Lecture 16

L16 184

L16

Used in Haskell to abstract generic aspects of
computation (return a value, sequencing) and to
encapsulate effectful code.

Concept imported into functional programming from
category theory, first for its denotational semantics by
Moggi and then for its practice by Wadler.

185

L16

Used in Haskell to abstract generic aspects of
computation (return a value, sequencing) and to
encapsulate effectful code.

Concept imported into functional programming from
category theory, first for its denotational semantics by
Moggi and then for its practice by Wadler.

Here, a quick overview of:

> Moggi’s computational A-calculus and its
categorical semantics using (strong) monads

» monads and adjunctions

185

Computational Lambda Calculus
(CLC)

CLC extends STLC with new types, terms and equations. ..
Types: A, B, ... ::= STLC types, plus

T(A) type of “computations” of values of type A
Terms: s, ¢,... ::= STLC terms, plus

returnt trivial computation
do{x « s;t} sequenced computation (binds free x in t)

—

As for STLC, we identify CLC syntax trees up to a-equivalence, where =4 is extended by the rules

s=as’ (yx)-t=q (yx')- -t
t =g t’ . y does not occur in {s, s, x,x’,t,t"}
an
return t =4 returnt’ do{x « s;t} =¢ do{x” « s";t'}

L16 186

L16

Computational Lambda Calculus
(CLC)

CLC extends STLC with new types, terms and equations...

Types: A, B, ... ::= STLC types, plus

T(A) type of “computations” of values of type A
Terms: s, ¢,... ::= STLC terms, plus

returnt trivial computation

do{x « s;t} sequenced computation (binds free x in t)
Typing rules:
F'rt:A I'ks:T(A) [,x:AFrt:T(B)

' returnt: T(A) (VAL) ['+do{x « s;t} : T(B) (SEQ)

Equations...

186

CLC equations

Extend STLC fn-equality (I' + s =g, t : A) to arelation '+ s =t : A by adding the

following rules:

'Fs: A [,x:AFrt:T(B)
['+ do{x « returns;t} = t[s/x] : T(B)

['Ft:T(A)
['+t=do{x « t;returnx} : T(A)

I'Fs:T(A) [,x:Art:T(B) [,y:Bru:T(C)
['+do{y « do{x « s;t};u} = do{x « s;do{y « t;u}}

L16 187

CLC equations

Extend STLC fn-equality (I' + s =g, t : A) to arelation '+ s =t : A by adding the

following rules:

'Fs: A [,x:AFrt:T(B)
['+ do{x « returns;t} = t[s/x] : T(B)

['Ft:T(A)
['+t=do{x « t;returnx} : T(A)

I'Fs:T(A) [,x:Art:T(B) [,y:Bru:T(C)
['+do{y « do{x « s;t};u} = do{x « s;do{y « t;u}}

(To describe a particular notion of computation (I/0, mutable state, exceptions, concurrent processes, ...) one can consider extensions of
vanilla CLC, e.g. with extra ground types, constants and equations.)

L16 187

L16

Parameterised Kleisli triple

is the following extra structure on a category C with
binary products:

> a function mapping each X € obj C to an object
T(X) € objC

» for each X € obj C, a C-morphism X 7, T(X)

> for each C-morphism X XY N T(Z) a C-morphism

XXT(Y) iC—> T(Z)

satisfying...

188

Parameterised Kleisli triple[cont.]

> if X i> X and X' X Y 5 T(Z), then

(9o (f xidy))" =g ° (f xidry))

> if X x Y L T(Z), then

ffe(idx Xny) =f

> if X XY i) T(Z) and X x 7 2 T(W), then

(g odm,) =g o{m,)

L16 189

Examples in Set

State: fix a set S (of “states”) and define
T(X) = (X xS)°
nxxs = (x,s)

f (x,t)s = f(x,y)s" wherets = (y,s’)

L16 190

L16

Examples in Set

State: fix a set S (of “states”) and define

N S computations are functions S — X X S
T(X) - (X X S) "] taking states to values in X paired with

a nhext state

nx xs = (x,s)

f (x,t)s = f(x,y)s" where ts = (y,s’)

f*(x,_) first “runs” t € T(Y) in state s to get (y,s’),
then runs f(x,y) € T(Z) in the new state s’

190

Examples in Set

Error:
TX)=2X+1={(0,x) | x e X} U{(1,0)}
nx x = (0, x)

flxy) ift=(0y)

fr6 1) 5 1(1, 0) ift=(1,0)

L16

Examples in Set

Error:
T(X)=X+1={(0,x) | x € X} U{(1, 0)}«\

nx X = (O, x) con?putations are eith(.er
copies (0, x) of values in

(f(x, y) T ((), y) x € X or an error (1,0)

frx,t) =+

(L,0) ift=(10)

if t € T(Y) is the error,
then f*(x,_) propagates it,
otherwise it acts like f

191

Examples in Set

Continuations: fix a set R (of “results”) and define
T(X) = R®)

nxx 2 Ac € R .cx

f(x,r) 2 Ace R°.r(Ay €Y. f(x,y)c)

