Lecture 11
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The category of small categories

Recall definition of Cat:

> objects are all small categories
» morphisms in Cat(C, D) are all functors C — D

> composition and identity morphisms as for functors

L11 119



Cat has a terminal object

The category

0 @do

one object, one morphism

is terminal in Cat
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Cat has binary products

Given small categories C, D € Cat, their product
CCxD-5Dis:
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Cat has binary products

Given small categories C, D € Cat, their product
CCxD-5Dis:

» objects of C X D are pairs (X,Y) where X e Cand Y € D

» morphisms (X,Y) — (X', Y’) in C X D are pairs (f,g) where
feC(X,X')and g € D(Y,Y’)

» composition and identity morphisms are given by those of C
(in the first component) and D (in the second component)

|
m (oo L2 (¢ Y’)) -xLx
. >
| (1) Y9, x Y’)) —v Ly
\
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Cat not only has finite products, it is also cartesian
closed.

Exponentials in Cat are called functor categories.

To define them we need to consider

natural transformations, which are the appropriate
notion of morphism between functors.
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Natural transformations

Motivating example: fix a set S € Set and consider the
two functors F, G : Set — Set given by

F(X%Y

\
)
G(X—)Y]
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L11

Natural transformations

Motivating example: fix a set S € Set and consider the
two functors F, G : Set — Set given by

F(X—>Y

\
/
\
/

G(X—)Y

For each X € Set there is an isomorphism (bijection) 0x : FX = G X
in Set given by (1, 1) : S XX — X X 8S.

These isomorphisms do not depend on the particular nature of each
set X (they are “polymorphic in X”). One way to make this precise

IS...
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...if we change from X to Y along a function f : X — Y,

then we get a commutative diagram in Set:

Sx X M) s
idxfl lfxid
SXY Y X$

(79,711

The square commutes because for all s € Sand x € X

(2, 1) ((1d X ) (s, %)) = (2, 1) (s, f %)
= (fx3)
= (f xid)(x,s)
= (f X id)({m2, m)(s, x))

L11
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...if we change from X to Y along a function f : X — Y,
then we get a commutative diagram in Set:

Ox

FX GX
2 of
FY 5 GY

We say that the family (0x | X € Set) is natural in X.
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Natural transformations

Definition. Given categories and functors F,G : C — D,
a natural transformation |6 : F — G|is a family of
D-morphisms 0y € D(F X, G X), one for each X € C,
such that for all C-morphisms f : X — Y, the diagram

FX— % . gx

] los

FY GY
Oy

commutes in D, thatis, 0y o F f = G f o Ox.
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Example

Recall forgetful (U) and free (F) functors:

U

Set Mon

F

There is a natural transformation 7 : idget — U © F,
where for each > € Set

ns:% — U(FS) = List s
aeEm— [a] € List 2. (one-element list)

(Easy to see that X ” U(FX) commutes.)

fl lU(Ff)

> U(FY)

s’
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Example
The covariant powerset functor & : Set — Set is

PXE(S]SCX)

f . P f
@(XHY):@X—A@Y

S PFS2{fx|xeS)
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Example
The covariant powerset functor & : Set — Set is

PXE(S]SCX)

f . P f
@(XHY):@X%@Y

SHPFS={fx|xeS}

There is a natural transformation U : & o &# — 9 whose
component at X € Set sends & € P (L X) to

Uxd = {xeX|3Sed, xeStePFPX

(check that Uyx is natural in X)
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The classic example of an “un-natural transformation”
(the one that caused Eilenburg and MacLane to invent
the concept of naturality) is the linear isomorphism
between a finite dimensional real vectorspace V and its
dual V* (= vectorspace of linear functions V. — R).

Both V and V* have the same finite dimension, so are
isomorphic by choosing bases; but there is no choice of

basis for each V' that makes the family of isomorphisms
natural in V.

