Operating Systems

Steven Hand
12 lectures for CST Ia

Easter Term 2000

Part III: Case Studies

Unix: Introduction

Unix first developed in 1969 at Bell Labs
(Thompson & Ritchie)

Originally written in PDP-7 asm, but then (1973)
rewritten in the ‘new’ high-level language C

= easy to port, alter, read, etc.

6" edition (“V6'') was widely available (1976).

— Source avail = people could write new tools.
— Nice features of other OSes rolled in promptly.
By 1978, V7 available (for both the 16-bit
PDP-11 and the new 32-bit VAX-11).

Since then, two main families:

— AT&T: “System V", currently SVR4.

— Berkeley: “BSD", currently 4.3BSD/4.4BSD.

Standardisation efforts (e.g. POSIX, X/OPEN) to
homogenise.

Best known “UNIX"” today is probably linux, but
also get FreeBSD, NetBSD, and (commercially)
Solaris, OSF/1, IRIX

Unix Family Tree (Simplified)

1969

1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986

1987
1988
1989
1990

1991
1992

1993

System 111
syséem V Eighth Edition

SVR2

SVR3

SVR4

First Edition

Fifth

Sixth

Edition

Edition

Seventh Edition —-

Ninth

Tenth

Edition

Edition

32V

/

Mach

— SBISD

4.0BSD

4.3BSD

4.SBS?ITahoe
4.3BSD/Reno

OSF/1

4.4BSD

}

4.2BSD \

SunOS

SunOS 3

Sun0OS 4

Sollaris
Solaris 2

}

Design Features

Ritchie and Thompson, CACM, July 74, UNIX (new)
features:

1. A hierarchical file system incorporating
demountable volumes.

2. Compatible file, device and inter-process 1/0.
3. The ability to initiate asynchronous processes.

4. System command language selectable on a
per-user basis.

5. Over 100 subsystems including a dozen languages.
6. A high degree of portability.
Features which were not included:
e real time
e Mmultiprocessor support

Fixing the above is hard ...

Structural Overview

Application Application Application

(Process) (Process) (Process)

User

System Call Interface

1 \\v///—\\\ Kernel

_ Process

<4

Block 1/O Char I/O
Device Driver Device Driver Device Driver Device Driver

* *) * Hardware

A 4 \ 4 A v

e Clear separation between user and kernel portions.
e Processes are unit of scheduling and protection.

e All I/O looks like operations on files.

File Abstraction
e A file is an unstructured sequence of bytes.
e Represented in user-space by a file descriptor (fd)

e Operations on files are:
— fd = open (pathname, mode)
— fd = creat(pathname, mode))
— bytes = read(fd, buffer, nbytes)
— count = write(fd, buffer, nbytes)
— reply = seek(fd, offset, whence)

— reply = close(fd)
e Devices represented by special files.

e Hierarchical structure supported by directory files.

Directory Hierarchy

bi n/ dev/ etc/ home/ usr/

/ /|\ ! /\ \

" hda hdb tty '
st eve/ | ean/

VAN

Directories map names to files (and directories).
Have distinguished root directory called '/’

Fully qualified pathnames = perform traversal
from root.

Every directory has '.” and '.." entries: refer to
self and parent respectively.

Shortcut: current working directory (cwd).

In addition shell provides access to home directory
as “username (e.g. ~“steve/)

Aside: Password File
e /etc/passwd holds list of password entries.
e Each entry roughly of the form:
user-name:encrypted-passwd:home-directory:shell

e Use one-way function to encrypt passwords.

To login:

1. Get user name
Get password
Encrypt password

Check against version in /etc/password

o B W N

If ok, instantiate login shell.
e Publicly readable since lots of useful info there.
e Problem: off-line attack.

e Solution: shadow passwords (/etc/shadow)

File System Implementation

type mode
userid groupid
size nblocks
nlinks flags

timestamps (x3)

direct
blocks
(512)

direct blocks (x12)

\ 4

BT

single indirect

» toblock with 512
single indirect entries

|, to block with 512
double indirect entries

e Inside kernel, a file is represented by a data
structure called an index-node or i-node.

e Holds file meta-data:
a) Owner, permissions, reference count, etc.

b) Location on disk of actual data (file contents).

e Where is the filename kept?

