

Protection Issues

Associate protection bits with each page — kept in
page tables (and TLB).

E.g. one bit for read, one for write, one for
execute.

May also distinguish whether may only be
accessed when executing in kernel mode, e.g.

Frame Nunmber KIR|W| X|V

At the same time as address is going through
page hardware, can check protection bits.

Attempt to violate protection causes h/w trap to
operating system code

As before, have one bit specifying valid/invalid,
i.e. determining whether the page is mapped into
the process address space.

In some older systems keep a Page Table Length
Register (PTLR) to indicate size of page table

24

Shared Pages

Another advantage of paging is code/data sharing, e.g.
e binaries: editor, compiler etc.
e libraries: shared objects, dlls.

So how does this work?

e Implemented as two logical addresses which map
to one physical address.

e If code is re-entrant (i.e. stateless, non-self
modifying) it can be easily shared between users.

e Otherwise can use copy-on-write technique.
e (may use this for lazy data sharing too).

Requires additional book-keeping in OS, but worth it,
e.g. over 20Mb of shared code on my linux box.

25

Multilevel Paging

e Most modern systems can support very large
(232,204) address spaces.

e Solution — split page table into several sub-parts

e Two level paging — page the page table

Base Register Virtual Address
L1 Address P1 P2 | Ofset

L L1 Page Table 1
° |
.2

>

nl L2 Address

L2 Page Table ‘
° I

n Leaf PTE |e——p

e For 64 bit architectures a two-level paging scheme
is not sufficient: need further levels.

e (even some 32 bit machines have > 2 levels).

26

Example: x86

Virtual Address
L1 L2 | OF fset

Page Directory (Level 1)

< 20 bits
L, PTA | GN

A
C

oo
=

c
o<

Z
O

"N

1024
entries

Page size 4K (or 4Mb).

First lookup is in the page directory: index using
most 10 significant bits.

Address of page directory stored in internal
processor register (cr3).

Results (normally) in the address of a page table.

27

Example: x86 (2)

Virtual Address
L1 | L2 | O fset

Page Table (Level 2)

< 20 bits——

> PFA | GN

A
C

g0
=

nC
=
)

<0

Z
O

—®

1024
entries

Use next 10 bits to index into page table.

Once retrieve page frame address, add in the
offset (i.e. the low 12 bits).

Notice page directory and page tables are exactly
one page each themselves.

28

Segmentation

Logical
e
0 e
main()
bol
| symbols
syslibrarys

User prefers to view memory as a set of segments

A W N L O

Limit Base

1000 | 5900

200 0

5000 200

200 | 5700

300 | 5300

Segment
Table

200

5200
5300

5600
5700

5900

6900

Physical

Memory

stack

main()

symbols

syslibrary

procedure

of no particular size, with no particular ordering

Segmentation supports this user-view of memory
— logical address space is a collection of
(typically disjoint) segments.

Segments have a name (or a number) and a
length — addresses specify segment and offset.

Contrast with paging where user is unaware of
memory structure (all managed invisibly).

29

Implementation

We need to maintain a segment table for each
process:

Segment | Access | Base | Size | Others!

If program has a very large number of segments
then the table is kept in memory, pointed to by
ST base register STBR

Also need a ST length register STLR since
number of segs used by different programs will
differ widely

The table is part of the process context and hence
iSs changed on each process switch.

Algorithm:

1.

Program presents address (s,d). Check that s <
STLR. If not, fault

Obtain table entry at reference s+ STBR, a tuple
of form (bs,1s)

If 0<d< s then this is a valid address at location
(bs,d), else fault

30

Protection and Sharing

Big advantage of segmentation is that protection
is per segment

Protection bits associated with each ST entry
checked in usual way

E.g. instruction segments (should be non-self
modifying!) thus protected against writes etc.

E.g. place each array in own seg = array limits
checked by hardware

Segmentation also facilitates sharing of code/data
— Each process has its own STBR/STLR

— Sharing is enabled when two processes have
entries for the same physical locations.

— For data segments can use copy-on-write as
per paged case.

Several subtle caveats exist with segmentation —
e.g. jumps within shared code.