For a similar, more elementary non-example, see
Ex. Sh. 5, question 4.
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Composing natural transformations

Given functors F, G, H : C — D and natural
transformations 0 : F — Gand ¢ : G — H,

we get

Qo0

0
(poO)x=|FX 56X 5 HX

- F — H with
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Composing natural transformations

Given functors F, G, H : C — D and natural
transformations 0 : F — Gand ¢ : G — H,

we get | o 0|: F — H with

0
(poO)x=|FX 56X 5 HX

Check naturality:

Hfeo(pob)x =Hfepxebx
=@y oG f o Ox naturality of ¢
=q@yolyoFf naturality of 0

= (peoO)y°Ff
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Ildentity natural transformation

Given a functor F : C — D, we get a natural
transformation |idr : F — F|with

1d
(idp)x = FX —5 FX
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ldentity natural transformation

Given a functor F : C — D, we get a natural

transformation

Check naturality:

Ffo(idp)x = Ffeidpx=Ff=1idpyoFf = (idp)y o Ff

idF:F—>F

1d
(idp)x = FX —5 FX

with
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It is easy to see that composition and identities for natural transformations
satisfy

(Ye@)el=ye(pe0)
idGOQZQOidF

so that we get a category:

Definition. Given categories C and D, the functor

category |D | has

> objects are all functors C — D

» given F,G : C — D, morphism from F to G in D©
are the natural transformations F — G

> composition and identity morphisms as above
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If % is a Grothendieck universe, then for each X € % and F € %~
we have that their dependent product and dependent function sets

Seex Fx 2 {(x,y) | x € X Ay € Fx)

[Teex Fx = {f C ZFx | f is single-valued and total}
xeX

are also in 7/; and as a special case (of | |, when F is a constant
function with value Y) we also have that X, Y € % implies Y* € %.

L11 132



L11

If % is a Grothendieck universe, then for each X € % and F € %~
we have that their dependent product and dependent function sets

Seex Fx 2 {(x,y) | x € X Ay € Fx)

[Teex Fx = {f C ZFx | f is single-valued and total}
xeX

are also in 7/; and as a special case (of | |, when F is a constant
function with value Y) we also have that X, Y € % implies Y* € %.
Hence

If C and D are small categories, then so is D*. J

because

0bj(D%) € Y re(on; pyovic [1x.veonjc D(FX, FY)CX:)
D“(F,G) € [Ixeopjc D(FX,GX)
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If % is a Grothendieck universe, then for each X € % and F € %~
we have that their dependent product and dependent function sets

Seex Fx 2 {(x,y) | x € X Ay € Fx)

[Teex Fx = {f C ZFx | f is single-valued and total}
xeX

are also in 7/; and as a special case (of | |, when F is a constant
function with value Y) we also have that X, Y € % implies Y* € %.

Hence

If C and D are small categories, then so is D*. J

because

0bj(D%) € Y re(on; pyovic [1x.veonjc D(FX, FY)CX:)
D“(F,G) € [Ixeopjc D(FX,GX)

Aim to show that functor category D¢ is the exponential of C and D in Cat...
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Cat is cartesian closed

Theorem. There is an application functor
app: D" xC — D

that makes D¢ the exponential for C and D in Cat.

Given (F,X) € D® x C, we define
app(F,X) = FX
and given (0, f) : (F,X) — (G,Y) in D¢ x C, we define

0, F 0
app((F,X) 90, (G, Y)| £ Fx L ry 2 gy

0 G
:FX—X>GX—f>GY

app(idr,idx) =idrx
Check:
app(@°0,9°f) =app(e,g)-°app(0,f)
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Cat is cartesian closed
Theorem. There is an application functor
app: D" xC — D
that makes D¢ the exponential for C and D in Cat.

Definition of currying: given functor F : E X C — D, we get a functor
cur F : E — D€ as follows. For each Z € E, cur F Z € D€ is the functor

X F(Z,X)
cur FZ lf = lF(idz,f)
X’ F(Z,X’)

Foreachg:Z — Z"inE,cur Fg: cur FZ — cur F Z' is the natural
transformation whose component at each X € C is

(cur Fg)x = F(g,idx) : F(Z,X) — F(Z', X)

(Check that this is natural in X; and that cur F preserves composition and
identities in E.)
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Cat is cartesian closed

Theorem. There is an application functor
app: D" xC — D

that makes D¢ the exponential for C and D in Cat.

Have to check that cur F is the unique functor G : E — D¢ that makes

ExC d D

GXidc \L app

D¢ x C

commute in Cat (exercise).
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