Directories and Links

Filename I-Node

/

Filename I-Node
. 56 3
L. 214 - F e

home/ bin/ doc

..Steve/ jean/

TN

misc/

e Directory is a file which maps filenames to i-nodes.
e An instance of a file in a directory is a (hard) link.
e (this is why have reference count in i-node).

e Directories can have at most 1 (real) link. Why?

e Also get soft- or symbolic-links: a ‘normal’ file
which contains a filename.

10

On-Disk Structures

Hard Disk
Fﬁrtitiml \ / Partition 2 \

X i
O (&)
e =
@1 Inode Data @ |Inode Data
2| Table Blocks S | Table | Blocks
@ @
o1]2 i|i+1 jli*t|i+2 11+ m

A disk is made up of a boot block and one or
more partitions.

(a partition is just a contiguous range of N
fixed-size blocks of size k£ for some N and k).

A Unix file-system resides within a partition.

Superblock contains info such as:

— number of blocks in file-system

— number of free blocks in file-system
— start of the free-block list

— start of the free-inode list.

— various bookkeeping information.

11

Mounting File-Systems

Root Fil e- System Mount

//\\\

bi n/ dev/ etc/ usr/ h

! J Fi | e- System
: !/ \! \ N/dev/ hda2

d

hdal hda2 hdbl
/" \

steve/ jean/

Q .
Q .
. .

e Entire file-systems can be mounted on an existing
directory.

e At very start, only ¢/’ exists = need to mount a
root file-system.

e Subsequently can mount other file-systems, e.q.
mount ("/dev/hda2", "/home", options)

e Provides a unified name-space: e.g. access
/home/steve/ directly.

e Cannot have hard links across mount points: why?

e What about soft links?

12

In-Memory Tables

process-specific

Process A / file tables
11 \

0
1 3
2 25 Process B
3 17
4 1 0 2
1 27
2 62
3 5
41 , 17
N 6 4
/]
N 32
User Space
Kernel Space 0 47 acitve inode table
1 135 EE—
N
} 78
N | node 78
system-wide /
open file table
—

Recall process sees files as file descriptors

In implementation these are just indices into
process-specific open file table

Entries point to system-wide open file table. Why?
These in turn point to (in memory) inode table.

13

Access Control

Owner | Group | World
R WEIR WE|R WE

= 0640

Owner
R W E

Group | World
R WEI|R WE

NN

= 0755

e Access control information held in each inode.

e T hree bits for each of owner, group and world:

read, write and execute.

What do these mean for directories?

e In addition have setuid and setgid bits:

— normally processes inherit permissions of

invoking user.

— setuid/setgid allow user to “become” someone
else when running a given program.

— e.g. prof owns both executable test (0711 and

setuid), and score file (0600)

= anyone user can run it.

= it can update score file.

= but users can’t cheat.

e And what do these mean for directories?

14

Consistency Issues
e [0 delete a file, use the unlink system call.
e From the shell, this is rm <filename>

e Procedure is:

1. Check if user has sufficient permissions on the
file (must have write access).

2. Check if user has sufficient permissions on the
directory (must have write access).

3. If ok, remove entry from directory.
4. Decrement reference count on inode.

5. If now zero:
a) Free data blocks.

b) Free inode.

e If crash: must check entire file-system:
— Check if any block unreferenced.

— Check if any block double referenced.

15

Unix File-System: Summary
Files are unstructured byte streams.

Everything is a file: ‘normal’, directories, symbolic
links, special files.

Hierarchy built from root (‘/’).

Unified name-space (multiple file-systems may be
mounted).

Low-level implementation based around inodes.

Disk contains list of inodes (and of course data
blocks).

Processes see file descriptors: map to system file
table.

Permissions for owner, group and everyone else.
Setuid/setgid allow for more flexible control.

Care needed to ensure consistency.

16

Processes

Un Ker?gAggrgss” ace
NiX ; ared by a
Kernd —

Stack Segment g
I | H

* grows downward as * /
functions are called

//

Free

Space

grows upwards as more
memory allocated

Address Space
per Process

<« N\ |\

N\]\

e Recall: a process is a program in execution.

e Have three segments: text, data and stack.

e Unix processes are heavyweight.