31

Per-process
Segment
Tables

N A

1112

Sharing segments

Physical Memory

Shared

[DANGEROUS]

System
Segment
Table A

T

\

Sharing segments:

\[L] {171

[SAFE]

e wasteful (and dangerous) to store common
information on shared segment in each process
segment table

e assign each segment a unique System Segment
Number (SSN)

e process segment table simply maps from a
Process Segment Number (PSN) to SSN

32

Fragmentation

Long term scheduler must find spots in memory
for all segs of a program

Problem now in that segs are of variable size —
leads to fragmentation

Tradeoff between compaction/delay depends on
average segment size

Extremes: each process 1 seg — reduces to
variable sized partitions

Or each byte one seg separately relocated —
quadruples memory use!

Fixed size small segments = paging!

In general with small average segment sizes,
external fragmentation is small.

33

Summary

Important considerations when comparing different
memory management schemes

e Hardware support
e Performance

e Fragmentation

e Relocation

e Swapping

e Sharing

e Protection

34

I/O Hardware

e \Wide variety of 'devices’ which interact with the
computer via I/0O, e.g.

— Human readable: graphical displays, keyboard,
mouse, printers

— Machine readable: disks, tapes, CD, sensors
— Communications: line drivers, modems,
network interfaces

e T hey differ significantly from one another w.r.t.
— Data rate
— Complexity of control
— Unit of transfer
— Data representation

— Error handling

= I/O subsystem is the messiest part of OS.

35

I/O Subsystem

Unpriv — b :
P* Application I/O Interface --t-Virtual Device Layer
riv '
/O Buffering | |1/O Scheduling : Common I/O Functions
E /—_._§\ /—_._§\ /—_._§\]
' Device Device e o o o Device : : :
o l\ Driver ! l\ Driver ! l\ oriver '+ Device Driver Layer
Priv —3—’ -i-’ -i" :
H/W
Keyboard| [HardDisk| « « « «| Network Device Layer

e Programs access virtual devices:
— terminal streams not terminals
— windows not frame buffer
— event stream not raw mouse
— files not disk blocks
— printer spooler not parallel port

— transport protocols not raw Ethernet

e OS deals with processor—device interface:
— I/O instructions v. memory mapped (where?)
— I/O hardware type (e.g. 10’s of serial chips)
— polled v. interrupt driven

— processor interrupt mechanism

36

Polled Mode 1/0O

error (RO
‘_’,/ command-ready (WO
T T—— devi ce-busy (R O
st at us
data (r/w)
read (WO
wite (WO
comand

e Consider a simple device with three registers:
status, data and command.

e (Host can read and write these via bus)

e Polled mode operation works as follows:

1.

S

Host repeatedly reads device busy until clear.

Host sets e.g. write bit in command register, and
puts data into data register.

Host sets command ready bit in status register.
Device sees command ready and sets device busy
Device performs write operation.

Device clears command ready & then device busy.

37

Interrupts

Polling poor = most OSs use interrupts.

Most modern processors provide at least a basic
interrupt mechanism:

e at end of each instruction, check interrupt line(s)
for pending interrupt

save program counter

e Save processor status

change processor mode

jump to well known address (or its contents)

Some processors provide:
e multiple levels of interrupts
e hardware vectoring of interrupts

e Mmode dependent registers

38

More Interrupts

Interrupt handler maps from h/w interrupts to ISR
invocations. Handler may need to:

e Save more registers
e demultiplex interrupt in software

e establish a language environment (e.g. a C run
time stack)

Interrupt Service Routines (ISRs):
1. device, not processor, specific (unless asmt!)

2. for programmed I/O device:
e transfer data

e clear interrupt (sometimes a side effect of
transfer)

3. for DMA device:

e acknowledge transfer

4. request another transfer if any more 1/O requests
pending on device

5. signal any waiting processes
6. enter scheduler or return

Question: who is scheduling who?
39

Device Classes

Completely homogenising device API almost impossible
= OS generally splits devices into four generic classes:
1. Block devices (e.g. disk drives, CD):
e Commands include read, write, seek

e Raw I/O or file-system access

2. Character devices (e.g. keyboards, mice, serial):
e Commands include get, put

e Libraries layered on top to allow line editing

3. Network Devices

e Varying enough from block and character to
have own interface

e Unix and Windows/NT use socket interface

4. Miscellaneous (e.g. clocks and timers)
e Provide current time, elapsed time, timer

e ioctl (on UNIX) covers odd aspects of I/O
such as clocks and timers.

