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Recall

A category C is specified by

>

>

a set |[obj C|whose elements are called C-objects

foreach X, Y € obj C, aset|C(X,Y)|whose
elements are called C-morphisms from X to Y

a function assigning to each X € obj C an element

idyx € C(X, X) |called the identity morphism for

the C-object X

a function assigning to each f € C(X,Y) and
€ C(Y,Z) (where X,Y,Z € objC) an element

geo f € C(X,Z)|called the composition of

C-morphisms f and g and satisfying associativity
and unity properties.

20



L2

Example:
category of pre-orders, Preord

> objects are sets P equipped with a pre-order _ C _
i.e. a binary relation on P that is
reflexive: Vx € P, x C x
transitive: Vx,y,z € P, x CyAyC z=xLC z

A partial order is a pre-order that is also
anti-symmetric: Vx,y € P, xCyAyCx > x =1y
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Example:
category of pre-orders, Preord

> objects are sets P equipped with a pre-order _ C _

» morphisms: Preord((P;,Cq), (Py,C5)) =
{f € Set(Py, P;) | f is monotone}

Vx,x" € P, xC1 x' = fx T, fx'
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Example:
category of pre-orders, Preord

> objects are sets P equipped with a pre-order _ C _

» morphisms: Preord((P;,Cq), (Py,C5)) =
{f € Set(Py, P;) | f is monotone}

> identities and composition: as for Set
Q: why is this well-defined?

A: because the set of monotone functions contains identity functions and
is closed under composition.
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Example:
category of pre-orders, Preord

> objects are sets P equipped with a pre-order _ C _

> morphisms: Preord((Py, C1), (P2, E3)) =
{f € Set(Py, P;) | f is monotone}

> identities and composition: as for Set

Pre- and partial orders are relevant to the denotational
semantics of programming languages (among other

things).
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Example:
category of monoids, Mon

> objects are monoids (M, -, e) — set M equipped with
a binary operation _- _: M X M — M which is
associative Vx,y,ze M, x- (y-z)=(x-y) - z
haseasitsunitVxe M, e-x=x=x-¢€

CS-relevant example of a monoid: (List X, @,nil) where

ListX> = set of finite lists of elements of set >
@ = list concatenation
nil@ft ="~
(az:0) @t =a:=:(t@!)
nil = empty list
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Example:
category of monoids, Mon

> objects are monoids (M, -, e)
> morphisms: Mon((Mj, -1, e1), (My, 2,€3)) =
(f € Set(My, My) | fer = e A
Vx,y e My, f(x-1y) =(fx)2(fy}

It’s common to denote a monoid (M, -, e) just by its underlying set M,

leaving _ - _and e implicit (hence the same notation gets used for different
instances of monoid operations).

22



L2

Example:
category of monoids, Mon

> objects are monoids (M, -, e)
> morphisms: Mon((Mj, -1, e1), (My, 2,€3)) =
(f € Set(My, My) | fer = e A
Vx,y e My, f(x-1y) =(fx)2(fy}

> identities and composition: as for Set
Q: why is this well-defined?

A: because the set of functions that are monoid morphisms contains
identity functions and is closed under composition.
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Example:
category of monoids, Mon

> objects are monoids (M, -, e)

> morphisms: Mon((My, 1, 1), (Ma, -2, €2)) =
{f € Set(M,M;) | fer=ex A

Vx,ye My, f(x-1y)=(fx)2(fy)}

> identities and composition: as for Set

Monoids are relevant to automata theory (among other
things).
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Example: each pre-order

determines

a category

Given a pre-ordered set (P,C),

we get a category Cp by taki
> objects objCp =P

» morphisms Cp(x, y) = «

ng

.

1 ifxCuy

0 ifxZy

(where 1 is some fixed one-element set and () is the empty set)

23



L2

Example: each pre-order

determines

a category

Given a pre-ordered set (P,C),

we get a category Cp by taki
> objects objCp =P

» morphisms Cp(x, y) = «

ng

.

