
1/30

Data Science: Principles and Practice
Lecture 4: Ensemble Learning

Ekaterina Kochmar

2/30

Wisdom of the crowd

• The collective opinion of a group of individuals rather than that of a single expert

3/30

Wisdom of the crowd

• The collective opinion of a group of individuals rather than that of a single expert

• Classic example: point estimation of a continuous quantity

• 1906 country fair in Plymouth: 800 people participated in a contest to estimate the weight of an

ox. Median guess of 1207 pounds accurate within 1% of the true weight of 1198 pounds

(Francis Galton)

4/30

Wisdom of the crowd

• The collective opinion of a group of individuals rather than that of a single expert

• Classic example: point estimation of a continuous quantity

• 1906 country fair in Plymouth: 800 people participated in a contest to estimate the weight of an

ox. Median guess of 1207 pounds accurate within 1% of the true weight of 1198 pounds

(Francis Galton)

• Crowd’s individual judgments can be modelled as a probability distribution of responses with

the median centred near the true value of the quantity to be estimated

• Applications: crowdsourcing, social information sites (Wikipedia, Quora, Stack Overflow),

decision-making (trial by jury), sharing economy self-regulating platforms (Uber, Airbnb)

5/30

Ensemble-based models in practice

Data centres control by DeepMind using ensembles
of neural networks

A number of top teams in the competition
(https://netflixprize.com) used ensembles

https://netflixprize.com/

6/30

Data Science: Principles and Practice

Simple voting classifiers using hard and soft voting strategies 01

Bagging and pasting ensembles (Random Forests)02

Boosting (AdaBoost, Gradient Boosting)03

Application to classification and regression problems 04

Practical 305

7/30

Voting classifiers

8/30

Hard voting strategy

9/30

Voting classifiers

• Even when individual voters are weak learners (hardly above random baseline), the

ensemble can still be a strong learner

• Condition: individual voters should be sufficiently diverse, i.e. make different

(uncorrelated) errors

• Hard to achieve in practice as classifiers are usually trained on the same data

• Why does this work?

10/30

Coin example

A slightly biased coin: 51% chance of heads

11/30

Coin example

• Law of large numbers: over the large number of tosses the ratio of heads gets closer

to the probability of heads (51%)

• The probability of obtaining the majority of heads after 1,000 tosses of this coin

approaches 73%; after 10,000 tosses – 97%

• ⇒ If you had 1,000 independent classifiers, each of which is only slightly more

accurate than random guessing, you can hope to achieve ∼73%

12/30

Hard vs soft voting

13/30

Hard vs soft voting

14/30

Bagging and Pasting

• One way to ensure that the classifiers’ decisions are independent is to use very

different training algorithms

• Another way is to train the predictor algorithms on different random subsets of the

training data:

◦ with bagging (bootstrap aggregating) you are sampling with replacement

◦ with pasting you are sampling without replacement

• Both strategies allow the predictors to be trained in parallel

15/30

Ensembles using bagging

16/30

Ensembles using bagging

17/30

Ensembles using bagging

At prediction time, the ensemble makes a prediction, e.g. by taking the statistical mode (the most
frequent prediction) from the individual predictors

18/30

Out-of-bag evaluation

• Bagging samples m training instances, where m is the size of the training set

• Only about 63% of the instances are sampled on average for each predictor

• ⇒ The other 37% are called out-of-bag (oob) instances

• Each predictor can be evaluated on the oob instances without any need for a

separate validation set or cross-validation

19/30

The bias / variance trade-off

Model’s generalisation error can be expressed as the sum of three different errors:

01 Bias is due to wrong assumptions about the data: e.g. linear instead of
quadratic. A high bias model is likely to underfit the training data

02

20/30

The bias / variance trade-off

Model’s generalisation error can be expressed as the sum of three different errors:

01 Bias is due to wrong assumptions about the data: e.g. linear instead of
quadratic. A high bias model is likely to underfit the training data

Variance is due to the model’s excessive sensibility to small variations in the
training data. A model with many degrees of freedom (e.g., a high-degree
polynomial) is likely to have high variance ⟶ overfit the training data

02

21/30

The bias / variance trade-off

Model’s generalisation error can be expressed as the sum of three different errors:

01 Bias is due to wrong assumptions about the data: e.g. linear instead of
quadratic. A high bias model is likely to underfit the training data

Variance is due to the model’s excessive sensibility to small variations in the
training data. A model with many degrees of freedom (e.g., a high-degree
polynomial) is likely to have high variance ⟶ overfit the training data

Irreducible error is due to the noisiness in the data itself (solution: clean the
data, remove outliers, etc.)