40

I/O Buffering

e Buffering: OS stores (a copy of) data in memory
while transferring between devices

— to cope with device speed mismatch

— to cope with device transfer size mismatch

— to maintain “copy semantics”

e OS can use various kinds of buffering:

1.

Single buffering — OS assigns a system buffer
to the user request

. Double buffering — process consumes from

one buffer while system fills the next

. Circular buffers — most useful for

burst-oriented 1/0O

e Many aspects of buffering dictated by device type:

character devices = line probably sufficient.
network devices = bursty (time & space).
block devices = lots of fixed size transfers.

(last usually major user of buffer memory)

41

Blocking v. Nonblocking 1/0O

From programmer’s point of view, I/O system calls
exhibit one of three kinds of behaviour:
1. Blocking: process suspended until I/O completed
e Easy to use and understand

e Insufficient for some needs

2. Nonblocking: I/O call returns as much as available
e User interface, data copy (buffered I/O)
e Returns almost immediately with count of
bytes read or written.
3. Asynchronous: process runs while I/O executes

e I/O subsystem explicitly signals process when
its I/O request has completed

e Most flexible (and potentially efficient)

e ... but also most difficult to use

42

Other 1/0O Issues

Caching: fast memory holding copy of data
— can work with both reads and writes

— key to I/O performance

Scheduling:
— e.g. ordering I/O requests via per-device queue

— some OSs try fairness ...

Spooling: queue output for a device

— useful if device is “single user” (i.e. can serve
only one request at a time)

— e.g. printing

Device reservation:

— system calls for acquiring or releasing exclusive
access to a device

Error handling:

— e.g. recover from disk read, device unavailable,
transient write failures, etc.

— most I/O system calls return an error number
or code when an I/O request fails

— system error logs hold problem reports.

43

Performance

e I/O a major factor in system performance

— Demands CPU to execute device driver, kernel
I/O code, etc.

— Context switches due to interrupts
— Data copying

— Network traffic especially stressful.

e Improving performance:
— Reduce number of context switches
— Reduce data copying

— Reduce # interrupts by using large transfers,
smart controllers, polling

— Use DMA

— Balance CPU, memory, bus and I/O
performance for highest throughput.

44

File Management

text name user file-id

information requested
A from file
user space L I
filing system
Directory
Service
} }

Storage Service

Jo sibgysem T TTT T § T mmmmmme-
Disk Handler

Filing systems have two main components:

1. Directory Service
e maps from names to file identifiers.

e handles access & existence control

2. Storage Service
e provides mechanism to store data on disk

e includes means to implement directory service

45

File Concept

What is a file?

e Basic abstraction for non-volatile storage.

e Typically comprises a single contiguous logical
address space.

e Internal structure:

1. None (e.g. sequence of words, bytes)

2. Simple record structures
— lines

— fixed length
— variable length

3. Complex structures
— formatted document

— relocatable object file

e Can simulate last two with first method by
inserting appropriate control characters.

e All a question of who decides:
— operating system
— program(mer).

46

Naming Files

Files usually have at least two kinds of ‘hame’:

1. System file identifier (SFID):

e (typically) a unique integer value associated
with a given file

e SFIDs are the names used within the filing
system itself

2. "Human” name, e.g. hello. java

e \VWhat users like to use

e Mapping from human name to SFID is held in
a directory, e.q.

Nane SFI D
hel | 0.] ava 12353
Makefil e 23812
READVE 9742

e Directories also non-volatile = must be stored
on disk along with files.