1 ifxCuy
0 ifxZy

\

> identity morphisms anc
determined (why?)

composition are uniquely
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Example: each pre-order

determines

a category

Given a pre-ordered set (P,C),

we get a category Cp by taki
> objects objCp =P

» morphisms Cp(x,y) = «

> identity morphisms anc
determined (why?)

ng
(
1 ifxCuy
0 itxZy

\

composition are uniquely

E.g. when (P, C) has just one element 0

0
Cp =

one object, one morphism

~ 14
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Example: each pre-order

determines

a category

Given a pre-ordered set (P,C),

we get a category Cp by taki
> objects objCp =P

» morphisms Cp(x,y) = -

> identity morphisms anc
determined (why?)

ng
(
1 ifxCuy
0 itxZy

\

composition are uniquely

E.g. when (P, C) has just two elements 0 C 1

Cp =

i 00— =1 14
N\~ ~_/

two objects, one non-identity morphism

23



L2

Example: each pre-order

determines

Given a pre-ordered set (P,
we get a category Cp by taki

> objects objCp =P

» morphisms Cp(x,y) = «

a category
C),

ng

(

1 ifxCuy

0 iftxZy

\

> identity morphisms anc
determined (why?)

composition are uniquely

Example of a finite category that does not arise from a pre-ordered set:

1£\0/\1®d1

two objects, two non-identity morphisms
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Example: each monoid
determines a category

Given a monoid (M, -, e),
we get a category Cy, by taking

> objects: obj Cy =1 = {0} (one-element set)
> morphisms: Cy(0,0) = M
> identity morphism: idg = e € M = Cy;(0,0)

> composition of f € Cy(0,0) and g € Cy(0,0) is
gf e M= CM(0,0)
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Definition of isomorphism

Let C be a category. A C-morphism f : X — Y is an
isomorphism if there is some g : Y — X for which

x Iy

AN

X—Y
f

is a commutative diagram.
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Definition of isomorphism

Let C be a category. A C-morphism f : X — Y is an
isomorphism if there is some g : Y — X with

gof =1idx and f og = idy.

» Such a g is uniquely determined by f (why?) and

we write | f 1| for it.

> Given X,Y € C, if such an f exists, we say the
objects X and Y are isomorphic in C and write
X =Y

(There may be many different f that witness the fact that X and Y are

isomorphic.)
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Theorem. A function f € Set(X,Y) is an isomorphism
in the category Set iff f is a bijection, that is

> injective: Vx,x' € X, fx=fx"=>x=x
> surjective: Vye Y,dx € X, fx =y

Proof...
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Theorem. A function f € Set(X,Y) is an isomorphism
in the category Set iff f is a bijection, that is

> injective: Vx,x' € X, fx=fx"=>x=x
> surjective: Vye Y,dx € X, fx =y

Proof...

Theorem. A monoid morphism
f € Mon((Mjy, -1, e1), (Ma, -2, €3)) is an isomorphism in
the category Mon iff f € Set(M;, M,) is a bijection.

Proof...
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Define Poset to be the category whose objects are posets
= pre-ordered sets for which the pre-order is
anti-symmetric, but is otherwise defined like the

category Preord of pre-ordered sets.
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Define Poset to be the category whose objects are posets
= pre-ordered sets for which the pre-order is
anti-symmetric, but is otherwise defined like the

category Preord of pre-ordered sets.

Theorem. A monotone function
f € Poset((P1,C1), (Py,C5)) is an isomorphism in the
category Poset iff f € Set(Py, P,) is a surjective function

satisfying

> reflective: Va,x’ € P, fx Ty fx' = x Ty X’

Proof...
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Define Poset to be the category whose objects are posets
= pre-ordered sets for which the pre-order is
anti-symmetric, but is otherwise defined like the
category Preord of pre-ordered sets.

Theorem. A monotone function

f € Poset((P1,C1), (P, C5)) is an isomorphism in the
category Poset iff f € Set(Py, P,) is a surjective function
satisfying

> reflective: Va,x’ € P, fx Ty fx' = x Ty X’

Proof...

(Why does this characterisation not work for Preord?)
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