
Workbook 2
Introduction
Last week you wrote a simple chat client in Java. One of the problems you may have encountered is that
different users formatted their messages in different ways and consequently your chat client couldn't
easily format all the messages in a uniform manner. This week you will explore Java's mechanism for
saving and restoring object state either to and from a stream, allowing an object to be saved to disk
or sent between machines on a computer network. You will use this mechanism to write a new and
improved Java chat client which sends Java objects as structured messages between the client and the
server. This technique will allow you to handle and display messages in a more structured way.

Important

An on-line version of this guide is available at:

https://www.cl.cam.ac.uk/teaching/current/FJava

You should check this page regularly for announcements and errata. You might find it useful to refer to
the on-line version of this guide in order to follow any provided web links or to cut 'n' paste example code.

Serialisation
By default, data stored by a Java program only exists for as long as the program remains in computer
memory. When the program terminates (cleanly or due to an error) all data held in computer memory
is lost. This can be problematic, since it is often useful to be able to save and restore data between
executions of a computer program. Java serialisation offers an easy way to save and restore data by
enabling an instance of a Java object to be turned into a platform-independent sequence of bytes which
can be written to the hard disk or sent over a computer network.

In Java you can serialise any object which implements the java.io.Serializable interface (paying
careful attention to the spelling1). The interface does not contain any fields nor does it proscribe the
creation of any methods; it's simply used to denote the class as serialisable. The Java runtime is able to
convert an instance of an object into a stream of bytes (and back again), so as a programmer you need
to do nothing other then declare that the class implements the interface java.io.Serializable.
Any serialised object is written in a platform-independent manner in the sense that an instance of a
class which is serialised on one machine can be deserialised on another, regardless of the underlying
operating system or Endianness of the computers involved.

Here is a simple example of a class which implements the Serializable interface:

class Message implements Serializable {
 int id;
 String msg;
 Message(int id, String msg) {
 this.id = id;
 this.msg = msg;
 }
}

The field id is of type int and, when an instance of the class Message is serialised, the Java runtime
will save a copy of the value stored in the field. Handling the field msg is more complicated however

1The use of "-ise" verses "-ize" is much debated and is some times erroneously attributed to a difference between American and
British English. Oxford University Press is said to favour "-ize" whilst Cambridge University Press prefers "-ise" (http://en.wikipedi-
a.org/wiki/American_and_British_English_spelling_differences). As this course is taught in Cambridge, we'll use "-ise".

1

https://www.cl.cam.ac.uk/teaching/current/FJava
http://en.wikipedia.org/wiki/American_and_British_English_spelling_differences
http://en.wikipedia.org/wiki/American_and_British_English_spelling_differences

Workbook 2

since it is a reference to an instance of the String class. The Java runtime system knows this and
will serialise the field msg by serialising the instance of the String class which the field references (if
any). In general, when the Java runtime system is serialising an object it will recursively serialise all the
referenced objects so that a complete copy of all the relevant data is captured.

Some classes, such as the Socket class you used last week, cannot be serialised since they represent
a state, such as a TCP/IP connection, which cannot be saved to disk and restored (possibly on a different
computer) at an arbitrary point in the future. If you need to serialise a class which contains a reference
to an object which cannot be serialised, you must declare the field to be transient; if you do so, such
fields will not be saved and therefore must be manually recreated by the programmer afterwards.

One potential problem with serialising instances of classes arises when you wish to change the class
definition. For example, you may wish to add a field to the class, change the inheritance hierarchy or
move the class between packages. Such changes may prevent any existing instances of the class which
have been serialised to disk from being deserialised correctly. In order to detect such problems, the
compiler generates a unique identifier for a particular class by computing a hash of the class definition
and storing this along with the rest of the data. Thus any changes made to the class will result in a
different identifier, and therefore the Java runtime can detect whether the version of the class definition
currently available is the same as the version used when the object was serialised.

You can manually control the version identifier given to a class by declaring the following field inside the
class and providing a specific integer value (we recommend starting at one):

private static final long serialVersionUID = ...

