
Complexity Theory
Lecture 4

Anuj Dawar

http://www.cl.cam.ac.uk/teaching/1920/Complexity



Verifiers

A verifier V for a language L is an algorithm such that

L = {x | (x , c) is accepted by V for some c}

If V runs in time polynomial in the length of x , then we say that
L is polynomially verifiable.

Many natural examples arise, whenever we have to construct a solution
to some design constraints or specifications.

Anuj Dawar Complexity Theory



Nondeterminism

If, in the definition of a Turing machine, we relax the condition on δ
being a function and instead allow an arbitrary relation, we obtain a
nondeterministic Turing machine.

δ ⊆ (Q × Σ)× (Q ∪ {acc, rej} × Σ× {R, L,S}).

The yields relation →M is also no longer functional.

We still define the language accepted by M by:

{x | (s, ., x)→?
M (acc,w , u) for some w and u}

though, for some x , there may be computations leading to accepting as
well as rejecting states.

Anuj Dawar Complexity Theory



Computation Trees

With a nondeterministic machine, each configuration gives rise to a tree
of successive configurations.

(s, ., x)

(q0, u0,w0) (q1, u1,w1)
(q2, u2,w2)

(q00, u00,w00)

(q11, u11,w11)
...

...

(rej, u2,w2)

(acc, . . .)

(q10, u10,w10)

Anuj Dawar Complexity Theory



Nondeterministic Complexity Classes

We have already defined TIME(f ) and SPACE(f ).

NTIME(f ) is defined as the class of those languages L which are
accepted by a nondeterministic Turing machine M, such that for every
x ∈ L, there is an accepting computation of M on x of length O(f (n)),
where n is the length of x .

NP =
∞⋃
k=1

NTIME(nk)

Anuj Dawar Complexity Theory



Nondeterminism

(s, ., x)

(q0, u0,w0) (q1, u1,w1)
(q2, u2,w2)

(q00, u00,w00)

(q11, u11,w11)
...

...

(rej, u2,w2)

(acc, . . .)

(q10, u10,w10)

For a language in NTIME(f ), the height of the tree can be bounded by
f (n) when the input is of length n.

Anuj Dawar Complexity Theory



NP

A language L is polynomially verifiable if, and only if, it is in NP.

To prove this, suppose L is a language, which has a verifier V , which
runs in time p(n).

The following describes a nondeterministic algorithm that accepts L

1. input x of length n

2. nondeterministically guess c of length ≤ p(n)

3. run V on (x , c)

Anuj Dawar Complexity Theory



NP

In the other direction, suppose M is a nondeterministic machine that
accepts a language L in time nk .

We define the deterministic algorithm V which on input (x , c) simulates
M on input x .
At the i th nondeterministic choice point, V looks at the i th character in
c to decide which branch to follow.
If M accepts then V accepts, otherwise it rejects.

V is a polynomial verifier for L.

Anuj Dawar Complexity Theory



Generate and Test

We can think of nondeterministic algorithms in the generate-and test
paradigm:

yes

no
generatex Vx verify

Where the generate component is nondeterministic and the verify
component is deterministic.

Anuj Dawar Complexity Theory



Reductions

Given two languages L1 ⊆ Σ?
1, and L2 ⊆ Σ?

2,

A reduction of L1 to L2 is a computable function

f : Σ?
1 → Σ?

2

such that for every string x ∈ Σ?
1,

f (x) ∈ L2 if, and only if, x ∈ L1

Anuj Dawar Complexity Theory



Resource Bounded Reductions

If f is computable by a polynomial time algorithm, we say that L1 is
polynomial time reducible to L2.

L1 ≤P L2

If f is also computable in SPACE(log n), we write

L1 ≤L L2

Anuj Dawar Complexity Theory



Reductions 2

If L1 ≤P L2 we understand that L1 is no more difficult to solve than L2,
at least as far as polynomial time computation is concerned.

That is to say,
If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P

We can get an algorithm to decide L1 by first computing f , and then
using the polynomial time algorithm for L2.

Anuj Dawar Complexity Theory



Completeness

The usefulness of reductions is that they allow us to establish the relative
complexity of problems, even when we cannot prove absolute lower
bounds.

Cook (1972) first showed that there are problems in NP that are
maximally difficult.

A language L is said to be NP-hard if for every language A ∈ NP, A ≤P L.

A language L is NP-complete if it is in NP and it is NP-hard.

Anuj Dawar Complexity Theory