02

03

22/30

The bias / variance trade-off

http://scott.fortmann-roe.com/docs/BiasVariance.html

23/30

The bias / variance trade-off
Trade-off:

• Increasing model’s
complexity will typically
increase its variance and
reduce bias.

• Reducing model’s
complexity increases bias
and reduces variance.

http://www.ebc.cat/wp-content/uploads/2017/02/right_fited_model.png

24/30

What about ensemble models?

• Each individual predictor may have a higher bias than if it were trained on the whole

dataset

• Bagging: aggregation reduces variance while retaining the bias

• Predictors end up being less correlated, so the ensemble’s variance is reduced

• Bagging is generally preferred as it usually results in better models

25/30

Decision Trees on the Iris dataset
Classifying 3 types of irises by petal length and width

26/30

Decision Trees on the Iris dataset

27/30

Decision Trees on the Iris dataset
Gini impurity (impurity of the node) =
where is the ratio of class k instances among the training instances of the i-th node

Decision Trees on the Iris dataset

Gini (impurity of the node) = 1�
Pn

k=1 p
2
i ,k

where pi ,k is the ratio of class k instances among the training instances of
the i-th node

E. Kochmar DSPNP: Lecture 3 18 November 17 / 32

Decision Trees on the Iris dataset

Gini (impurity of the node) = 1�
Pn

k=1 p
2
i ,k

where pi ,k is the ratio of class k instances among the training instances of
the i-th node

E. Kochmar DSPNP: Lecture 3 18 November 17 / 32

28/30

Decision Trees training

CART (Classification and Regression Tree)1 algorithm:

• Start: Split the training set in two subsets using a single feature k and a threshold tk
• To select the (k, tk) pair, search for the purest subsets weighted by size

• Cost function:

where measures the impurity of the left/right subset, and

is the number of instances in the left/right subset.

1 L. Breiman, J. Friedman, R. Olshen, and C. Stone (1984). “Classification and Regression Trees”

Formulas

J(k , tk) =
mleft
m Gleft +

mright

m Gright

(
Gleft/right

mleft/right

E. Kochmar DSPNP: Lecture 3 13 November 29 / 30

Formulas

J(k , tk) =
mleft
m Gleft +

mright

m Gright

(
Gleft/right

mleft/right

E. Kochmar DSPNP: Lecture 3 13 November 29 / 30

29/30

Decision Trees training

CART (Classification and Regression Tree)1 algorithm:

• Start: Split the training set in two subsets using a single feature k and a threshold tk
• To select the (k, tk) pair, search for the purest subsets weighted by size

• Cost function:

where measures the impurity of the left/right subset, and

is the number of instances in the left/right subset.

• Recursion: Apply to all subsets recursively

• Stopping criteria: Max depth reached, or no more splits that reduce impurity

1 L. Breiman, J. Friedman, R. Olshen, and C. Stone (1984). “Classification and Regression Trees”

Formulas

J(k , tk) =
mleft
m Gleft +

mright

m Gright

(
Gleft/right

mleft/right

E. Kochmar DSPNP: Lecture 3 13 November 29 / 30

Formulas

J(k , tk) =
mleft
m Gleft +

mright

m Gright

(
Gleft/right

mleft/right

E. Kochmar DSPNP: Lecture 3 13 November 29 / 30

30/30

Decision Trees decision boundaries

https://github.com/ageron/handson-ml

31/30

From a single tree

32/30

From a single tree to a forest

33/30

Random Forests classifier

• Allows you to control both how the trees are grown (i.e., the usual hyperparameters

for Decision Trees) and how the ensemble is built

• Extra randomness: instead of searching for the very best feature to split a node on,

it searches for the best feature among a random subset of features

• Trading higher bias for lower variance ⟶ overall, more generalisable

• Extremely Randomised Trees (Extra-Trees): use random thresholds for features

rather than searching for the best possible thresholds ⟶ trains much faster

34/30

Feature importance

• Importance of each feature can be measured by looking at how much the nodes
that are using a particular feature reduce impurity on the average, i.e. across all
trees in the forest

• This can be used for quick assessment of which features matter most, i.e. feature
selection

• Alternatively, further randomness can be introduced by training on random subsets
of the features (supported in sklearn) using:

◦ Random Patches method when sampling both training instances and features

◦ Random Subspaces method when keeping all training instances but sampling
features