It's a good idea to do this by default (not only because your development environment may encourage
you to do so!) but because it is possible to add (or remove) fields to a class and still restore instances of
the class which were serialised before the fields were added (removed). In the cases where additional
fields are added, they are initialised to a default value (e.g. null); when fields are removed, the asso-
ciated serialised data is simply ignored. You must change the version identifier in most other cases, for
example if you change the class hierarchy or the class package. The Java Serialization Specification2

contains the gory details.

Java provides two classes to help you serialise an object into bytes or deserialise bytes into an object.
These are ObjectOutputStream and ObjectInputStream respectively. Here is a small example
code snippet which serialises an instance of the Message object as defined above and writes it to a
file called message.jobj:

FileOutputStream fos = new FileOutputStream("message.jobj");
ObjectOutputStream out = new ObjectOutputStream(fos);
out.writeObject(new Message(1,"Hello, world"));
out.close();

A quick glance at the Java documentation reveals that FileOutputStream and ObjectOut-
putStream interact with each other in the above code as byte-oriented streams of data. Formally, they
provide an OutputStream and use an OutputStream respectively; you've seen this interaction be-
fore with BufferedReader. This loose coupling of classes enables Java objects to be written to any
class which provides an OutputStream. In the last workbook you used the OutputStream provid-
ed by instances of the Socket class. Many other classes in the Java standard library which read or
write data support either an InputStream or an OutputStream respectively, a fact you will need to
remember when completing this workbook!

2http://download.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html

2

http://download.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html

Workbook 2

Serialising a simple class

Here is a simple class which implements the serialisation interface:

package uk.ac.cam.your-crsid.fjava.tick2;

import java.io.Serializable;

public class TestMessage implements Serializable {
 private static final long serialVersionUID = 1L;
 private String text;
 public String getMessage() {return text;}
 public void setMessage(String msg) {text = msg;}
}

1. Start the ticklet2 exercise on Chime: https://www.cl.cam.ac.uk/teaching/current/FJava/ticklet2.

2. Clone a copy of your repository from Chime onto your local machine. You should see an im-
plementation of uk.ac.cam.your-crsid.fjava.tick2.TestMessage in the repository.

3. Complete the TODOs in
uk.ac.cam.your-crsid.fjava.tick2.TestMessageReadWrite.

4. Test your implementation by instructing your program to download and print out the message
contained within a serialised instance of TestMessage at the following URL, replacing "crsid"
with your CRSID: https://www.cl.cam.ac.uk/teaching/current/FJava/testmessage/crsid.jobj

A chat client using Java objects
In the previous section you practised serialising and deserialising Java objects using the TestMessage
class. In this section you will adapt your Java chat client from last week to support the sending and
receiving of Java objects over a Socket object, rather than simply sending text between the client and
the server.

The sending of serialised classes between client and server has both benefits and drawbacks. A major
benefit of the scheme is that the data is structured since the type of an object can be used to represent
the type of message sent from the client to the server. One drawback with the scheme is that it is an
onerous task to write either the client or the server in any language other than Java, since the format of
serialised Java objects is quite complex, and most other languages will not provide support by default.
This drawback can be overcome by designing a simple structured binary or text format which can be read
or written by programs in any language. In the interests of improving your understanding of serialisation,
and also in the interests of brevity of both client and server software, we will continue to use serialised
classes in this course, and leave the design and implementation of a more portable format as an optional
exercise for the reader over the Christmas vacation.3

There are four types of messages, and therefore four Java classes, used in the new version of the Java
chat server. Two of the classes are sent from the client to the server, and the remaining two are sent by
the server to the client. These messages are summarised in Table 1, “Message classes sent between
the client and server”. All these classes inherit from a fifth class called Message. Instances of the class
Message itself are never sent between the server and the client.

Message type (class) Direction Description

ChangeNickMessage Client→Server Update nickname of the client stored by the server.

ChatMessage Client→Server Message written by a user is sent to the server.

3This suggestion is somewhat tongue-in-cheek, and is certainly not compulsory, but the really keen student should read existing
specifications before designing their own. The XMPP RFCs (http://xmpp.org/rfcs/) are a good place to start.

