L3

Lecture 3

28

L3

Category-theoretic properties

Any two isomorphic objects in a category should have
the same category-theoretic properties — statements
that are provable in a formal logic for category theory,
whatever that is.

nstead of trying to formalize such a logic, we will just
ook at examples of category-theoretic properties.

Here is our first one...

29

L3

Terminal object

An object T of a category C is terminal if for all X € C,
there is a unique C-morphism from X to T, which we
writeas|()x : X — T|

VX eC,)x €e C(X,T)
VX € C,Vf € C(X,T), f={x

(So in particular, idr = ()1)

So we have {

Sometimes we just write ()x as ().

Some people write !x for ()x — there is no commonly accepted notation;
[Awodey]| avoids using one.

30

L3

Examples of terminal objects

> In Set: any one-element set.

> Any one-element set has a unique pre-order and
this makes it terminal in Preord (and Poset)

> Any one-element set has a unique monoid structure
and this makes it terminal in Mon.

31

L3

Examples of terminal objects

In Set: any one-element set.

Any one-element set
this makes it termina

Any one-element set

nas a unique pre-order and
in Preord (and Poset)

nas a unique monoid structure

and this makes it terminal in Mon.

A pre-ordered set (P,
has a terminal object

C), regarded as a category Cp,

iff it has a

greatest element T, thatis: Vxe P, x C T

When does a monoid

(M, -, e), regarded as a

category Cyy, have a terminal object?

31

L3

Terminal object

Theorem. In a category C:

(a) If T is terminal and T = T’, then T’ is terminal.
(b) If T and T’ are both terminal, then T = T’ (and

there is only one isomorphism between T and T").

In summary: terminal objects are unique up to unique
isomorphism.

Proof...

32

Terminal object

Theorem. In a category C:

(a) If T is terminal and T = T’, then T’ is terminal.

(b) If T and T’ are both terminal, then T = T’ (and
there is only one isomorphism between T and T").

In summary: terminal objects are unique up to unique
isomorphism.

Proof...

Notation: from now on, if a category C has a terminal
object we will write that object as |1

L3 32

L3

Opposite of a category

Given a category C, its opposite category | CP
by interchanging the operations of dom and cod in C:

>
>
>

obj C°P = obj C

Is defined

C?(X,Y) = C(Y,X), for all objects X and Y

identity morphism on X € obj C°P is
idy € C(X,X) = C°?(X, X)
composition in C°? of f € C°?(X,Y) and

g € C°P(Y,Z) is given by the composition

fogeC(Z,X)=C?(X,Z)inC

(associativity and unity properties hold for this

operation, because they do in C)

33

L3

Whenever one defines a concept / proves a theorem in
terms of commutative diagrams in a category C,

one obtains another concept / theorem, called its dual,

by reversing the direction or morphisms throughout,
that is, by replacing C by its opposite category C°P.

For example...

34

L3

is the dual notion to “terminal object”

An object 0 of a category C is initial if for all X € C,
there is a unique C-morphism 0 — X, which we write as

[]XO—>X

VX € C, ||x € C(0,X)
VX € C,Vf e C(0,X), = []x

(So in particular, idy = []o)

So we have {

By duality, we have that initial objects are unique up to isomorphism and that
any object isomorphic to an initial object is itself initial.
(N.B. “isomorphism” is a self-dual concept.)

35

L3

Examples of initial objects

> The empty set is initial in Set.

> Any one-element set has a uniquely determined
monoid structure and is initial in Mon. (why?)
So initial and terminal objects co-incide in Mon

An object that is both initial and terminal in a category is sometimes

called a zero object.

> A pre-ordered set (P,C), regarded as a category Cp,

has an initial object iff it has a least element L, that
Is:VxeP, 1L Cx

36

Example:
free monoids as initial objects

(relevant to automata and formal languages)

The free monoid on aset > is (List 2, @,nil) where

List > = set of finite lists of elements of X2
@ = list concatenation
nil = empty list

L3

Example:
free monoids as initial objects

(relevant to automata and formal languages)

The free monoid on aset > is (List 2, @,nil) where

List X set of finite lists of elements of 2
@ = list concatenation
nil = empty list

The function

Ny - 2. — ListX
a — |a]l =a:nil (one-element list)

has the following “universal property”...

37

L3

Example:
free monoids as initial objects

(relevant to automata and formal languages)

Theorem. For any monoid (M, -, e) and function
f 2 — M, there is a unique monoid morphism

]_f € Mon((List 2, @,nil), (M, -, e)) making

ZH’?2 List > commute in Set.

T

M

Proof...

37

L3

Example:
free monoids as initial objects

(relevant to automata and formal languages)

Theorem. VM € Mon, Vf € Set(2, M), EI!]_‘ € Mon(List X, M),]_C ony = f

The theorem just says that 3 : ¥ — List X is an initial
object in the category >/Mon:

> objects: (M, f) where M € obj Mon and
f € Set(2, M)

> morphisms in X/Mon((My, f1), (M, f)) are
f € Mon(M;i, My) such that fo f; = f,

> identities and composition as in Mon

37

Example:
free monoids as initial objects

(relevant to automata and formal languages)

Theorem. VM € Mon, Vf € Set(2, M), EI!]_‘ € Mon(List X, M),]_C ony = f

The theorem just says that 5 : ¥ — List X is an initial
object in the category >/Mon:

So this “universal property” determines the monoid List X uniquely up to
isomorphism in Mon.

We will see later that 3 +— List X is part of a functor (= morphism of categories)
which is left adjoint to the “forgetful functor” Mon — Set.

L3

37