3. Frequently also get user file identifier (UFID).
e used to identify open files (see later)

47

File Meta-data

Metadata Table

SFl\D (on disk)
f (SFI D) File Control Block
// Type (file or directory)
/
/ Location on Disk
Size in bytes

\ Time of creation

\| Access permissions

In addition to their contents and their name(s), files
typically have a number of other attributes, e.qg.

L ocation: pointer to file location on device
Size: current file size

Type: needed if system supports different types
Protection: controls who can read, write, etc.

Time, date, and user identification: data for
protection, security and usage monitoring.

Together this information is called meta-data.
It is contained in a file control block.

48

Directory Name Space (I)

What are the requirements for our name space?
e Efficiency: locating a file quickly.

e Naming: user convenience

— allow two (or more generally N) users to have
the same name for different files

— allow one file have several different names

e Grouping: logical grouping of files by properties
(e.g. all Java programs, all games, ...)

First attempts:

e Single-level: one directory shared between all users
= naming problem

= grouping problem

e Two-level directory: one directory per user
— access via pathname (e.g. bob:hello. java)
— can have same filename for different user

— but still no grouping capability.

49

Directory Name Space (II)

e Get more flexibility with a general hierarchy.
— directories hold files or [further] directories
— create/delete files relative to a given directory
e Human name is full path name, but can get long:
€.g. /Jusr/groups/X11R5/src/mit/server/os/4.2bsd/utils.c
— offer relative naming
— login directory

— current working directory

e What does it mean to delete a [sub]-directory?

50

Directory Name Space (III)

e Hierarchy good, but still only one name per file.

= Extend to directed acyclic graph (DAG) structure:
— allow shared subdirectories and files.

— can have multiple aliases for the same thing
e Problem: dangling references

e Solutions:
— Back-references (but variable size records)

— Reference counts.

e Problem: cycles ...

51

Directory Implementation

[Ann/ mai | / B
—
\
Nane |D| SFI D
Ann [Y|1034 »| Nane |D| SFI D !
Bob |Y| 179 mai | |Y]|1034 * Nane [D| SFI D
A A [N| 179 sent |Y| 1034
bl B [N| 179
Yao |Y|7182 C |IN] 7182

e Directories are non-volatile = store as “files” on
disk, each with own SFID.

e Must be different types of file (for traversal)

e EXplicit directory operations include:
— create directory
— delete directory
— list contents
— select current working directory

— insert an entry for a file (a “link™)

52

File Operations (I)

UFID| SFID |File Control Bl ock (Copy)

1| 23421| location on disk, size,...
3250 " "
10532
7122) " .

A WN

e Opening a file: UFID = open(<pathname>)

1.

2.
3.
4.

directory service recursively searches directories
for components of <pathname>

if all goes well, eventually get SFID of file.
copy file control block into memory.

create new UFID and return to caller.

e Creating a new file: UFID = create(<pathname>)

e Once have UFID can read, write, etc.

— various modes (see next slide)

e Closing a file: close(UFID)

1.
2.

copy [new] file control block back to disk.

invalidate UFID

53

File Operations (II)

start of file end of file
| already accessed [to be read

=

current _1

file position

Associate a cursor or file position with each open
file (viz. UFID), initialised to start of file.

Basic operations: read next or write next, e€.g.
— read(UFID, buf, nbytes), Or

— read(UFID, buf, nrecords)
Sequential Access: above, plus rewind (UFID).

Direct Access: read N or write N
— allow “random’ access to any part of file.

— can implement with seek(UFID, pos)

Other forms of data access possible ...

54

Access Control

File owner/creator should be able to control:
— what can be done, and
— by whom

e Access control is normally a function of the
directory service = checks done at file open time

e (nothing to do with access modes on prev. slide)

e Various types of access, e.g.
— Read
— Write
— Execute
— Append
— Delete

— List

e More advanced schemes possible.

55

Existence Control

What happens when user deletes a file?

e keep file in existence while there is a valid
pathname referencing it

e plus check entire FS periodically for garbage

May also be a factor when a file is renamed/moved.

Concurrency Control

Some form of locking to handle simultaneous access
e Mmay be mandatory or advisory
e locks may be shared or exclusive
e granularity may be file or subset

More on locking, etc. in CST IB ...

56

