
Lecture 2

L2 19

Recall
A category C is specified by

! a set objC whose elements are called C-objects

! for each ! ," ∈ objC, a set C(! ,") whose
elements are called C-morphisms from ! to "

! a function assigning to each ! ∈ objC an element
id! ∈ C(! ,!) called the identity morphism for
the C-object !

! a function assigning to each # ∈ C(! ,") and
$ ∈ C(" ,%) (where ! ," ,% ∈ objC) an element
$ ◦ # ∈ C(! ,%) called the composition of
C-morphisms # and $ and satisfying associativity
and unity properties.

L2 20

Example:
category of pre-orders, Preord

! objects are sets & equipped with a pre-order #
i.e. a binary relation on & that is
reflexive: ∀' ∈ & , ' # '
transitive: ∀',(,) ∈ & , ' # (∧ (#) ⇒ ' #)

A partial order is a pre-order that is also
anti-symmetric: ∀' ,(∈ &, ' # (∧ (# ' ⇒ ' = (

L2 21

Example:
category of pre-orders, Preord

! objects are sets & equipped with a pre-order #
! morphisms: Preord((&1, #1), (&2, #2)) "

{# ∈ Set(&1, &2) | # is monotone}

∀', '′ ∈ &1, ' #1 '
′ ⇒ # ' #2 # '

′

L2 21

Example:
category of pre-orders, Preord

! objects are sets & equipped with a pre-order #
! morphisms: Preord((&1, #1), (&2, #2)) "

{# ∈ Set(&1, &2) | # is monotone}
! identities and composition: as for Set

Q: why is this well-defined?
A: because the set of monotone functions contains identity functions and
is closed under composition.

L2 21

Example:
category of pre-orders, Preord

! objects are sets & equipped with a pre-order #
! morphisms: Preord((&1, #1), (&2, #2)) "

{# ∈ Set(&1, &2) | # is monotone}
! identities and composition: as for Set

Pre- and partial orders are relevant to the denotational
semantics of programming languages (among other
things).

L2 21

Example:
category of monoids, Mon

! objects are monoids (*, ·, +) — set * equipped with
a binary operation · : * ×* → * which is
associative ∀',(,) ∈ *, ' · ((·)) = (' · () ·)
has + as its unit ∀' ∈ *, + · ' = ' = ' · +
CS-relevant example of a monoid: (List Σ,@, nil) where

List Σ = set of finite lists of elements of set Σ
@ = list concatenation

nil@ ℓ = ℓ
(- :: ℓ) @ ℓ ′ = - :: (ℓ @ ℓ ′)

nil = empty list

L2 22

Example:
category of monoids, Mon

! objects are monoids (*, ·, +)

! morphisms: Mon((*1, ·1, +1), (*2, ·2, +2)) "
{# ∈ Set(*1,*2) | # +1 = +2 ∧
∀',(∈ *1, # (' ·1 () = (# ') ·2 (# ()}

It’s common to denote a monoid (*, ·, +) just by its underlying set* ,
leaving · and + implicit (hence the same notation gets used for di!erent
instances of monoid operations).

L2 22

Example:
category of monoids, Mon

! objects are monoids (*, ·, +)

! morphisms: Mon((*1, ·1, +1), (*2, ·2, +2)) "
{# ∈ Set(*1,*2) | # +1 = +2 ∧
∀',(∈ *1, # (' ·1 () = (# ') ·2 (# ()}

! identities and composition: as for Set

Q: why is this well-defined?
A: because the set of functions that are monoid morphisms contains
identity functions and is closed under composition.

L2 22

Example:
category of monoids, Mon

! objects are monoids (*, ·, +)

! morphisms: Mon((*1, ·1, +1), (*2, ·2, +2)) "
{# ∈ Set(*1,*2) | # +1 = +2 ∧
∀',(∈ *1, # (' ·1 () = (# ') ·2 (# ()}

! identities and composition: as for Set

Monoids are relevant to automata theory (among other
things).

L2 22

Example: each pre-order
determines a category

Given a pre-ordered set (& ,#),
we get a category C& by taking

! objects objC& = &

! morphisms C& (',() "

{
1 if ' # (

∅ if ' +# (
(where 1 is some fixed one-element set and ∅ is the empty set)

L2 23

Example: each pre-order
determines a category

Given a pre-ordered set (& ,#),
we get a category C& by taking

! objects objC& = &

! morphisms C& (',() "

{
1 if ' # (

∅ if ' +# (

! identity morphisms and composition are uniquely
determined (why?)

