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What we are probably seeking is a “purer” view of
functions: a theory of functions in themselves, not a
theory of functions derived from sets. What, then, is a
pure theory of functions? Answer: category theory.

Dana Scott, Relating theories of the A-calculus, p406
o

set theory gives an “element-oriented” account of
mathematical structure, whereas

category theory takes a ‘function-oriented” view -
understand structures not via their elements, but by
how they transform, i.e. via morphisms.

(Both theories are part of Logic, broadly construed.)
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Introduction. The subject matter of this paper is best explained by an
example, such as that of the relation between a vector space L and its “dual”
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Category Theory emerges

Filenberg’ and MacLane’
General Theory of Natural Equivalences,
Trans AMS 58, 231-294

(algebraic topology, abstract algebra)
Grothendieck* (algebraic geometry)
Lawvere (logic and foundations)

] oyal and TierneyT (elementary topos theory)
Dana Scott, Plotkin

(semantics of programming languages)

Lambe I(T (linguistics)
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Category Theory and
Computer Science

“Category theory has...become part of the standard
“tool-box” in many areas of theoretical informatics, from
programming languages to automata, from process
calculi to Type Theory.”

Dagstuhl Perpectives Workshop on Categorical Methods at the Crossroads
April 2014
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This course

basic concepts of category theory

adjunction<— natural transformation

|

functor

category

applied to 1

' propositional logic
typed lambda-calculus

_functional programming
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Definition

A category C is specified by

> aset | objC|whose elements are called C-objects

» foreach X,Y € objC, a set
elements are called C-morp

C(X,Y)

whose

nisms from X to Y

(so far, that is just what some people call a directed graph)

L1
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Definition

A category C is specified by

> aset | objC|whose elements are called C-objects

> foreach X,Y € objC,aset| C(X,Y) | whose
elements are called C-morphisms from X to Y

> a function assigning to each X € obj C an element
idyx € C(X,X) |called the identity morphism for
the C-object X

> a function assigning to each f € C(X,Y) and

€ C(Y,Z) (where X,Y,Z € obj C) an element
geof € C(X,Z)|called the composition of
C-morphisms f and g and satisfying...
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Definition, continued
satisfying...

> associativity: for all X, Y, Z, W € obj C,
feCX,Y),geC(Y,Z)and h e C(Z, W)

ho(gof)=(heg)of

> unity: forall X, Y e objCand f € C(X,Y)

idyef =f=feidyx

12
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Example: category of sets, Set

» obj Set = some fixed universe of sets

(more on universes later)
> Set(X,Y) =
{f € X xY| fissingle-valued and total}

set of all ordered pairs (x, y) with x € X
andy €Y.

Equality of ordered pairs:
\(x,y) =x,yY)ex=x'Ay=v¢

Cartesian product of sets X and Y is the \

13
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Example: category of sets, Set

» obj Set = some fixed universe of sets

(more on universes later)
> Set(X,Y) =
{f CX xY| fissingle-valued and total}

Vx € X,Vy,y’ €Y, VxeX,dy ey,
(y) efA(xy)ef=y=y (xy) € f
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Example: category of sets, Set

obj Set = some fixed universe of sets

(more on universes later)

Set(X,Y) =

{f C X xY| fissingle-valued and total}

idy = {(x,x) | x € X}

composition of f € Set(X,Y) and g € Set(Y,Z2) is

gof=1{(xz2)|
dyeY, (xy) €fA(yz) €y}

(check that associativity and unity properties hold)
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Example: category of sets, Set

Notation. Given f € Set(X,Y) and x € X, it is usual to

write

Thus

L1

fx

(or f(x)) for the unique y € Y with (x,y) € f.

1dy x = x

(gof)x=g(fx)
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Domain and codomain

Given a category C,

write|[f : X — Y orXLY

to mean that f € C(X,Y),

in which case one says
object X is the domain of the morphism f
object Y is the codomain of the morphism f

and writes
X =dom f Y=codf

(Which category C we are referring to is left implicit with this notation.)

15
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Commutative diagrams

In a category C:

a diagram is
a directed graph whose vertices are C-objects
and whose edges are C-morphisms

and the diagram is commutative (or commutes) if
any two finite paths in the graph between any
two vertices determine equal morphisms in the
category under composition

16
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Examples:

Commutative diagrams

X%Y

RS

Y%Z

ho(gof)
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Alternative notations

| will often just write
C for obj C
id for idy

Some people write
Homc (X, Y) for C(X,Y)
1X for idX

gfforgef

| use “applicative order” for morphism composition;
other people use “diagrammatic order” and write

figlor fg)forgef

L1 17
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Alternative definition of category

p)

The definition given here is “"dependent-type friendly”.

See [Awodey, Definition 1.1] for an equivalent

formulation:
One gives the whole set of morphisms mor C

(in bijection with >y y¢,5 c C(X, Y) in my definition)
plus functions
dom, cod : morC — objC
id: 0bj C = mor C
and a partial function for composition
_o_:morC XmorC — mor C
defined at (f,g) iff cod f =domg
and satisfying the associativity and unity equations.
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