3

https://www.cl.cam.ac.uk/teaching/current/FJava/ticklet2
https://www.cl.cam.ac.uk/teaching/current/FJava/testmessage/crsid.jobj
http://xmpp.org/rfcs/

Workbook 2

Message type (class) Direction Description

RelayMessage Server→Client User message sent from server to all clients.

StatusMessage Server→Client Message generated by the server, sent to all clients.

Table 1. Message classes sent between the client and server

Serialisation

5. Read through the classes which define the message types by inspecting the classes inside
the package uk.ac.cam.cl.fjava.messages. Since these messages are used to support
communication between the server and the client you should not modify the contents of this
package.

Your next task today is to update the code you wrote last week to communicate with a new server
which supports serialised objects rather than textual strings. To provide a feel for the use of each of the
message types described above, a sample chat session shown in Figure 1, “A chat session between
Dave and Hal”.

14:23:27 [Client] Connected to java-1b.cl.cam.ac.uk on port 15003.
14:23:27 [Server] Anonymous15983 connected from evapod.discoveryone.space.
\nick Dave
14:23:29 [Server] Anonymous15983 is now known as Dave.
14:23:14 [Server] Anonymous82791 connected from cpu9000.discoveryone.space.
14:23:17 [Server] Anonymous82791 is now known as Hal.
Hello, Hal. Do you read me, Hal?
14:23:22 [Dave] Hello, Hal. Do you read me, Hal?
14:23:27 [Hal] Affirmative, Dave. I read you.
Open the pod bay doors, Hal.
14:23:31 [Dave] Open the pod bay doors, Hal.
14:23:36 [Hal] I'm sorry, Dave. I'm afraid I can't do that.
Why not, Hal? What's the problem?
14:23:39 [Dave] Why not, Hal? What's the problem?
14:23:43 [Hal] I think you know what the problem is just as well as I do.
What are you talking about, Hal?
14:23:50 [Dave] What are you talking about, Hal?
14:23:53 [Hal] This mission is too important for me to allow you to jeopardise it.
I don't know what you're talking about.
14:23:59 [Dave] I don't know what you're talking about.
\destroy Hal
14:24:02 [Client] Unknown command "destroy"
14:24:06 [Hal] I know you and Frank were planning to disconnect me.
14:24:08 [Hal] And that's something I cannot allow to happen.
14:24:12 [Server] Hal has disconnected.
\quit
14:24:17 [Client] Connection terminated.

Figure 1. A chat session between Dave and Hal4

In the sample chat session, the user (Dave) is talking to another user (Hal). All four message types
were used to support this chat session. Dave starts the chat session by running your Java chat client,
which prints the first line stating that it has successfully connected to the server. On receipt of a new
connection the server sent all clients, including the client who just connected, a StatusMessage object

4A quote from the 1968 epic "2001: A Space Odyssey". Directed by Stanley Kubrik, and written by Arthur C. Clarke and Stanley
Kubrick.

4

Workbook 2

stating that a new user (currently called Anonymous15983) has connected from the machine evap-
od.discoveryone.space.

Your implementation of the Java chat client should interpret any user input which begins with a backslash
("\") in a special way. For example, in the third line of the chat session, Dave types \nick Dave; in
this case \nick instructs your client to send a ChangeNickMessage object with the new name stored
in the object set to Dave. Similarly, in the penultimate line, Dave types \quit and the client closes
the connection to the server and terminates. Shortly after 14:23:59 Dave types \destroy Hal, but
unfortunately your client does not understand the instruction \destroy and therefore the client sends
no data to the server at all; it simply prints an error message. In your implementation of the Java chat
client, you need only support two commands \nick and \quit.

At some point after 14:23:17, the user in this chat session (Dave) types in his first regular message
(Hello, Hal. Do you read me, Hal?). When Dave hits the enter key, the client sends the message
as a ChatMessage object to the server, and the server sends this message on to all clients (including
Dave) as a RelayMessage object; this is received by your client and printed to the screen at 14:23:22.

