
1/13

Data Science: Principles and Practice

Ekaterina Kochmar1

Lecture 6: Deep Learning, Part II

________________________________________

1 Based on slides by Marek Rei



2/38

Focusing on TensorFlow

Giving you all the basics you need in order to 
use TensorFlow for building neural networks.

Can’t cover everything (not even close). 
There is a lot of material online if you’re looking 
for how to do something specific in TensoFlow.

Looking at some practical tips for training neural 
networks.

Today:



3/38

Data Science: Principles and Practice

Introduction to TensorFlow01

First steps with TensorFlow02

Training a network03

Useful things to know about Deep Learning04

Practical 405



4/38

TensorFlow

Open source library for implementing 
neural networks.

Developed by Google, for both 
production code and research.

Performs automatic differentiation.

Comes with many neural network 
modules implemented.

Tensor – an n-dimensional vector.

https://www.cc.gatech.edu/~san37/post/dlhc-start/



5/38
https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a

Why TensorFlow?



6/38
https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a

Why TensorFlow?



7/38

Companies Using TensorFlow



8/38
https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a

Why TensorFlow?



9/38

TensorFlow: The First Steps



10/38

TensorFlow 1 static graph



11/38

Distributed computing with TensorFlow

Geron (2017). ”Hands-On Machine Learning with Scikit-Learn & TensorFlow"



12/38

Minimal Example with TensorFlow 1

One of the smallest examples of 
running TensorFlow, while actually 
looking like a normal TensorFlow code.

Creates a computation graph that 
takes two inputs and sums them 
together.

We then execute this graph with 
values 4 and 5, and print the result.



13/38

Minimal Example with TensorFlow 1

One of the smallest examples of 
running TensorFlow, while actually 
looking like a normal TensorFlow code.

Creates a computation graph that 
takes two inputs and sums them 
together.

We then execute this graph with 
values 4 and 5, and print the result.

Let’s go though this in more detail!



14/38

import tensorflow as tf

Install tensorflow for CPU:
pip install tensorflow

Install tensorflow for GPU:
pip install tensorflow-gpu

Minimal Example with TensorFlow 1



15/38

tf.placeholder()

Define an input argument for our 
network.

Can have different types
(float32, float64, int32, …) 

and shapes
(scalar, vector, matrix, …)

Right now, we defined two single 
scalar placeholders: a and b.

Construction Phase with TensorFlow 1



16/38

y = a + b

Probably the most important thing to 
understand about classic TensorFlow!

Construction Phase with TensorFlow 1



17/38

Symbolic Graphs

We first construct a symbolic graph and then apply it later with suitable data.

The system takes a and b, adds them together and stores the value in y. Right?

y = a + b

For example, what happens when this TensorFlow 1 line is executed in our code?



18/38

Symbolic Graphs

We first construct a symbolic graph and then apply it later with suitable data.

The system takes a and b, adds them together and stores the value in y. Right?

Not really!
Instead, we create a TensorFlow-specific object y that knows its value can be calculated 
by summing together a and b. But the addition itself is not performed here!

y = a + b

For example, what happens when this TensorFlow line is executed in our code?



19/38

We can only use TensorFlow-specific* operations to construct a TensorFlow graph -
they return TensorFlow objects, as opposed to trying to execute the operation.
* Most of numpy and standard operations are compatible with TensorFlow

x 8

name: z
operation: add
arg1: x
arg2: 8

2

name: y
operation: div
arg1: z
arg2: 2

z = x + 8

y = z / 2

Symbolic Graphs
Can construct a whole network structure by intuitively combining operations.



20/38

tf.Session()

Constructs the environment in which 
the operations are performed and 
evaluated.

Allocates the memory to store current 
value of variables.

When starting a new session, all the 
values will be reset.

Execution Phase with TensorFlow 1



21/38

Execution Phase with TensorFlow 1
sess.run()

Execute the network – actually perform 
the calculations in the symbolic graph.

Specify which values you want calculated 
and returned from the graph.

feed_dict specifies the values that you 
give to placeholders for this execution.

result contains the executed value of y.

The keys in feed_dict are the tensors!



22/38

From TensorFlow 1 to TensorFlow 2

• TensorFlow 1 relies on symbolic graphs (“Define-and-Run” scheme): the network 
architecture is statically defined and fixed before computation; the graph cannot be 
modified after compilation

• TensorFlow 2 – eager execution (“Define-by-Run” scheme): the network is defined 
dynamically via the forward computation and can be modified during runtime

• This makes implementation less challenging and more intuitively clear

• Keras provides interpretable user-friendly interface on top of TensorFlow

• TensorFlow 2 has a compatibility mode for version 1 – see notebooks on github

https://docs.chainer.org/en/stable/guides/define_by_run.html
https://blog.udacity.com/2020/05/pytorch-vs-tensorflow-what-you-need-to-know.html



23/38

Training a Network



24/38

Training a Model in TensorFlow



25/38

Training a Model in TensorFlow



26/38

Training a Model in TensorFlow



27/38

Training a Model in TensorFlow



28/38

Training a Model in TensorFlow

This is where we define the strategy
for our model training.