L16 192

Examples in Set

Continuations: fix a set R (of “results”) and define

)] %
A RX computations are functionsr : R* — R
T(X) o R()\ mapping continuations ¢ € R* of the

computation to results rc € R

nxx = Ac € R .cx
f(x,r) 2 Ace R°.r(Ay €Y. f(x,y)c)

f* maps a computationr € R®RY) to the
function taking a continuation ¢ € R to
the result of applying r to the
continuation Ay € Y. f(x,y) cin RY

L16 192

L16

Given a ccc C equipped with a parameterised Kleisli
triple (T, n, (_)*), we can extend the semantics of STLC
to one for CLC.

Computation types: [T(A)] = T([A])
Trivial computations:

T+ return : T(A)] = [I] 2 4] 24, 7([A])

Sequencing: [I' - do{x « s;t} : T(B)] = f* o (idjr} , 9)
(_ IT,x:Art:T(B)]
fo=[r]x[A] > T([B])

where L [TrsT(A)]
g =1[I] > T([A])

(and where A is uniquely determined from the proof of I' + do{x « s;t} : T(B))

193

L16

Given a ccc C equipped with a parameterised Kleisli
triple (T, n, (_)*), we can extend the semantics of STLC
to one for CLC.

As for STLC versus cccs,

> the semantics of CLC in cc+Kleisli categories is
equationally sound and complete

> one can use CLC as an internal language for
describing constructs in cc+Kleisli categories

> there is a correspondence between equational
theories in CLC and cc+Kleisli categories

193

Monads

A monad on a category C is given by a functor T : C — C and
natural transformations n: id > Tand p: T o T — T satisfying

T
T ToT <™ T ToToT- s ToT

N A

T ToT T

L16 194

L16

A monad on a category C is given by a functor T : C — C and
natural transformations n: id > T and y: T o T — T satisfying

T
T ToT <™ T ToToT- s ToT

o

T ToT i T

If C has binary products, then the monad is strong if there is a

family of C-morphisms (X X T(Y) 2T, T(XXY)|X,Y € objC)
satisfying a number (7, in fact) of commutative diagrams (details
omitted, see Moggi).

194

L16

A monad on a category C is given by a functor T : C — C and
natural transformations n: id > T and y: T o T — T satisfying

T
T ToT <™ T ToToT- s ToT

o

dr
T ToT i T

If C has binary products, then the monad is strong if there is a
family of C-morphisms (X X T(Y) 2T, T(XXY)|X,Y € objC)
satisfying a number (7, in fact) of commutative diagrams (details
omitted, see Moggi).

FACT: for a given category with binary products, “parameterised
Kleisli triple” and “strong monad” are equivalent notions — each
gives rise to the other in a bijective fashion.

194

L16

Monads and adjunctions

F

> Given an adjunction C__ D FAG

G
we get a monad (G o F,n, u) on C

{UX = idfrx
where

px = G(idgFx))
F

E.g. for Set ~ Mon where U is the forgetful functor, T=U o F is
-~
U
the list monad on Set (T(X) = List X, n given by singleton lists, 1 by
flattening lists of lists). It’s a strong monad (all monads of Set have a
strength), but in general the monad associated with an adjunction may

not be strong.

195

Monads and adjunctions

F
> Given an adjunction C__ D FAG
G
we get a monad (G o F,n, u) on C

» Given amonad (T, n, 1) on C we get an adjunction
F
c_ ~ct F4G

G

L16 195

L16

Monads and adiunctions

» Given an adjunct

we get a monad (

» Given a monad (°

(CT is the category of Eilenberg-Moore algebra)
for the monad T, which has objects (A, a) with
a : T(A) — A satisfying

Ao TA T(TA) 2 -=TA

N

A TA A

(04

and morphisms f(A,a) — (B,) with f: A — B
satisfying

rf
TA——TB

195

L16

Monads and adjunctions

F

> Given an adjunction C__ D FAG

G
we get a monad (G o F,n, u) on C

Given a monad (T, n, 1) on C we get an adjunction

F
c_ ~ct F4G
G
F
Starting from C :j D F 4 G and forming the monad
G

T = G o F, there’s an obvious functor K : D — CI.

Monadicity Theorems impose conditions on G : D — C which ensure that
K is an equivalence of categories. E.g. Mon is equivalent to the category of
Eilenberg-Moore algebras for the list monad on Set (and similarly for any

algebraic theory).

195

L16

Some current themes involving
category theory in computer science

> semantics of effects & co-effects in programming
languages
(monads and comonads)

> homotopy type theory

(higher-dimensional category theory)

> structural aspects of networks, quantum
computation/protocols, ...

(string diagrams for monoidal categories)

196