17

Unix Process Dynamics

parent _ _
process @ parent process (potentially) continues
>

child .
process S(r)cr)rc]:te)lses

program executes

e Process represented by a process id (pid)

e Hierarchical scheme: parents create children.

e Four basic primitives:
— pid = fork ()
— reply = execve(pathname, argv, envp)
— exit(status)

— pid = wait (status)

fork() nearly always followed by exec()
= vfork() and/or COW.

18

Start of Day

Kernel (/vmunix) loaded from disk (how?) and
execution starts.

Root file-system mounted.
Process 1 (/etc/init) hand-crafted.

init reads conf file /etc/inittab and for each entry:
1. opens terminal special file (e.g. /dev/tty0)
2. duplicates the resulting fd twice.

3. forks an /etc/tty process.

each tty process next:
1. initialises the terminal
2. outputs the string *“login:” & waits for input

3. execve()’s /bin/login

login then:
1. outputs “password:” & waits for input

2. encrypts password and checks it against
/etc/passwd.

3. if ok, sets uid & gid, and execve()’s shell.
Patriarch init resurrects /etc/tty on exit.

19

The Shell

Issue prompt
ad
infinitum
get command line

v
<,
G

child
fork process

executes

: zombie
wal t process

Shell just a process like everything else.
Uses path for convenience.
Conventionally ‘&’ specifies background.

Parsing stage (omitted) can do lots ...

20

Shell Examples

pwd
/home/steve
1s -F
IRAM.micro.ps gnome_sizes prog-nc.ps
Mail/ ica.tgz rafe/
0SDI99_self_paging.ps.gz lectures/ rio107/
TeX/ linbot-1.0/ src/
adag.pdf manual.ps store.ps.gz
docs/ past-papers/ wolfson/
emacs—-lisp/ pbosch/ xeno_prop/
fs.html pepsi_logo.tif
cd src/
pwd
/home/steve/src
1s -F
cdq/ emacs-20.3.tar.gz misc/ read_mem.c
emacs-20.3/ ispell/ read_mem* rio007.tgz
wc read_mem.c

95 225 2262 read_mem.c
1s -1F rx
—“ITWXTWXr-Xx 1 steve user 34956 Mar 21 1999 read_memx*
—“IrW-rw-r-- 1 steve user 2262 Mar 21 1999 read_mem.c
—“rW——————-— 1 steve wuser 28953 Aug 27 17:40 rio007.tgz

1s -1 /usr/bin/X11/xterm
-rwxr-xr-x 2 root system 164328 Sep 24 18:21 /usr/bin/X11/xterm*

e Prompt is ‘#'.
e Use man to find out about commands.
e User friendly?

21

Standard I/O

Every process has three fds on creation:
— stdin: where to read input from.
— stdout: where to send output.

— stderr: where to send diagnostics.

Normally inherited from parent, but shell allows
redirection to/from a file, e.qg.:

— 1s >1listing.txt
— 1ls >&listing.txt

— sh <commands. sh.
Consider 1s >temp.txt; wc <temp.txt >results
Pipeline is better (e.g. 1s | wc >results)

Most Unix commands are filters = can build
almost arbitrarily complex command lines.

NB: redirection causes some subtleties ...

22

Pipes

free space old data

new data
\ Process B

Process A

wite(fd, buf, n) read(fd, buf, n)

e One of the basic Unix IPC schemes.
e Logically consists of a pair of fds

e.g. reply = pipe(int fds[2])

e Concept of “full’ and “empty” pipes.

Only allows communication between processes
with a common ancestor (why?).

Named pipes address this.

23

Signals
Problem: pipes need planning = use signals.
Similar to a (software) interrupt.

Examples:

— SIGINT : user hit Ctrl-C.

— SIGSEGV : program error.

— SIGCHLD : a death in the family ...

— SIGTERM : ... or closer to home.
Unix allows processes to catch signals.

E.g. Job control:
— SIGTTIN, SIGTTOU sent to bg processes
— SIGCONT turns bg to fg.

— SIGSTOP does the reverse.
Cannot catch SIGKILL.

Signals also used for timers, window resize,
process tracing, ...

24

I/O Implementation

User
—— Kernel
Generic File System Layer
Buffer
Cache
Cooked
Character 1/O
Raw Character I/O Raw Block I1/0
Device Driver Device Driver Device Driver | | Device Driver
A A A A Kernel
Hardware

Recall:
— everything accessed via the file system.

