
Lecture 3

L3 28

Category-theoretic properties

Any two isomorphic objects in a category should have
the same category-theoretic properties – statements
that are provable in a formal logic for category theory,
whatever that is.

Instead of trying to formalize such a logic, we will just
look at examples of category-theoretic properties.

Here is our first one. . .

L3 29

Terminal object
An object! of a category C is terminal if for all " ∈ C,
there is a unique C-morphism from " to! , which we
write as 〈〉" : " → ! .

So we have

{
∀" ∈ C, 〈〉" ∈ C(" ,!)
∀" ∈ C,∀# ∈ C(" ,!), # = 〈〉"

(So in particular, id! = 〈〉!)

Sometimes we just write 〈〉" as 〈〉.

Some people write !" for 〈〉" – there is no commonly accepted notation;
[Awodey] avoids using one.

L3 30

Examples of terminal objects

! In Set: any one-element set.
! Any one-element set has a unique pre-order and

this makes it terminal in Preord (and Poset)
! Any one-element set has a unique monoid structure

and this makes it terminal inMon.

L3 31

Examples of terminal objects

! In Set: any one-element set.
! Any one-element set has a unique pre-order and

this makes it terminal in Preord (and Poset)
! Any one-element set has a unique monoid structure

and this makes it terminal inMon.
! A pre-ordered set ($,&), regarded as a category C$,

has a terminal object i! it has a
greatest element ', that is: ∀% ∈ $, % & '

! When does a monoid (&, ·, '), regarded as a
category C& , have a terminal object?

L3 31

Terminal object

Theorem. In a category C:

(a) If ! is terminal and ! ! ! ′, then ! ′ is terminal.

(b) If ! and ! ′ are both terminal, then! ! ! ′ (and
there is only one isomorphism between ! and ! ′).

In summary: terminal objects are unique up to unique
isomorphism.

Proof. . .

L3 32

Terminal object

Theorem. In a category C:

(a) If ! is terminal and ! ! ! ′, then ! ′ is terminal.

(b) If ! and ! ′ are both terminal, then! ! ! ′ (and
there is only one isomorphism between ! and ! ′).

In summary: terminal objects are unique up to unique
isomorphism.

Proof. . .

Notation: from now on, if a category C has a terminal
object we will write that object as 1

L3 32

Opposite of a category

Given a category C, its opposite category Cop is defined
by interchanging the operations of dom and cod in C:

! objCop " objC

! Cop(" ,() " C((,"), for all objects " and (
! identity morphism on " ∈ objCop is

id" ∈ C(" ,") = Cop(" ,")

! composition in Cop of # ∈ Cop(" ,() and
) ∈ Cop((,*) is given by the composition
◦) ∈ C(* ,") = Cop(" ,*) in C

(associativity and unity properties hold for this
operation, because they do in C)

L3 33

The Principle of Duality

Whenever one defines a concept / proves a theorem in
terms of commutative diagrams in a category C,

one obtains another concept / theorem, called its dual,

by reversing the direction or morphisms throughout,
that is, by replacing C by its opposite category Cop.

For example. . .

L3 34

Initial object

is the dual notion to “terminal object”:

An object 0 of a category C is initial if for all " ∈ C,
there is a unique C-morphism 0→ " , which we write as
[]" : 0→ " .

So we have

{
∀" ∈ C, []" ∈ C(0,")
∀" ∈ C,∀# ∈ C(0,"), # = []"

(So in particular, id0 = []0)

By duality, we have that initial objects are unique up to isomorphism and that
any object isomorphic to an initial object is itself initial.
(N.B. “isomorphism” is a self-dual concept.)

L3 35

Examples of initial objects

! The empty set is initial in Set.
! Any one-element set has a uniquely determined

monoid structure and is initial in Mon. (why?)

So initial and terminal objects co-incide inMon

An object that is both initial and terminal in a category is sometimes

called a zero object.

! A pre-ordered set ($,&), regarded as a category C$,
has an initial object i! it has a least element ⊥, that
is: ∀% ∈ $,⊥ & %

L3 36

Example:
free monoids as initial objects

(relevant to automata and formal languages)

The free monoid on a set Σ is (ListΣ,@, nil) where

ListΣ = set of finite lists of elements of Σ
@ = list concatenation

nil = empty list

L3 37

Example:
free monoids as initial objects

(relevant to automata and formal languages)

The free monoid on a set Σ is (ListΣ,@, nil) where

ListΣ = set of finite lists of elements of Σ
@ = list concatenation

nil = empty list

The function

+Σ : Σ → ListΣ
, ↦→ [,] = , :: nil (one-element list)

has the following “universal property”. . .

L3 37

Example:
free monoids as initial objects

(relevant to automata and formal languages)

Theorem. For any monoid (&, ·, ') and function
: Σ→ & , there is a unique monoid morphism
∈ Mon((ListΣ,@, nil), (&, ·, ')) making

Σ
+Σ

#

ListΣ

#

&

commute in Set.

Proof. . .

L3 37

Example:
free monoids as initial objects

(relevant to automata and formal languages)

Theorem. ∀& ∈ Mon,∀# ∈ Set(Σ,&), ∃!# ∈ Mon(List Σ,&), # ◦ +Σ = #

The theorem just says that +Σ : Σ→ ListΣ is an initial
object in the category Σ/Mon:

! objects: (&, #) where & ∈ objMon and
∈ Set(Σ,&)

! morphisms in Σ/Mon((&1, #1), (&2, #2)) are
∈ Mon(&1,&2) such that # ◦ #1 = #2

! identities and composition as inMon

L3 37

Example:
free monoids as initial objects

(relevant to automata and formal languages)

Theorem. ∀& ∈ Mon,∀# ∈ Set(Σ,&), ∃!# ∈ Mon(List Σ,&), # ◦ +Σ = #

The theorem just says that +Σ : Σ→ ListΣ is an initial
object in the category Σ/Mon:

So this “universal property” determines the monoid List Σ uniquely up to
isomorphism inMon.

We will see later that Σ ↦→ List Σ is part of a functor (= morphism of categories)
which is le" adjoint to the “forgetful functor”Mon→ Set.

L3 37