35/30

Boosting

• Boosting (or hypothesis boosting) is an approach that can combine several
weaker learners into a stronger learner

• Train predictors sequentially, so that each next classifier tries to correct the errors
from its predecessor

• Most popular approaches – AdaBoost and Gradient Boosting

36/30

AdaBoost

• Start with the first predictor

37/30

AdaBoost

• Start with the first predictor
• Train and estimate its performance

38/30

AdaBoost

• Start with the first predictor
• Train and estimate its performance
• Increase relative weight of misclassified training instances

39/30

AdaBoost

• Start with the first predictor
• Train and estimate its performance
• Increase relative weight of misclassified training instances
• Train a new predictor on updated weights and make new predictions

40/30

AdaBoost

• Start with the first predictor
• Train and estimate its performance
• Increase relative weight of misclassified training instances
• Train a new predictor on updated weights and make new predictions
• Repeat until stopping criteria are satisfied

41/30

AdaBoost

• Initialisation: for each instance, where m is the number of instances

AdaBoost

Initialisation: w (i) = 1
m for each instance; m – number of instances

Error rate: rj =

P
ŷ
(i)
j 6=y(i)

w (i)

Pm
i=1 w

(i) ; ŷ (i)j – prediction of j-th classifier on

i-th instance

Predictor’s weight: ↵j = ⌘log
1�rj
rj

(higher for more accurate ones);

⌘ – learning rate

Update:

w (i) =

(
w (i), if ŷ (i)j = y (i)j

w (i)exp(↵j), if ŷ (i)j 6= y (i)j

(1)

All instances weights normalised by
Pm

i=1 w
(i)

E. Kochmar DSPNP: Lecture 3 18 November 23 / 32

• Error rate: where is the j-th classifier prediction on i-th

instance

AdaBoost

Initialisation: w (i) = 1
m for each instance; m – number of instances

Error rate: rj =

P
ŷ
(i)
j 6=y(i)

w (i)

Pm
i=1 w

(i) ; ŷ (i)j – prediction of j-th classifier on

i-th instance

Predictor’s weight: ↵j = ⌘log
1�rj
rj

(higher for more accurate ones);

⌘ – learning rate

Update:

w (i) =

(
w (i), if ŷ (i)j = y (i)j

w (i)exp(↵j), if ŷ (i)j 6= y (i)j

(1)

All instances weights normalised by
Pm

i=1 w
(i)

E. Kochmar DSPNP: Lecture 3 18 November 23 / 32

AdaBoost

Initialisation: w (i) = 1
m for each instance; m – number of instances

Error rate: rj =

P
ŷ
(i)
j 6=y(i)

w (i)

Pm
i=1 w

(i) ; ŷ (i)j – prediction of j-th classifier on

i-th instance

Predictor’s weight: ↵j = ⌘log
1�rj
rj

(higher for more accurate ones);

⌘ – learning rate

Update:

w (i) =

(
w (i), if ŷ (i)j = y (i)j

w (i)exp(↵j), if ŷ (i)j 6= y (i)j

(1)

All instances weights normalised by
Pm

i=1 w
(i)

E. Kochmar DSPNP: Lecture 3 18 November 23 / 32

• Predictor’s weight: (higher for more accurate ones), where is the

learning rate

AdaBoost

Initialisation: w (i) = 1
m for each instance; m – number of instances

Error rate: rj =

P
ŷ
(i)
j 6=y(i)

w (i)

Pm
i=1 w

(i) ; ŷ (i)j – prediction of j-th classifier on

i-th instance

Predictor’s weight: ↵j = ⌘log
1�rj
rj

(higher for more accurate ones);

⌘ – learning rate

Update:

w (i) =

(
w (i), if ŷ (i)j = y (i)j

w (i)exp(↵j), if ŷ (i)j 6= y (i)j

(1)

All instances weights normalised by
Pm

i=1 w
(i)

E. Kochmar DSPNP: Lecture 3 18 November 23 / 32

AdaBoost

Initialisation: w (i) = 1
m for each instance; m – number of instances

Error rate: rj =

P
ŷ
(i)
j 6=y(i)

w (i)

Pm
i=1 w

(i) ; ŷ (i)j – prediction of j-th classifier on

i-th instance

Predictor’s weight: ↵j = ⌘log
1�rj
rj

(higher for more accurate ones);

⌘ – learning rate

Update:

w (i) =

(
w (i), if ŷ (i)j = y (i)j

w (i)exp(↵j), if ŷ (i)j 6= y (i)j

(1)

All instances weights normalised by
Pm

i=1 w
(i)

