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are the appropriate notion of morphism between categories

Given categories C and D, a functor
specified by:

F:C—>Dji

IS

> a function obj C — obj D whose value at X is

written | F X

> forall X,Y € C, afunction C(X,Y) - D(FX,FY)
whose value at f : X — Y is written

Ff:FX—>FY

and which is required to preserve composition and

identity morphisms:

F(gef) = FgeoFf

F(idx)

1dr x
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Examples of functors

“Forgetful” functors from categories of
set-with-structure back to Set.

E.g.

U : Mon — Set

(UM, -, e) =M
f f
kU((Mlﬂ 15 el) — (MZa 25 62)) — Ml — MZ
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L10

Examples of functors

“Forgetful” functors from categories of
set-with-structure back to Set.

E.g.

U : Mon — Set

(UM, -, e) =M
f f
kU((Mlﬂ 15 el) — (MZa 25 62)) — Ml — MZ

Similarly U : Preord — Set.
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Examples of functors

Free monoid functor|F : Set — Mon

Given X € Set,

F> = (List 2, @,nil), the free monoid on %
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L10

Examples of functors

Free monoid functor|F : Set — Mon

Given X € Set,

F> = (List 2, @,nil), the free monoid on %

Given a function f : X; — 3,, we get a function
Ff :List2; — List >, by mapping f over finite lists:

Fflay,...,an =|fay...,[fa,]

This gives a monoid morphism F3; — F X,; and mapping over lists preserves
composition (F(geo f) = Fgo F f) and identities (F idy = idrx). So we do get a
functor from Set to Mon.
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Examples of functors

If C is a category with binary products and X € C, then
the function (_) X X : obj C — obj C extends to a
functor |(_) X X : C — C|mapping morphisms
f:Y—>Yto

fXxidy: Y XX > Y XX

fsto X = ofst
recall that f X g is the unique morphism with stelf x9) fots
SndO(fXg) =go snd

sfince it is the case that
1dyx X 1dy = 1dxxy

(7o f)xiax = (f x idx) o (f x idx)

(see Exercise Sheet 2, question 1c).
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Examples of functors

If C is a cartesian closed category and X € C, then the
function (_)* : obj C — obj C extends to a functor

(L)% : C — C|mapping morphisms f: Y — Y’ to

X 2 cur(foapp): YX - Y&

(
(idy)® = idyx

(g )Y =g"of*

since it is the case that <

(see Exercise Sheet 3, question 4).
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Contravariance

Given categories C and D, a functor F : C°? — D is
called a contravariant functor from C to D.

Note that ifXL Y Zin C,thenXi Y & Zin Cep

Ff Fg
soOFX «—FY «— FZinD and hence

F(goc f) =FfopFg

(contravariant functors reverse the order of composition)

A functor C — D is sometimes called a covariant functor from C to D.
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Example of a contravariant functor

If C is a cartesian closed category and X € C, then the
function X : obj C — obj C extends to a functor

X : C°P — C|mapping morphisms f: Y — Y’ to

X/ £ cur(appeo(idyy X f)) XY - xY

(vid :
X Y — lde

since it is the case that
Xgof — Xf o XY
\

(see Exercise Sheet 3, question 5).
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Note that since a functor F : C — D preserves domains,
codomains, composition and identity morphisms

it sends commutative diagrams in C to commutative
diagrams in D

E.g.
f X iy FX
v
Y h ri FY/ F h=F(gof)=F g°F f
PN PN

Z FZ
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Note that since a functor F : C — D preserves domains,
codomains, composition and identity morphisms

it sends isomorphisms in C to isomorphisms in D,
because

Xy Fx I Fy
idy F idry
idk lg\ = i& lFN
X -y FX - FY
7 Ff

so|F(f1) = (Ff)~!
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Composing functors

Given functors F : C - Dand G: D — E, we get a

functor Go F : C — E|with
(X \  G(FX)
GoF lf _ lG(Ff)
\Y | G(FY)

(this preserves composition and identity morphisms, because F and G do)

L10

110



L10

ldentity functor

on a category C is

idctC—>C

e
|-

\Y

ide

where

X

I

Y
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Functor composition and identity functors satistfy

associativity Ho(GoF)=(HoG)oF
unity idpe F =F =F o idc

So we can get categories whose objects are categories
and whose morphisms are functors

but we have to be a bit careful about size...
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Size
One of the axioms of set theory is

set membership is a well-founded relation, that is, there
is no infinite sequence of sets X, X1, Xs, ... with

e X €EX, €€ Xy € Xy €X

So in particular there is no set X with X € X.

So we cannot form the “set of all sets” or the “category of all categories”.
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Size
One of the axioms of set theory is

set membership is a well-founded relation, that is, there
is no infinite sequence of sets X, X1, Xs, ... with

e X €EX, €€ Xy € Xy €X

So in particular there is no set X with X € X.
So we cannot form the “set of all sets” or the “category of all categories”.

But we do assume there are (lots of) big sets
%06%16%26"'
where “big” means each %,, is a Grothendieck universe...
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Grothendieck universes
A Grothendieck universe % is a set of sets satisfying

>» XeYelU=>XeU
> X, YeU=>{X,Y}eWU
> X eU=>2PX={Y|YCX}eWU

» XcUAFe¥U* =
{y|IxeX, ye Fx} €U
(hencealso X, Y e % = XXYeU AN YX €¥U)

The above properties are satisfied by % = 0, but we will always assume

> N e ¥
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We assume

there is an infinite sequence %, € %, € %, € --- of
bigger and bigger Grothendieck universes J

and revise the previous definition of “the” category of sets and functions:

Set, = category whose objects are all the sets in %, and
with Set, (X, Y) = Y* = all functions from X to Y.

Notation: |Set = Set,| — its objects are called small sets
(and other sets we call large).
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Set is the category of small sets.

Definition. A category C is locally small if for all
X,Y € C, the set of C-morphisms X — Y is small, that

is, C(X,Y) € Set.

C is a small category if it is both locally small and
obj C € Set.

E.g. Set, Preord and Mon are all locally small (but not small).

Given P € Preord, the cateogry Cp it determines is small; similarly, the category
Cy determined by M € Mon is small.
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The category of small categories, Cat

> objects are all small categories
» morphisms in Cat(C, D) are all functors C — D

> composition and identity morphisms as for functors

Cat is a locally small category
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