Other strategies are available:

tf.keras.optimizers.SGD
tf.keras.optimizers.Adadelta
tf.keras.optimizers.Adam
tf.keras.optimizers.RMSprop

Overview: Ruder (2016). An overview of gradient descent optimization algorithms. https://arxiv.org/pdf/1609.04747.pdf
TensorFlow documentation: https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/



29/38

Training a Model in TensorFlow

Overview: Ruder (2016). An overview of gradient descent optimization algorithms. https://arxiv.org/pdf/1609.04747.pdf
TensorFlow documentation: https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/



30/38

Training a Model in TensorFlow

With tf.keras.layers.Dense these parameters 
are initialised randomly



31/38

Training a Model in TensorFlow

7.6623473 
12.32598 
15.226759 
17.031046 
18.153309 
18.851358 
19.285545 
19.555609 
19.72359 
19.828072

Result:



32/38

Backpropagation in a nutshell

• For every training instance, the algorithm feeds it into the network and computes the outputs in 
each consecutive layer (forward pass) 

• The algorithm measures the network’s output error (difference between predicted output and 
actual / desired output)

• It then computes how much each neuron in the last hidden layer contributed to each output 
neuron’s error. It proceeds to measure how much of these error contributions came from each 
neuron in the previous hidden layer – repeat for each layer (reverse pass)

• It efficiently measures the error gradient across all the connection weights in the network by 
propagating the error gradient backward in the network



33/38

Reverse-mode Autodiff: Forward pass

Geron (2017). ”Hands-On Machine Learning with Scikit-Learn & TensorFlow"

∂f / ∂x – ?
∂f / ∂y – ?



34/38

Reverse-mode Autodiff: Forward pass

Geron (2017). ”Hands-On Machine Learning with Scikit-Learn & TensorFlow"



35/38

Reverse-mode Autodiff: Reverse pass

Geron (2017). ”Hands-On Machine Learning with Scikit-Learn & TensorFlow"



36/38

Reverse-mode Autodiff: Reverse pass

Geron (2017). ”Hands-On Machine Learning with Scikit-Learn & TensorFlow"



37/38

Reverse-mode Autodiff: Reverse pass

Geron (2017). ”Hands-On Machine Learning with Scikit-Learn & TensorFlow"



38/38

Reverse-mode Autodiff: Reverse pass

Geron (2017). ”Hands-On Machine Learning with Scikit-Learn & TensorFlow"



39/38

Recap: Activation Functions

• Logistic function:

• Hyperbolic tangent function:

• Rectified linear unit (ReLU) function:

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i )

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i )

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i )

�(z) = 1
1+exp(�z)

tanh(z) = 2�(2z)� 1

ReLU(z) = max(0, z)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i )

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i )

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i )

�(z) = 1
1+exp(�z)

tanh(z) = 2�(2z)� 1

ReLU(z) = max(0, z)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31

Formulas

h
(1)
i = �(1)(

P
j w

(1)
i ,j xj + b

(1)
i )

h
(2)
i = �(1)(

P
j w

(2)
i ,j h

(1)
j + b

(2)
i )

yi = �(3)(
P

j w
(3)
i ,j h

(2)
j + b

(3)
i )

�(z) = 1
1+exp(�z)

tanh(z) = 2�(2z)� 1

ReLU(z) = max(0, z)

E. Kochmar DSPNP: Lecture 3 13 November 30 / 31



40/38

Softmax Activation Function

• An important activation function for classification problems (used not only in neural
networks but also in multiclass classification methods in general)

• In neural network-based classifiers – commonly used in the final layer
• Normalises the output of a network to a probability distribution over output classes

Formulas

�(s(x))k = exp(sk (x))PK
j=i exp(sj (x))

E. Kochmar DSPNP: Lecture 3 13 November 31 / 32

◦ K – number of classes
◦ s(x) – vector of scores of each class for 
instance x

◦ σ(s(x))k – estimated probability that x 
belongs to class k



41/38

Cross-Entropy Loss Function

• Objective: build a model that estimates a high probability for the target class (and a 
low probability for all other classes) 

• Cross-entropy loss function penalises the model when it estimates a low probability 
for the target class