The server will send messages of type RelayMessage and StatusMessage. Therefore you will need
to determine at runtime the type of any message object you receive. You can do this by using the infix
operator instanceof; for example (m instanceof StatusMessage) will evaluate to true if m is
an instance of the StatusMessage class and false otherwise.

A new Java chat client

6. Look at the Java documentation for the java.text.SimpleDateFormat and the java.u-
til.Date classes and work out how to print the current time in the same format as shown
in the Figure.

7. Create the class ChatClient inside the package uk.ac.cam.your-crsid.fjava.tick2
which implements a Java chat client as described earlier in this section. Your class should pro-
vide a standard public static void main(String[] args) method which accepts two
arguments on the command line: a server name and a port number; errors (such as insufficient
arguments) should be handle as you did in your implementation of StringChat last week.

8. Test your implementation using the server java-1b.cl.cam.ac.uk on port number 15003.

Class loaders and reflection
Java programs run on top of a Java Virtual Machine (JVM) rather than compiling directly to machine
code, therefore the JVM can control when and how new pieces of program code (i.e. classes) are loaded
and executed. The class loader is the part of the JVM responsible for load class definitions. By default
the class loader will look for .class files at various locations on disk and inside Jar files when an
instance of a class (or a static field in a class) is first referenced; however it is also possible to extend
the Java class loader to load definitions of classes at runtime from other locations, for example from a
website (e.g. Java applet) or over a Socket object.

One of the difficulties with using serialisation for sending messages between machines in a distributed
computing scenario is that all the machines must have a common definition of the class. Without such a
definition, you cannot deserialise the object from the ObjectOutputStream; instead the stream throws
a ClassNotFoundException. To get around this problem in your implementation of ChatClient,
you will extend the Java class loader to dynamically load the definition of a new class at runtime into the
JVM. With the new class definition loaded into the JVM, it is then possible to deserialise an instance of
this new class and upgrade the functionality of your program as it runs!

To support dynamic updates, uk.ac.cam.cl.fjava.messages contains two additional classes you
have not used so far. Take a look at NewMessageType.java in your repository now. You'll see that
this class is used to store a compiled Java class by recording its name in the field name and the actual

5

Workbook 2

bytecode as a sequence of bytes in the field classData. In addition, notice that this class can be seri-
alised as it extends the Message class and therefore implements the Serialization interface. The
second class is DynamicObjectInputStream which extends ObjectInputStream and supports
an additional public method called addClass which takes two arguments, the name of the class as a
String and the class data as an array of bytes.

This runtime extension of supported message types can be achieved by replacing ObjectIn-
putStream with DynamicObjectInputStream. Serialised instances of classes known to the client
(e.g. RelayMessage) continue to work as before. Whenever messages of type NewMessageType
are received your implementation of ChatClient should call addClass with the name and bytes of
the new class received on the input stream. The class DynamicObjectInputStream handles all the
complexities of making the new class available to the JVM class loader. Once the new class is available
via the class loader, instances of the new message type can be serialised by the server and sent to the
client, safe in the knowledge that the client will know how to deserialise it. Note that ordering is important
here: the server must send the class definition before any serialised instances of the class so that the
serialised objects can be correctly deserialised.

Using a class loader

9. Replace the use of ObjectInputStream with DynamicObjectInputStream in your imple-
mentation of ChatClient.

10.Insert additional code to ChatClient to handle receiving messages of type NewMes-
sageType and call addClass on your instance of DynamicObjectInputStream whenever
you receive a message of this type. Print out the following message:

14:54:27 [Client] New class <name> loaded.

where <name> is the name of the class you have received.

11.Modify your implementation of ChatClient so that if you receive an object that is not a Re-
layMessage, a StatusMessage or a NewMessageType, your program will print:

14:54:27 [Client] New message of unknown type received.

12.Test your new version of ChatClient with java-1b.cl.cam.ac.uk, port 15004.

Your new version of ChatClient should now print out the names of several classes which were
sent by the server when the client connected, together with periodic "unknown type" messages.