— two broad categories: block and char.
Low-level stuff gory and machdep = ignore.

Character 1/O low rate but complex = most
functionality in the "“cooked” interface.

Block I/O simpler but performance matters =
emphasis on the buffer cache.

25

T he Buffer Cache

Basic idea: keep copy of some parts of disk in
memory for speed.

On read do:

1.

Locate relevant blocks (from inode)

. Check if in buffer cache.

2
3.
4

If not, read from disk into memory.

. Return data from buffer cache.

On write do same first three, and then update
version in cache, not on disk.

Q: when does data actually hit disk?

Can cache metadata too — problems?

26

Unix Process Scheduling
Round robin scheduling within discrete priorities
Same quantum for all processes (100ms)

Clock interrupts at regular intervals (10ms) —
used for accounting

Priorities are based on usage and nice (negative =

higher priority):

CPU;(t—1)
4

Gives the priority of process 53 at the beginning of
interval ¢+ where:

2 X load;(i— 1)
2(load;j(i — 1)+ 1)

P;(i) = Base; + + 2 X nice;

CPU;(z) = CPU;(i — 1) + nice;

nice; 1S a user controllable adjustment parameter
€ [-20,20].

load;(i) is the sampled average length of the run
queue in which process j resides, over the last
minute of operation

Priorities recomputed once per second, at which
time a new scheduling decision is made

27

Summary

e Main Unix features are:
— file abstraction
— hierarchical namespace
— heavy-weight processes
— IPC: pipes & signals
— I/O: block and character

— dynamic priority scheduling.

e But V7 had poor IPC, memory management,

concurrency.

e [ater systems address these ...

28

windows NT: History

After OS/2, MS decide they need “New Technology”:
e 1988: Dave Cutler recruited from DEC.

e 1989: team (~ 10 people) starts work on a new
OS with a micro-kernel architecture.

e July 1993: first version (3.1) introduced

Bloated and suckful =

e NT 3.5 released in September 1994: mainly size
and performance optimisations.

e Followed in May 1995 by NT 3.51 (support for the
Power PC, and more performance tweaks)

e July 1996: NT 4.0
— new (windows 95) look 'n feel

— various functions pushed back into kernel
(most notably graphics rendering functions)

— ongoing upgrades via service packs

NT 5.0 aka Windows 2000 released February 2000 ...

29

NT Design Principles

Key goals for the system were:

e portability

e Security

e POSIX compliance

e Mmultiprocessor support

e extensibility

e international support

e compatibility with MS-DOS/Windows applications
The led to the development of a system which was:

e written in high-level languages (C and C++)

e based around a micro-kernel, and

e constructed in a layered/modular fashion.

30

Structural Overview

Logon Win16 Win32 MS-DOS Posix
o oo . Applications
Process Applications Applications Applications 0S/2
Applications
' T
Security Winl6 POSIX ‘
Subsytem Subsytem Subsytem /OS/2
Subsytem
Win32
Subsytem
- User Mode
Native NT Interface (Sytem Calls) ornal Mode
EXECUTIVE
S -
I I/O VM Object Process |
[Manager Manager Manager Manager I
I : |
I File System Cache Security LPC
Drivers Manager Manager Facility |
L o o D e e - e e - - = = = 4
DevICE DRIVERS “, KERNEL
Hardware Abstraction Layer (HAL)

Hardware

e Kernel Mode: HAL, Kernel, & Executive

e User Mode:
— environmental subsystems

— protection subsystem

31

HAL

Layer of software (HAL.DLL) which hides details of
underlying hardware

e.g. interrupt mechanisms, DMA controllers,
multiprocessor communication mechanisms

Many HALSs exist with same interface but different
implementation (often vendor-specific)

Kernel

Foundation for the executive and the subsystems
Execution is never preempted.

Four main responsibilities:

1. CPU scheduling

2. interrupt and exception handling
3. low-level processor synchronisation
4. recovery after a power failure

Kernel is objected-oriented: all objects either
dispatcher objects and control objects

32

Processes and Threads

NT splits the “virtual processor” into two parts:

1. A process is the unit of resource ownership.
Each process has:

e a Security token,
e a virtual address space,
e a set of resources (object handles), and

e Ohe or more threads.

