Compiler Construction
Lent Term 2021
Lecture 3: Context-Free Grammars

» Context-Free Grammars (CFGS)

 Each CFG generates a Context-Free
Language (CFL)

* Push-down automata (PDAS)

* PDAs recognize CFLs

* Ambiguity is the central problem

Timothy G. Griffin
tgg22@cam.ac.uk
Computer Laboratory
University of Cambridge 1

Programming Language Syntax

6.7 Declarations
Syntax

declaration:
declaration-specifiers init-declarator-listop: ;
static_assert-declaration

declaration-specifiers:
storage-class-specifier declaration-specifiersp,
type-specifier declaration-specifiersp,
type-qualifier declaration-specifiersgp,
function-specifier declaration-specifiersgp
alignment-specifier declaration-specifiers,p

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator
declarator = initializer

A small fragment of the C standard. How can we turn this
specification into a parser that reads a text file and produces a
syntax tree?

Context-Free Grammars (CFGs)
G=(N,T,P,S)

N :set of nontermina Is

T :set of terminals

Pc Nx(NUT) :aset of production s
S € N :start symbol

Each (A,«) € P is written as A — o

Example CFG
G, =(N,,T,,RB,E)
N, ={E} T, ={+*(),id}
P :
E—->E+E|E*E|(E) |
This Is shorthand for
R ={E E+E),(E E*E), (E (B)), (E 1d)}
4

Derivations
Notation convention s:

a,B,v,--e(NUT)

A B,C,---eN
Given oA and a production A — y
a derivation step Is written as

oA = ayf
—" means one or more derivation steps and

—" means zero or more derivation steps °

Example derivations

E=E*E
= (E)*E
= (E+E)*E
= (Xx+E)*E
= (X+y)*E
= (x+Yy)*(E)
= (X+y)*(E+E)
= (X+Yy)*(z+E)
= (X+y)*(z+X)

E=E*E
= E*(E)
= E*(E+E)
= E*(E+X)
= E*(2+X)
= (E)*(z+X)
= (E+E)*(z+X)
= (E+Yy)*(z+X)
= (X+Y)*(z+X)

A leftmost derivation

A rightmost derivation

Derivation Trees

The derivation tree for (X +y) * (z + X).
All derivations of this expression will
produce the same derivation tree.

Concrete vs. Abstract Syntax Trees

parse tree = An AST contains only the
derivation tree = information needed to
concrete syntax tree generate an intermediate

representation

8

L(G) = The Language Generated by Grammar G

L(G):{WeT*|S :>+W}

For example, if G has production s
S—aSb|e
then

L(G)=1{a"b" [n>0}
So CFGs can capture more than
regular languages!

Pushdown Automata (PDAs)

Regular languages are accepted by Finite Automata.
Context-free languages are accepted by Pushdown Automata,

a finite automata augmented with a stack.

lllustration from https://en.wikipedea.org/wiki/Pushdown_automaton

finite top
control | 0 p
state
'Z
a ‘
Input tape

stack
A diagram of a pushdown automaton = 10

Pushdown Automata (PDAs)
M=(Q,%2,1,0,q,,Z)

Q :states X :alphabet I :stack symbols
g, € Q:start state

Z eI :inttial stack symbol

0.VqQeQ,ac(Zu{e}), X €T,
5(q,a,X) cQxI
11

Pushdown Automata (PDAs)

(g',) € 6(q,a, X) means that when the
machine Iis In state reading a with X on
top of the stack, it can move to state g' and
replace X with £. That is, it "pops™ X and
"pushes” A (leftmost symbol is top of stack).

12

Pushdown Automata (PDAs)

ForqeQ,weX ,aecl’

(g, w,a)
Is called an instantane ous
descriptio n (ID). It denotes the PDA
In state g looking at the first symbol
of w, with « on the stack (top at left).

13

Language accepted by a PDA
For (q, #) € 0(q,a, X), a X define

the relation — on IDs as
(q,aw, Xx) —> (q', W, Sa)
and for (g,) € 6(q, &, X) as
(., w, X)) = (q',w, fa)
L(M) =

{weX |3qe€Q, (q,,W,Z) =" (q,¢,¢)}
14

Exercise : work out the details of this PDA

(g, aaabbb, Z)
— (q,,aabbb, A)

5 (q,,abbb, Aa) M=

5 (q,.bbb, AAA) 12D"In=0]
— (q,,bb, AA)

— (0, b, A)

— (Qy, €, €) 15

PDAs and CFGs Facts

(we will not prove them)

1) For every CFG G there is a PDA M
such that L(G)= L(M).