E. Kochmar DSPNP: Lecture 3 18 November 23 / 32

• Update:

AdaBoost

Initialisation: w (i) = 1
m for each instance; m – number of instances

Error rate: rj =

P
ŷ
(i)
j 6=y(i)

w (i)

Pm
i=1 w

(i) ; ŷ (i)j – prediction of j-th classifier on

i-th instance

Predictor’s weight: ↵j = ⌘log
1�rj
rj

(higher for more accurate ones);

⌘ – learning rate

Update:

w (i) =

(
w (i), if ŷ (i)j = y (i)j

w (i)exp(↵j), if ŷ (i)j 6= y (i)j

(1)

All instances weights normalised by
Pm

i=1 w
(i)

E. Kochmar DSPNP: Lecture 3 18 November 23 / 32

all instances’ weights normalised by

AdaBoost

Initialisation: w (i) = 1
m for each instance; m – number of instances

Error rate: rj =

P
ŷ
(i)
j 6=y(i)

w (i)

Pm
i=1 w

(i) ; ŷ (i)j – prediction of j-th classifier on

i-th instance

Predictor’s weight: ↵j = ⌘log
1�rj
rj

(higher for more accurate ones);

⌘ – learning rate

Update:

w (i) =

(
w (i), if ŷ (i)j = y (i)j

w (i)exp(↵j), if ŷ (i)j 6= y (i)j

(1)

All instances weights normalised by
Pm

i=1 w
(i)

E. Kochmar DSPNP: Lecture 3 18 November 23 / 32

42/30

AdaBoost

• Stopping criteria: a perfect predictor is found, or the predefined number of

predictors in the ensemble is reached

• At prediction time:

where N is the number of predictors

AdaBoost

Stopping criteria: a perfect predictor found, or the pre-defined
number of predictors in the ensemble reached

Prediction time:

ŷ(x) = argmaxk

NX

j=1;ŷj (x)=k

↵j (2)

N – number of predictors

E. Kochmar DSPNP: Lecture 3 18 November 24 / 32

43/30

AdaBoost with different learning rates

44/30

Gradient Boosting

Underlying idea: train predictors on
the predecessor’s residual errors

45/30

Gradient Boosting

Underlying idea: train predictors on
the predecessor’s residual errors

46/30

Gradient Boosting

Underlying idea: train predictors on
the predecessor’s residual errors

47/30

Learning rate
The learning rate scales the contribution of each tree: the lower the rate, the more trees
you will need to include in the ensemble (but the predictions will usually generalise better)

48/30

Early stopping
How do we know when to stop? – Estimate validation error and stop when it reached a
minimum (or does not improve for a number of iterations)

49/30

Stacking

• Stacking (or stacked generalisation): instead of using a trivial function like hard
voting to aggregate predictions, why not train a model to learn such aggregation
function?

• Such a model is called blender or meta-learner

50/30

Stacking

51/30

Stacking

52/30

Stacking

53/30

Training a stacking ensemble

• Step 1: Split the training set in two subsets – subset1 and subset2

• Step 2: Use subset1 to train the predictors in the first layer

• Step 3: Use the first-layer predictors to make predictions on subset2 (note that there
is no “data leakage” here as predictors never saw subset2 during training)

• Step 4: Use these predictions from the first-layer predictors and the original target
values as your new training set to train the blender

54/30

Multi-layer stacking ensemble

55/30

Practical 3

56/30

Data

- Artificially generated moons dataset: 500 data points, two interleaving half circles

providing a good “toy” example for testing classification strategies

57/30

Your task: Learning objectives

- Learn about simple voting classifiers using hard and soft voting strategies

- Learn about bagging and pasting ensembles

- Learn about boosting and early stopping

- Apply popular ensemble-based learning algorithms, e.g. RandomForests and AdaBoost

- Apply ensemble techniques of your choice to another dataset (of your choice)

- Optional: implement a stacking algorithm

58/30

Practical 2 Logistics

- Data and code for Practical 3 can be found on: Github
(https://github.com/ekochmar/cl-datasci-pnp-2021/tree/master/DSPNP_practical3)

- Practical (‘ticking’) session over Zoom at the time allocated by your demonstrator

- At the practical, be prepared to discuss the task and answer the questions about the
code to get a ‘pass’

- Upload your solutions (Jupyter notebook or Python code) to Moodle by the deadline
(Tuesday 17 November, 4pm)

https://github.com/ekochmar/cl-datasci-pnp-2021/tree/master/DSPNP_practical3

59/30

