
The Process Model (1)
L41 Lecture 3, Part 1: The Process Model

Dr Robert N. M. Watson
2020-2021



This time: The process model
• The process model and its evolution
• Brutal (re, pre)-introduction to VM
• Where do programs come from?

2

Lecture 3, Part 1

Lecture 3, Part 2



The Process Model: 1970s foundations

• Saltzer and Schroeder, The 
Protection of Information in 
Computer Systems, SOSP’73, 
October 1973. (CACM 1974)
• Multics process model

• ‘Program in execution’
• Process isolation bridged by 

controlled communication via 
supervisor (kernel)

• Hardware foundations
• Supervisor mode
• Memory segmentation
• Trap mechanism

• Hardware protection rings 
(Schroeder and Saltzer, 1972)

3



The process model: today - concept
• ‘Program in execution’
• Process ≈ address space
• Threads execute code
• Unique instance of global variables, etc.
• Isolated failure domain

• Unit of resource accounting
• Open files, memory, …

• Unit of privilege
• Process credentials – UID, OS privileges, MAC, RBAC, ...
• NB: Increasing support for per-thread credentials

• Recently: Inverted App-OS trust model
• Third-party applications cannot trust the OS ...
• E.g., Trustzone, SGX, ...

4



• Hardware foundations for isolation
• Rings control MMU, I/O, etc.
• MMU to construct mutually exclusive virtual address spaces
• Context switched threads of control

• Hardware foundations for controlled communication
• Interaction via traps: system calls, page faults, ...
• MMU to construct shared memory

5

Kernel 
address 

space

Kernel

P1 P2

…

User 
address 

space

Kernel-
accessible 
address 
space

✗

Kernel 
address 

space

Kernel

P1 P2

…

User 
address 

space

Kernel-
accessible 
address 
space

✗

T1 T2 T5

T1 T2 T5 T6T4

Kernel 
address 

space

Kernel

P1 P2

…

User 
address 

space

Kernel-
accessible 
address 
space

✗

T1 T2 T5

T1 T2 T5 T6T4

Hypervisor

Hypervisor 
address 
space

Tn Tm

Kernel 
address 

space

Kernel

P1 P2

…

User 
address 

space

Kernel-
accessible 
address 
space

✗

T1 T2 T5

T1 T2 T5 T6T4

Hypervisor

Hypervisor 
address 
space

Tn Tm

Pi Pj

…

User 
address 
space

The process model today:
isolation and controlled communication



The UNIX process life cycle

 � fork()

stack

/bin/sh

heap

� execve(“/bin/dd”)

PID: 710

stack

/bin/sh

heap

PID: 716

stack

/bin/dd

heap

� wait4()

� exit()

❌

• fork()
• Child inherits address space 

and other properties
• Program prepares process 

for new binary (e.g., stdio)
• Copy-on-Write (COW)

• execve()
• Kernel replaces address 

space, loads new binary, 
starts execution

• exit()
• Process can terminate self 

(or be terminated)

• wait4() (et al)
• Parent can await exit status

• NB: posix_spawn()
6



Evolution of the process model

1980s 1990s

/bin/dd

heap arena2

libc

/bin/dd /bin/dd

libc

rtldrtld

heap arena1

2000s

/bin/dd

libc

rtld

stack

heap

stack

heap heap

stack1

stack1

stack1

stack1

• 1980s: Code, heap, 
and stack
• 1990s: Dynamic 

linking, threading
• 2000s: Scalable 

memory allocators 
implement multiple 
arenas (e.g., as in 
jemalloc)
• Co-evolution with 

virtual memory (VM) 
research
• Acetta, et al: Mach

microkernel (1986)
• Navarro, et al: 
Superpages (2002)

7