L2 23

Example: each pre-order
determines a category

Given a pre-ordered set (& ,#),
we get a category C& by taking

! objects objC& = &

! morphisms C& (',() "

{
1 if ' # (

∅ if ' +# (
! identity morphisms and composition are uniquely

determined (why?)

E.g. when (&, #) has just one element 0

C! =
0 id0

one object, one morphism

L2 23

Example: each pre-order
determines a category

Given a pre-ordered set (& ,#),
we get a category C& by taking

! objects objC& = &

! morphisms C& (',() "

{
1 if ' # (

∅ if ' +# (
! identity morphisms and composition are uniquely

determined (why?)

E.g. when (&, #) has just two elements 0 # 1

C! =
0id0 1 id1

two objects, one non-identity morphism

L2 23

Example: each pre-order
determines a category

Given a pre-ordered set (& ,#),
we get a category C& by taking

! objects objC& = &

! morphisms C& (',() "

{
1 if ' # (

∅ if ' +# (
! identity morphisms and composition are uniquely

determined (why?)

Example of a finite category that does not arise from a pre-ordered set:

0id0 1 id1

two objects, two non-identity morphisms

L2 23

Example: each monoid
determines a category

Given a monoid (*, ·, +),
we get a category C* by taking

! objects: objC* = 1 = {0} (one-element set)
! morphisms: C* (0, 0) = *
! identity morphism: id0 = + ∈ * = C* (0, 0)

! composition of # ∈ C* (0, 0) and $ ∈ C* (0, 0) is
$ · # ∈ * = C* (0, 0)

L2 24

Definition of isomorphism
Let C be a category. A C-morphism # : ! → " is an
isomorphism if there is some $: " → ! for which

!
#

id"

"
$

id#

!
#
"

is a commutative diagram.

L2 25

Definition of isomorphism
Let C be a category. A C-morphism # : ! → " is an
isomorphism if there is some $: " → ! with
$ ◦ # = id! and # ◦ $ = id" .

! Such a $ is uniquely determined by # (why?) and

we write # −1 for it.
! Given ! ," ∈ C, if such an # exists, we say the

objects ! and " are isomorphic in C and write
! ! "
(There may be many di!erent # that witness the fact that ! and " are

isomorphic.)

L2 25

Theorem. A function # ∈ Set(! ,") is an isomorphism
in the category Set i! # is a bijection, that is

! injective: ∀', '′ ∈ ! , # ' = # '′ ⇒ ' = '′

! surjective: ∀(∈ " ,∃' ∈ ! , # ' = (

Proof. . .

L2 26

Theorem. A function # ∈ Set(! ,") is an isomorphism
in the category Set i! # is a bijection, that is

! injective: ∀', '′ ∈ ! , # ' = # '′ ⇒ ' = '′

! surjective: ∀(∈ " ,∃' ∈ ! , # ' = (

Proof. . .

Theorem. A monoid morphism
∈ Mon((*1, ·1, +1), (*2, ·2, +2)) is an isomorphism in
the categoryMon i! # ∈ Set(*1,*2) is a bijection.

Proof. . .

L2 26

Define Poset to be the category whose objects are posets
= pre-ordered sets for which the pre-order is
anti-symmetric, but is otherwise defined like the
category Preord of pre-ordered sets.

L2 27

Define Poset to be the category whose objects are posets
= pre-ordered sets for which the pre-order is
anti-symmetric, but is otherwise defined like the
category Preord of pre-ordered sets.

Theorem. A monotone function
∈ Poset((&1,#1), (&2, #2)) is an isomorphism in the
category Poset i! # ∈ Set(&1, &2) is a surjective function
satisfying

! reflective: ∀', '′ ∈ &1, # ' #2 # '′ ⇒ ' #1 '
′

Proof. . .

L2 27

Define Poset to be the category whose objects are posets
= pre-ordered sets for which the pre-order is
anti-symmetric, but is otherwise defined like the
category Preord of pre-ordered sets.

Theorem. A monotone function
∈ Poset((&1,#1), (&2, #2)) is an isomorphism in the
category Poset i! # ∈ Set(&1, &2) is a surjective function
satisfying

! reflective: ∀', '′ ∈ &1, # ' #2 # '′ ⇒ ' #1 '
′

Proof. . .

(Why does this characterisation not work for Preord?)

L2 27

