
Category Theory

Andrew Pi!s

University of Cambridge
2021 Computer Science Tripos
Part II Unit of Assessment

Part III and MPhil. ACS Module L108

L0 1

Course web page

Go to
https://www.cl.cam.ac.uk/teaching/2021/CatTheory/

https://www.cl.cam.ac.uk/teaching/2021/L108/

for

! these slides and lecture recordings
! exercise sheets and details of examples classes

(trying the exercises is essential!)

! pointers to some additional material

Recommended text for the course is:

[Awodey] Steve Awodey, Category theory,
Oxford University Press (2nd ed.), 2010.

L0 2

Assessment

! A graded exercise sheet (25% of the final mark).
issued in lecture 10 with a one week deadline

! A take-home test (75% of the final mark).
issued a"er the end of the course

See course web page for dates and deadlines.

L0 3

Lecture 1

L1 5

What is category theory?
What we are probably seeking is a “purer” view of
functions: a theory of functions in themselves, not a
theory of functions derived from sets. What, then, is a
pure theory of functions? Answer: category theory.

Dana Sco!, Relating theories of the !-calculus, p406

set theory gives an “element-oriented” account of
mathematical structure, whereas

category theory takes a ‘function-oriented” view –
understand structures not via their elements, but by
how they transform, i.e. via morphisms.
(Both theories are part of Logic, broadly construed.)

L1 6

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

L1 7

Category Theory emerges

1945 Eilenberg† and MacLane†

General Theory of Natural Equivalences,
Trans AMS 58, 231–294
(algebraic topology, abstract algebra)

1950s Grothendieck† (algebraic geometry)

1960s Lawvere (logic and foundations)

1970s Joyal and Tierney† (elementary topos theory)

1980s Dana Sco!, Plotkin
(semantics of programming languages)

Lambek† (linguistics)

L1 8

Category Theory and
Computer Science

“Category theory has. . . become part of the standard
“tool-box” in many areas of theoretical informatics, from
programming languages to automata, from process
calculi to Type Theory.”

Dagstuhl Perpectives Workshop on Categorical Methods at the Crossroads
April 2014

L1 9

This course

basic concepts of category theory

adjunction natural transformation

category functor

applied to



propositional logic
typed lambda-calculus
functional programming

L1 10

Definition
A category C is specified by

! a set objC whose elements are called C-objects

! for each " ,# ∈ objC, a set C(" ,#) whose
elements are called C-morphisms from " to #

(so far, that is just what some people call a directed graph)

L1 11

Definition
A category C is specified by

! a set objC whose elements are called C-objects

! for each " ,# ∈ objC, a set C(" ,#) whose
elements are called C-morphisms from " to #

! a function assigning to each " ∈ objC an element
id" ∈ C(" ,") called the identity morphism for
the C-object "

! a function assigning to each $ ∈ C(" ,#) and
% ∈ C(# ,&) (where " ,# ,& ∈ objC) an element
% ◦ $ ∈ C(" ,&) called the composition of
C-morphisms $ and % and satisfying. . .

L1 11

Definition, continued

satisfying. . .

! associativity: for all " ,# ,& ,' ∈ objC,
$ ∈ C(" ,#), % ∈ C(# ,&) and ℎ ∈ C(& ,')

ℎ ◦ (% ◦ $) = (ℎ ◦ %) ◦ $

! unity: for all " ,# ∈ objC and $ ∈ C(" ,#)

id# ◦ $ = $ = $ ◦ id"

L1 12

Example: category of sets, Set

! obj Set = some fixed universe of sets
(more on universes later)

! Set(" ,#) =
{$ ⊆ " × # | $ is single-valued and total}

Cartesian product of sets " and # is the
set of all ordered pairs (),*) with) ∈ "
and * ∈ # .
Equality of ordered pairs:
(),*) = ()′,*′) ⇔) =)′ ∧ * = *′

L1 13

Example: category of sets, Set

! obj Set = some fixed universe of sets
(more on universes later)

! Set(" ,#) =
{$ ⊆ " × # | $ is single-valued and total}

∀) ∈ " ,∀*,*′ ∈ # ,
(),*) ∈ $ ∧ (),*′) ∈ $ ⇒ * = *′

∀) ∈ " , ∃* ∈ # ,
(),*) ∈ $

L1 13

Example: category of sets, Set

! obj Set = some fixed universe of sets
(more on universes later)

! Set(" ,#) =
{$ ⊆ " × # | $ is single-valued and total}

! id" = {(),)) |) ∈ " }

! composition of $ ∈ Set(" ,#) and % ∈ Set(# ,&) is

% ◦ $ = {(), +) |
∃* ∈ # , (),*) ∈ $ ∧ (*, +) ∈ %}

(check that associativity and unity properties hold)

L1 13

Example: category of sets, Set

Notation. Given $ ∈ Set(" ,#) and) ∈ " , it is usual to
write $) (or $ ())) for the unique * ∈ # with (),*) ∈ $.

Thus

id") =)

(% ◦ $)) = %($))

L1 14

Domain and codomain
Given a category C,

write $: " → # or "
$
−→ #

to mean that $ ∈ C(" ,#),

in which case one says
object " is the domain of the morphism $
object # is the codomain of the morphism $

and writes
" = dom $ # = cod $

(Which category C we are referring to is le" implicit with this notation.)

L1 15

Commutative diagrams

in a category C:

a diagram is
a directed graph whose vertices are C-objects
and whose edges are C-morphisms

and the diagram is commutative (or commutes) if
any two finite paths in the graph between any
two vertices determine equal morphisms in the
category under composition

L1 16

Commutative diagrams

Examples:

"
$

$

#

id!
%

% &

"

$

ℎ◦(%◦$)
'

%

ℎ◦%

&

ℎ

L1 16

Alternative notations
I will o"en just write

C for objC
id for id"

Some people write
HomC(" ,#) for C(" ,#)
1" for id"
% $ for % ◦ $

I use “applicative order” for morphism composition;
other people use “diagrammatic order” and write

$;% (or $ %) for % ◦ $

L1 17

Alternative definition of category

The definition given here is “dependent-type friendly”.

See [Awodey, Definition 1.1] for an equivalent
formulation:

One gives the whole set of morphisms morC
(in bijection with

∑
" ,! ∈obj C C(" ,#) in my definition)

plus functions
dom , cod : morC→ objC
id : objC→ morC

and a partial function for composition
◦ : morC × morC ⇀ morC

defined at ($,%) i# cod $ = dom%
and satisfying the associativity and unity equations.

L1 18

