Lecture 16
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L16

Used in Haskell to abstract generic aspects of
computation (return a value, sequencing) and to
encapsulate effectful code.

Concept imported into functional programming from
category theory, first for its denotational semantics by
Moggi and then for its practice by Wadler.
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L16

Used in Haskell to abstract generic aspects of
computation (return a value, sequencing) and to
encapsulate effectful code.

Concept imported into functional programming from
category theory, first for its denotational semantics by
Moggi and then for its practice by Wadler.

Here, a quick overview of:

> Moggi’s computational A-calculus and its
categorical semantics using (strong) monads

» monads and adjunctions
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Computational Lambda Calculus
(CLC)

CLC extends STLC with new types, terms and equations. ..
Types: A, B, ... ::= STLC types, plus

T(A) type of “computations” of values of type A
Terms: s, ¢,... ::= STLC terms, plus

returnt trivial computation
do{x « s;t} sequenced computation (binds free x in t)

—

As for STLC, we identify CLC syntax trees up to a-equivalence, where =4 is extended by the rules

s=as’  (yx)-t=q (yx')- -t
t =g t’ . y does not occur in {s, s, x,x’,t,t"}
an
return t =4 returnt’ do{x « s;t} =¢ do{x” « s";t'}
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L16

Computational Lambda Calculus
(CLC)

CLC extends STLC with new types, terms and equations...

Types: A, B, ... ::= STLC types, plus

T(A) type of “computations” of values of type A
Terms: s, ¢,... ::= STLC terms, plus

returnt trivial computation

do{x « s;t} sequenced computation (binds free x in t)
Typing rules:
F'rt:A I'ks:T(A) [,x:AFrt:T(B)

' returnt: T(A) (VAL) ['+do{x « s;t} : T(B) (SEQ)

Equations...
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CLC equations

Extend STLC fn-equality (I' + s =g, t : A) to arelation '+ s =t : A by adding the

following rules:

'Fs: A [,x:AFrt:T(B)
['+ do{x « returns;t} = t[s/x] : T(B)

['Ft:T(A)
['+t=do{x « t;returnx} : T(A)

I'Fs:T(A) [,x:Art:T(B) [,y:Bru:T(C)
['+do{y « do{x « s;t};u} = do{x « s;do{y « t;u}}
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CLC equations

Extend STLC fn-equality (I' + s =g, t : A) to arelation '+ s =t : A by adding the

following rules:

'Fs: A [,x:AFrt:T(B)
['+ do{x « returns;t} = t[s/x] : T(B)

['Ft:T(A)
['+t=do{x « t;returnx} : T(A)

I'Fs:T(A) [,x:Art:T(B) [,y:Bru:T(C)
['+do{y « do{x « s;t};u} = do{x « s;do{y « t;u}}

(To describe a particular notion of computation (I/0, mutable state, exceptions, concurrent processes, ...) one can consider extensions of
vanilla CLC, e.g. with extra ground types, constants and equations.)
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Parameterised Kleisli triple

is the following extra structure on a category C with
binary products:

> a function mapping each X € obj C to an object
T(X) € objC

» for each X € obj C, a C-morphism X 7, T(X)

> for each C-morphism X XY N T(Z) a C-morphism

XXT(Y) iC—> T(Z)

satisfying...
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Parameterised Kleisli triple[cont.]

> if X i> X and X' X Y 5 T(Z), then

(9o (f xidy))" =g ° (f xidry))

> if X x Y L T(Z), then

ffe(idx Xny) =f

> if X XY i) T(Z) and X x 7 2 T(W), then

(g odm, ) =g o{m, )
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Examples in Set

State: fix a set S (of “states”) and define
T(X) = (X xS)°
nxxs = (x,s)

f (x,t)s = f(x,y)s" wherets = (y,s’)
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Examples in Set

State: fix a set S (of “states”) and define

N S computations are functions S — X X S
T(X) - (X X S) "] taking states to values in X paired with

a nhext state

nx xs = (x,s)

f (x,t)s = f(x,y)s" where ts = (y,s’)

f*(x,_) first “runs” t € T(Y) in state s to get (y,s’),
then runs f(x,y) € T(Z) in the new state s’

190



Examples in Set

Error:
TX)=2X+1={(0,x) | x e X} U{(1,0)}
nx x = (0, x)

flxy) ift=(0y)

fr6 1) 5 1(1, 0) ift=(1,0)




L16

Examples in Set

Error:
T(X)=X+1={(0,x) | x € X} U{(1, 0)}«\

nx X = (O, x) con?putations are eith(.er
copies (0, x) of values in

(f(x, y) T ((), y) x € X or an error (1,0)

frx,t) =+

(L,0)  ift=(10)

if t € T(Y) is the error,
then f*(x,_) propagates it,
otherwise it acts like f
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Examples in Set