Formulas

�(s(x))k = exp(sk (x))PK
j=i exp(sj (x))

J(⇥) = � 1
m

Pm
i=1

PK
k=1 y

(i)
k log(p̂(i)k )

E. Kochmar DSPNP: Lecture 3 13 November 31 / 32

◦ is equal to 1 if the target class for 
the i-th instance is k; otherwise 0

◦ – estimated probability that x 
belongs to class k

Formulas

�(s(x))k = exp(sk (x))PK
j=i exp(sj (x))

J(⇥) = � 1
m

Pm
i=1

PK
k=1 y

(i)
k log(p̂(i)k )

E. Kochmar DSPNP: Lecture 3 13 November 31 / 32

Formulas

�(s(x))k = exp(sk (x))PK
j=i exp(sj (x))

J(⇥) = � 1
m

Pm
i=1

PK
k=1 y

(i)
k log(p̂(i)k )

E. Kochmar DSPNP: Lecture 3 13 November 31 / 32



42/38

Useful Things to Know 
about Deep Learning



43/38

TensorFlow 2 also has eager execution support

PyTorch was designed for eager execution from the very beginning – no symbolic 
graphs, operations are performed where they appear in the code.

Advantages of Symbolic Graphs

● Can be internally optimized

● Faster (in theory)

● Easily deployable, even across 
languages

Advantages of Eager Execution

● Easier to understand

● Easier to debug

● Supports dynamic graphs



44/38

Different random initializations lead to 
different results.

Solution: Explicitly set the random seed.
All the random seeds!

Randomness in the Network



45/38

Different random initializations lead to 
different results.

Solution: Explicitly set the random seed.
All the random seeds!

Randomness in the Network

BUT!
GPU threads finish in a random order, also 
leading to randomness!

Small rounding errors really add up!
Doesn’t affect all operations.

Solution: Embrace randomness, run with 
different random seeds and report the average.



46/38

Tensorflow Playground

playground.tensorflow.org



47/38

TensorBoard
A tool for visualizing your own Tensorflow networks.



48/38

TensorBoard
A tool for visualizing your own Tensorflow networks.



49/38

Underfitting
The model does not have 
the capacity to properly 

model the data.

Ideal fit
Overfitting

Too complex, the model 
memorizes the data, 
does not generalize.

Fitting to the Data



50/38

Training Set Development Set Test Set

For training your models, 
fitting the parameters

For continuous 
evaluation and 
hyperparameter 
selection

For realistic 
evaluation once 
the training and 
tuning is done

In order to get realistic results for our experiments, we need to evaluate on a held-
out test set.

Using a separate development set for choosing hyperparameters is even better.

Splitting the Dataset



51/38

Early Stopping
A sufficiently powerful model will keep improving on the training data until it overfits.
We can use the development data to choose when to stop.

Optimal point



52/38

Dropout
During training, randomly set some activations to zero.

Typically drop 50% of activations in a layer

Form of regularization - prevents the network from relying on any one node.

https://www.learnopencv.com/understanding-alexnet/



53/38

Next time: Convolutional Neural Networks

Neural modules operating repeatedly over 
different subsections of the input space.

Great when searching for feature patterns, 
without knowing where they might be located in 
the input.

https://github.com/vdumoulin/conv_arithmetic

The main driver in image recognition. 
Can also be used for text.



54/38

Next time: Recurrent Neural Networks
Designed to process input sequences of arbitrary length.

Each hidden state A is calculated based on the current input and the previous hidden 
state.

Main neural architecture for processing text, with each input being a word 
representation.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/



55/38

Practical 4



56/38

Your task: Learning objectives

- The basics of running TensorFlow

- How to implement a feedforward neural network in Python

- How to visualise your network architecture using TensorBoard and track changes

- How to apply deep learning to both classification and regression tasks.

- Assignment: Build a neural classification model to predict “ocean proximity“ of a house
(California House Prices Dataset)

- Optional: Visualise your network architecture, changes in loss and metrics, explore the
results (e.g., print out and visualise confusion matrices), compare to more “traditional“ ML 
models from previous practicals



57/38

Practical 4 Logistics

- Data and code for Practical 4 can be found on: Github
(https://github.com/ekochmar/cl-datasci-pnp-2021/tree/main/DSPNP_practical4)

- Practical (‘ticking’) session over Zoom at the time allocated by your demonstrator

- At the practical, be prepared to discuss the task and answer the questions about the 
code to get a ‘pass’

- Upload your solutions (Jupyter notebook or Python code) to Moodle by the deadline 
(Tuesday 24 November, 4pm) 

https://github.com/ekochmar/cl-datasci-pnp-2021/tree/main/DSPNP_practical4


58/38