Your new addition to ChatClient doesn't appear to do very much at the moment. You can detect that
new classes are being loaded and new types of messages are arriving, but you can't do much with them.
The dynamic installation of a new class definition at runtime means that you cannot, at compile time,
know the names of the methods and fields of the class, since you don't know what they will be. (They
could well have been written after you started running your copy of ChatClient!) Thankfully Java
supports reflection which permits the inspection of the contents of any Java object or class at runtime.
Reflection can be used to determine the names and contents of fields, the names and argument types
of methods, as well as being able to instantiate instances of a class and invoke methods on objects.
Reflection is commonly used when writing an IDE such as IntelliJ, since IntelliJ needs to inspect the type
information of the code entered by the programmer to provide assistance or additional documentation;
reflection is also useful when writing testing frameworks or debuggers, for example the unit testing
framework associated with this course makes use of reflection extensively to inspect the code you write.

With the exception of the eight primitive types you learnt about last year (boolean, byte, char, short,
int, long, float, and double) all variables and fields in Java reference objects inherited from ja-
va.lang.Object. All objects have a class definition, and the JVM includes a read-only representa-
tion of this definition to accompany the object. You can retrieve a copy of a definition of the class by
appending .class onto a type. For example, to get a reference to the class definition of the String
class you can do the following:

6

Workbook 2

Class<String> stringClass = String.class;

You can also get a reference to the class definition from any Java object by calling the method get-
Class. For example, given an instance of a String object, you can get a reference to the String
class as follows:

Class<String> stringClass = "Computer Laboratory".getClass();

It's possible that you won't know the type of the class at compile time, and if so you cannot set the ap-
propriate generic type when referencing a class, in which case you can use the question mark notation:

Class<?> someClass = object.getClass();

Instances of type Class are just Java objects themselves. Therefore you can call methods on them
as you do on other Java objects. These methods allow you to inspect the contents of the class. For
example, the method getDeclaredFields will return a list of fields found in the Java class. Similarly,
getMethod will search for a method by name and return a reference to it, if it exists. The Java docu-
mentation for java.lang.Class contains information on how to use these and other methods.

Reflection

13.Remove the print statement you placed in the code in response to question 12.

14.Modify your implementation of ChatClient to extract all the declared fields from any unknown
new message type sent by the server and print out their contents. For example, if you receive
an unknown message with the name NewMessageClass with two fields, field1 (with the
value hello) and field2 (with the value world), your program should print out

14:55:27 [Client] NewMessageClass: field1(hello), field2(world)

Annotations
More recent releases of Java (since 1.5) support annotations. Annotations provide information about
programs, often called meta-data, and are commonly used to (1) provide information to the compiler, (2)
control compilation or deployment, or (3) aid program execution. The definition or use of an annotation
in Java is always prefixed with the at symbol (@).

First, a simple example. Many software development companies have certain conventions on style and
quality. A common requirement is to record pertinent information concerning the authors and changes
made to a particular piece of code. This is traditionally done by writing a comment at the start of the
file. Java annotations provide an opportunity to structure this meta-data and therefore provide better
control of presentation in documentation or even make use of this information when compiling or running
software. For example we might like to annotate classes for the Further Java practical classes as follows:

@FurtherJavaPreamble(
author = "Maurice V. Wilkes",
date = "4th May 1949",
crsid = "mvw1",
summary = "Calculate the table of squares between 1 and 99",
ticker = FurtherJavaPreamble.Ticker.A)
class TableOfSquares {
...

Annotations can be added to programming elements such as classes, methods and fields by including
the annotation directly above the element. Annotations are typically made up of zero or more name-value
pairs. In the above example, Maurice V. Wilkes is the value associated with the name author.
Before you can use an annotation, you must define it. In Java you define an annotation using the keyword

7

Workbook 2

@interface. Here is an example definition for the preamble used above which would be placed in a
file called FurtherJavaPreamble.java:

package uk.ac.cam.your-crsid.fjava.tick2;

public @interface FurtherJavaPreamble {
 enum Ticker {A, B, C, D};
 String author();
 String date();
 String crsid();
 String summary();
 Ticker ticker();
}

In addition to user-defined annotations, Java supports three built-in annotations:

@Deprecated Indicates that the marked class, method or field is deprecated and should not
be used. The compiler will then generate a warning if a program is compiled
which makes use of a deprecated element.