Continuations: fix a set R (of “results”) and define
T(X) = R®)

nxx 2 Ac € R .cx

f(x,r) 2 Ace R°.r(Ay €Y. f(x,y)c)
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Examples in Set

Continuations: fix a set R (of “results”) and define

) ] %
A RX computations are functionsr : R* — R
T(X) o R( )\ mapping continuations ¢ € R* of the

computation to results rc € R

nxx = Ac € R .cx
f(x,r) 2 Ace R°.r(Ay €Y. f(x,y)c)

f* maps a computationr € R®RY) to the
function taking a continuation ¢ € R to
the result of applying r to the
continuation Ay € Y. f(x,y) cin RY
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Given a ccc C equipped with a parameterised Kleisli
triple (T, n, (_)*), we can extend the semantics of STLC
to one for CLC.

Computation types: [T(A)] = T([A])
Trivial computations:

T+ return  : T(A)] = [I] 2 4] 24, 7([A])

Sequencing: [I' - do{x « s;t} : T(B)] = f* o (idjr} , 9)
( _ IT,x:Art:T(B)]
fo=[r]x[A] > T([B])

where L [TrsT(A)]
g =1[I] > T([A])

(and where A is uniquely determined from the proof of I' + do{x « s;t} : T(B))
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Given a ccc C equipped with a parameterised Kleisli
triple (T, n, (_)*), we can extend the semantics of STLC
to one for CLC.

As for STLC versus cccs,

> the semantics of CLC in cc+Kleisli categories is
equationally sound and complete

> one can use CLC as an internal language for
describing constructs in cc+Kleisli categories

> there is a correspondence between equational
theories in CLC and cc+Kleisli categories
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Monads

A monad on a category C is given by a functor T : C — C and
natural transformations n: id > Tand p: T o T — T satisfying

T
T ToT <™ T ToToT- s ToT

N A

T ToT T
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L16

A monad on a category C is given by a functor T : C — C and
natural transformations n: id > T and y: T o T — T satisfying

T
T ToT <™ T ToToT- s ToT

o

T ToT i T

If C has binary products, then the monad is strong if there is a

family of C-morphisms (X X T(Y) 2T, T(XXY)|X,Y € objC)
satisfying a number (7, in fact) of commutative diagrams (details
omitted, see Moggi).
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L16

A monad on a category C is given by a functor T : C — C and
natural transformations n: id > T and y: T o T — T satisfying

T
T ToT <™ T ToToT- s ToT

o

dr
T ToT i T

If C has binary products, then the monad is strong if there is a
family of C-morphisms (X X T(Y) 2T, T(XXY)|X,Y € objC)
satisfying a number (7, in fact) of commutative diagrams (details
omitted, see Moggi).

FACT: for a given category with binary products, “parameterised
Kleisli triple” and “strong monad” are equivalent notions — each
gives rise to the other in a bijective fashion.
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Monads and adjunctions

F

> Given an adjunction C__ D FAG

G
we get a monad (G o F,n, u) on C

{UX = idfrx
where

px = G(idgFx))
F

E.g. for Set ~ Mon where U is the forgetful functor, T=U o F is
-~
U
the list monad on Set (T(X) = List X, n given by singleton lists, 1 by
flattening lists of lists). It’s a strong monad (all monads of Set have a
strength), but in general the monad associated with an adjunction may

not be strong.
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Monads and adjunctions

F
> Given an adjunction C__ D FAG
G
we get a monad (G o F,n, u) on C

» Given amonad (T, n, 1) on C we get an adjunction
F
c_ ~ct F4G

G
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Monads and adiunctions

» Given an adjunct

we get a monad (

» Given a monad (°

(CT is the category of Eilenberg-Moore algebra)
for the monad T, which has objects (A, a) with
a : T(A) — A satisfying

Ao TA T(TA) 2 -=TA

N

A TA A

(04

and morphisms f(A,a) — (B, ) with f: A — B
satisfying

rf
TA——TB
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Monads and adjunctions

F

> Given an adjunction C__ D FAG

G
we get a monad (G o F,n, u) on C

Given a monad (T, n, 1) on C we get an adjunction

F
c_ ~ct F4G
G
F
Starting from C :j D F 4 G and forming the monad
G

T = G o F, there’s an obvious functor K : D — CI.

Monadicity Theorems impose conditions on G : D — C which ensure that
K is an equivalence of categories. E.g. Mon is equivalent to the category of
Eilenberg-Moore algebras for the list monad on Set (and similarly for any

algebraic theory).
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Some current themes involving
category theory in computer science

> semantics of effects & co-effects in programming
languages
(monads and comonads)

> homotopy type theory

(higher-dimensional category theory)

> structural aspects of networks, quantum
computation/protocols, ...

(string diagrams for monoidal categories)
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