2) Forevery PDA M there iIs a CFG G
such that L(G)= L(M).

Parsing problem solved? Given a CFG G
just construct the PDA M ? Not so fast!
For programmin ¢ languages we want

M to be determinis tic! 16

Origins of nondeterminism?
Ambiguity!

Both derivation trees correspond “x +y * Z".
But (x+y) * z Is not the same as X + (y * 2).

This type of ambiguity will cause problems
when we try to go from program texts to
derivation trees! Semantic ambiguity!

17

Gz — (NZ’Tl’ sz E)
N,={ET,F} T, ={+*() id}
P, :

E->E+T|T (expressio ns)
To>T*F|F (terms)
F—(E)|id (factors)

Can you prove that L(G,)=L(G,)? 18

The modified grammar eliminates

ambiguity

This I1s now
the unique
derivation
tree for
X+y*z

19

Fun Fun Facts

(1) Some context-free languages are
Inherently ambiguous --- every context-free
grammar for them will be ambiguous. For example:

L={a"b"c"d" |m>1,n>1{
u{a”b”‘c”‘d”\mkl,nkl}

(2) Checking for ambiguity in an arbitrary context-free
grammar is not decidable! Ouch!

(3) Given two grammars G1 and G2, checking
L(G1) = L(G2) is not decidable! Ouch!

See Hopcroft and Uliman, “Introduction to Automata 20
Theory, Languages, and Computation”

Two approaches to building stack-
based parsing machines: top-down and
bottom-up

e Top Down : attempts a left-most derivation. We will
look at two techniques:

 Recursive decent (hand coded)
e Predictive parsing (table driven)

e Bottom-up : attempts a right-most derivation
backwards. We will look at two techniques:

e SLR(1) : Simple LR(1)
e LR(1)

Bottom-up techniques are strictly more powerful.
That Is, they can parse more grammars. 21

Recursive Descent Parsing

int tok = getToken();

(G5)

void eat (int t) {if (tok

S:=ifEthenSelseS error():}

| begin S L

| print E void SO {switch(tok) {

case IF: eat(IF);

default: error(Q;

L ::= end
|isL H
void L) {switch(tok) {
case END: eat(END);
Parse corresponds to case SEMI: eat(SEMI)
a left-most derivation default: error();

constructed In
a “top-down” manner

1}

void advance() {tok = getToken();}

== t) advance(); else

E(); eat(THEN);

S(); eat(ELSE); S(); break;
E ::= NUM = NUM case BEGIN: eat(BEGI
case PRINT: eat(PRINT); E(); break;

N); SQ; L(Q; break;

break;
; SO; LQO; break;

void E(Q) {eat(NUM) ; eat(EQ); eat(NuM); }

Example From Andrew Appel, “Modern Compiler
Implementation in Java” page 46

22

But "left recursion” E > E+ 1T In G, will

lead to an infinite loop! A
Eliminate left recursion! AL @
A
A->Acl |[Aa2|...|Ack | AB
B1[B2]...|Bn
A
{ A
I
A->BIA|B2A|...|BNA OLA\A,
©N
A->o01A|a2A]...|akA|e

For eliminating left-recursion in general, see Aho and Ullman®

Eliminate left recursion

G,=(N,,T,,P;, E)

N, ={E, E, T, T,F} T, ={+*,(),1d}
P,:

E->TE

E'>+T E'|¢

To>FT

T'> *FT'|e

F— (E)|id
Can you prove that L(G,)= L(G,)?

24

Recursive descent pseudocode

getE() = getT(); getE' ()
getE'() = 1If token() ="+"then eat("+"); getT (); getE'()
getT() = getF (); getT ()
getT'() =1If token() =" then eat("*"); getF(); getT"()
getF() = 1f token() =1id

then eat(id)

else eat(" ("); getE(); eat(")")

25

Where’s the stack machine?
It’s implicit in the call stack!

Parsing (x+y)*(z+x) using a call to getE()

eat("(") getE()

getF() getF() getF()

getT() getT() getT() getT()
getE() getE() getE() getE() getE()

call stack over time ...
20