2. A thread are the unit of dispatching.
Each thread has:

e a scheduling state (ready, running, etc.),
e other scheduling parameters (priority, etc),
e a context slot, and

e (generally) an associated process.
Threads are:

e Cco-operative: all threads in a process share the
same address space & object handles.

e lightweight: require less work to create/delete
than processes (mainly due to shared VAS).

33

CPU Scheduling

e Hybrid static/dynamic priority scheduling:

Priorities 16—31: “real time"” (static priority).

Priorities 1—-15: ‘“variable” (dynamic) priority.

e Default quantum 2 ticks (~20ms) on Workstation,
12 ticks (~120ms) on Server.

e Threads have base and current (> base) priorities.

On return from 1/O, current priority is boosted
by driver-specific amount.

Subsequently, current priority decays by 1 after
each completed quantum.

Also get boost for GUI threads awaiting input:
current priority boosted to 14 for one quantum
(but quantum also doubled)

Yes, this is true.

e On Workstation also get quantum stretching:

“ ... performance boost for the foreground
application” (window with focus)

fg thread gets double or triple quantum.

34

Object Manager

Object Name @
/ Object Directory
Security Descriptor
; Quota Charges
I_cl)bjgct Open Handle Count
eader Open Handles List ;
Temporary/Permanent Type ObJeCt
\ Type Object Pointer »| Type Name
Reference Count Common Info.
Methods:
. Open
Object Object-Specfic Data C ose
(perhaps including Del ete
BOdy a kernel object) Par se
Security
Query Nane

e Every resource in NT is represented by an object

e The Object Manager (part of the Executive) is
responsible for:

— creating objects and object handles
— performing security checks

— tracking which processes are using each object

e Typical operation:
— handle = open(object-name, access-mode)

— result = service(handle, arguments)

35

Object Namespace

ANt

’>’?\ dri ver\ devi ce\ BaseNanedbj ect s\
I/ / \ \ \~
+ FloppyO\ SerialO\ Har ddi skO\ N
C: COVIl: / / \
Partitionl\ Partition2\

/ / \

Recall: objects (optionally) have a name

Object Manger manages a hierarchical namespace:
— shared between all processes = sharing
— implemented via directory objects

— naming domains (implemented via parse) mean
file-system namespaces can be integrated too

Also get symbolic link objects: allow multiple
names (aliases) for the same object.

Modified view presented at API level ...

36

Process Manager

e Provides services for creating, deleting, and using
threads and processes.

e Very flexible:

— No built in concept of parent/child
relationships or process hierarchies

— Processes and threads treated completely
orthogonally.

Virtual Memory Manager

e NT employs paged virtual memory management

e The VMM provides processes with services to:
— allocate and free virtual memory

— modify per-page protections

e Can also share portions of memory:
— use section objects (=~ software segments)
— based verus non-based.

— also used for memory-mapped files

37

I/O Manager

/0 Requests

hvd File
System
Driver
1/O Intermediate
Manager Driver
@ Device
Driver <):(>
HAL

e The I/O Manager is responsible for:

— file systems
— cache management

— device drivers

e Basic model is asynchronous:

— each I/O operation explicitly split into a
request and a response

— I/O Request Packet (IRP) used to hold
parameters, results, etc.

e File-system & device drivers are stackable ...

File System
The fundamental structure of the NT filing
system (NTFS) is a volume
— Created by the NT disk administrator utility
— Based on a logical disk partition
— May occupy a portion of a disk, and entire

disk, or span across several disks.

A file in NTFS is not a simple byte stream, as in
MS-DOS or UNIX, rather, it is a structured object
consisting of attributes.

Every file in NTFS is described by one or more
records in an array stored in a special file called
the Master File Table (MFT).

NTFS has a number of advanced features, e.q.
— security (access checks on open)

— unicode based names

— use of a log for efficient recovery

— support for sparse and compressed files

(but only recently are features being used)

39

Summary

e Main Windows NT features are:

layered /modular architecture
generic use of objects throughout
multi-threaded processes
multiprocessor support
asynchronous I/O subsystem
advanced filing system

preemptive priority-based scheduling

e HAL, Kernel & Executive: rather decent actually.

e But ...

40