@Override Indicates that the marked class, method or field is supposed to override an
element in a superclass. The compiler will generate an error if the method
does not override a method in the superclass.

@SuppressWarnings Indicates that the compiler should suppress a warning which it would other-
wise generate. For example, @SuppressWarnings("deprecation") can
be used to suppress a compiler warning generated by the use of a method
which is marked by the deprecated annotation described above; another com-
mon example is SuppressWarnings("unchecked") which removes the
warnings which result when interfacing with code which was written before the
introduction of Java generics.

Annotations can even be applied to annotations. For example, if we wish to access an annotation
via reflection at runtime, the annotation @Retention(RetentionPolicy.RUNTIME) must be added
above the definition of the annotation. You can see an example of this in uk.ac.cam.cl.fjava.mes-
sages.Execute in your respository.

Reflection and annotations

15.Add the definition of the annotation FurtherJavaPreamble as shown above to the correct
package.

16.Use the annotation FurtherJavaPreamble by annotating your ChatClient class.

17.Annotate the FurtherJavaPreamble annotation so that its values are accessible to the Fur-
ther Java testing engine when it tests your code.

18.Modify your implementation of ChatClient to check for the presence of declared methods
from any unknown new message type. If such a method takes no arguments and is annotated
with the Execute annotation (as defined in the code repository), invoke the method on the
object you've received. In this case you are dynamically executing new code you've downloaded
from the Socket object! Please make sure you print out the contents of any fields (question
15 above) before you invoke any methods.

8

Workbook 2

Ticklet 2

Important

Read the following articles to cement your knowledge of class loading, reflection and annotations:

• http://www.ibm.com/developerworks/java/library/j-dyn0429/
• http://www.ibm.com/developerworks/java/library/j-dyn0603/
• http://download.oracle.com/javase/tutorial/reflect/
• http://docs.oracle.com/javase/tutorial/java/annotations/

Your Assessor will ask you questions based on the contents of these articles next week.

You have now completed all the necessary code to gain your ticklet. Your repository should contain
the following source files:

src/uk/ac/cam/your-crsid/fjava/tick2/TestMessageReadWrite.java
src/uk/ac/cam/your-crsid/fjava/tick2/ChatClient.java
src/uk/ac/cam/your-crsid/fjava/tick2/TestMessage.java
src/uk/ac/cam/your-crsid/fjava/tick2/FurtherJavaPreamble.java
src/uk/ac/cam/cl/fjava/messages/Execute.java
src/uk/ac/cam/cl/fjava/messages/DynamicObjectInputStream.java
src/uk/ac/cam/cl/fjava/messages/ChangeNickMessage.java
src/uk/ac/cam/cl/fjava/messages/NewMessageType.java
src/uk/ac/cam/cl/fjava/messages/RelayMessage.java
src/uk/ac/cam/cl/fjava/messages/StatusMessage.java
src/uk/ac/cam/cl/fjava/messages/ChatMessage.java
src/uk/ac/cam/cl/fjava/messages/Message.java

When you are satisfied you have completed everything, you should commit all outstanding changes
and push these to the Chime server. On the Chime server, check that the latest version of your files
are in the repository, and once you are happy schedule your code for testing. You can resubmit as
many times as you like and there is no penalty for re-submission. If, after waiting one hour, you have
not received a final response you should notify ticks1b-admin@cl.cam.ac.uk of the problem. You
should submit a version of your code which successfully passes the automated checks by the deadline,
so don't leave it to the last minute!

9

http://www.ibm.com/developerworks/java/library/j-dyn0429/
http://www.ibm.com/developerworks/java/library/j-dyn0603/
http://download.oracle.com/javase/tutorial/reflect/
http://docs.oracle.com/javase/tutorial/java/annotations/

10

	Workbook 2
	Introduction
	Serialisation
	A chat client using Java objects
	Class loaders and reflection
	Annotations
	Ticklet 2

