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Prerequisites: Undergraduate operating-systems course; please see below for further details

Structure: 6x 1-hour lectures, 3x 20-minute lab lecturelets, 3x 1-hour Q&A sessions, additional lab demonstra-
tions and mini-supervisions

1 Aims

Systems research refers to the study of a broad range of behaviours arising from complex system design, includ-
ing low-level operating systems, resource sharing and scheduling, interactions between hardware and software,
network-protocol design and implementation, separation of mutually distrusting parties on a common platform,
and control of distributed-system behaviours such as concurrency and data replication. This module will:

1. Teach systems-analysis methodology and practice through tracing and performance profiling experiments;

2. Expose students to real-world systems artefacts such as the OS scheduler, Inter-Process Communication
(IPC), and network stack, and consider their hardware-software interactions with storage devices and CPUs;

3. L41 only: Develop scientific writing skills through a series of laboratory reports; and

4. L41 only: Assign a selection of original research papers to give insight into potential research topics and
approaches.

The teaching style will blend lectures, readings, and hands-on labs that teach methodology, underlying design
principles, common implementation approaches, and practical skills. Students will be taught about (and assessed
via) a series of lab-report-style assignments based on in- and out-of-classroom practical work. L41 students will
complete and submit written lab reports. Part II students will complete structured assignments based on similar
experimental exercises. The systems studied are real, and all wires will be live.

2 Prerequisites

It is strongly recommended that students:

1. Have previously (and successfully) completed an undergraduate operating-system course with practical
content — or have equivalent experience through project or open-source work.

2. Have reasonable comfort with the C and Python programming languages. C is the primary implementation
language for systems that we will analyse, requiring reading fluency; userspace C programs will also be
read (and may be extended) as part of lab exercises. Python will be used for data collection and processing,
and provides numerous useful tools for analysis and presentation (e.g., matplotlib).

Students without a Python background may wish to complete an online Python tutorial prior to term, as the
language will be used in data collection, analysis, and presentation from the first lab.



3. Review an undergraduate OS textbook (such as Silberschatz, et al.) to ensure that basic OS concepts such
as the process model, Inter-Process Communication, filesystems, and virtual memory are familiar.

4. Be comfortable with the UNIX command-line environment including compiler/debugging tools. Students
without this background may wish to sit in on the undergraduate UNIX Tools lecture series in Michaelmas.

3 Lectures, Labs, Lab Reports, and Lab Assignments

The various elements of the module (lectures, readings, labs, and lab reports) are intended to be complementary to
one another, rather than repetitive, introducing different aspects of operating-system research, design, implemen-
tation, experimentation, and analysis.

Submodule 1: Introduction to kernels and tracing/analysis The purpose of this submodule is to introduce stu-
dents to the structure of a contemporary operating-system kernel through tracing and profiling.

L41 students will write their first lab report, which will receive feedback from the instructor and contribute
10% of the overall mark.

Part II students will complete their first homework assignment, which will receive feedback from the in-
structor and contribute 10% of the overall mark.

Lecture 1: Introduction: OSes, Systems Research, tracing and L41 (1h)

The first lecture reintroduces the idea of an operating system, its role, contemporary operating-system struc-
ture, and current operating-system research areas and venues. We will also discuss how (and why) operating
systems are taught, and the approach taken in this module.

Lecture 2: Kernels and Tracing (1h)

The second lecture continues our exploration of OS structure. We look at the goals, implementation, poten-
tial uses of DTrace as a means of kernel instrumentation and tracing, and the probe effect. We also consider
the high-level structure of a kernel (is it just a complex C program?) and its execution model.

Lab 1: Getting Started with Kernel Tracing - I/O

The first lab uses an exploration of POSIX file I/O to motivate learning about DTrace, user-kernel interac-
tions, and performance analysis.

Deliverable: Lab Report 1 or Lab Assignment 1 - POSIX I/0 Performance Analysis

Submodule 2: The Process Model This submodule introduces students to concrete implications of the UNIX
process model: processes and threads in both userspace and kernelspace, the hardware foundations for
kernel and process isolation, system calls, and traps. Students will complete their second lab report or
assignment, which will contribute 45% of the overall mark.

Lecture 3: The Process Model (1h) The second lecture looks at the evolution of the process model, from
its 1960s origins to the 1990s deployment of ELF, dynamic linking, and multithreading in UNIX. We take
an initial dive into virtual memory, as well as the hardware foundations for system calls and traps.

Lectuer 4: The Process Model (2) (1h) We continue our discussion of system calls and traps, considering
their semantics, the system-call table and surrounding software stack, and their (desirable) security proper-
ties. We also begin to explore the implied (and very real) cost of the process model itself, revisiting virtual
memory through insights from the Mach project.

Lab 2: Kernel and microarchitectural implications of IPC The second lab consists of two parts:

1. The first part uses DTrace to understand the dynamics of local Inter-Process Communication: kernel
memory allocation, copying, locking, scheduling, and message-based IPC. Of particular concern will
be building an understanding of basic IPC functionality, but also of how it interacts with buffering and
the scheduler to affect IPC latency and throughput.

2. The second part introduces a new performance analysis mechanism, hardware performance counters,
which allow direct monitoring of low-level architectural and micro-architectural details of perfor-
mance. Using this tool, we will revisit existing benchmarks to explain the use of CPU time by the
application and kernel.



Deliverable: Lab Report 2 or Lab Assignment 2 - Inter-Process Communication Performance

Submodule 3: TCP/IP This submodule introduces a contemporary network stack, with a particular interest in

the TCP protocol. Labs will consider both the behaviour of TCP connections, exploring the TCP state
machine, socket-buffer interactions with flow control, and congestion control. Students will use Dummynet
to simulate network latency and explore how TCP slow start and congestion avoidance respond to network
conditions. Students will complete their second lab report or assignment, which will contribute 45% of the
overall mark.

Lecture 4: The Network Stack (1) (1h) The third lecture introduces the history and role of networking in
OS design, with a focus on the Berkeley Sockets API and TCP/IP stack. We explore the flow of memory both
from the perspective of hardware (NIC, DMA, memory, caches, and processor) and software (applications,
buffering, the protocol stack, memory allocator, and device driver). We consider the input, output, and
forwarding paths, with an interest in dispatch models and their interaction with multiprocessor systems.
Finally, we look at two recent pieces of network-stack research, Netmap and network-stack specialisation.

Lecture 5: The Network Stack (1) (1h) The final lecture explores TCP protocol and implementation
behaviour in greater detail. We consider the objectives and evolution of TCP, especially with respect to
congestion control, performance, and denial-of-service (DoS) resistance. We also explore the evolution of
in-kernel data structures in network-stack scalability. Research topics include the development of congestion
control and differing models for network-stack multiprocessing. Finally, we consider how changes in NIC,
bus, and processor hardware have impacted (and continue to affect) the implementation of TCP.

Lab 3: The TCP State Machine + TCP Latency and Bandwidth The second lab consists of two parts:

1. The first part asks students to explore the TCP state machine in practice: how it is triggered by both
API and network-level events. An early measurement of the impacts of network latency on TCP is
performed.

2. The second part continues our investigation of the effects of network latency on TCP performance, and
especially its interactions with congestion-control slow start and steady state. We also explore how
socket-buffer configuration affects flow control, and the combined end effects on available bandwidth.

Deliverable: Lab Report 3 - The TCP State Machine, Latency, and Bandwidth (L41 only; optional
Part II delivery)

4 Objectives

On completion of this module, students should:

Have an understanding of high-level OS kernel structure.

Gained insight into hardware-software interactions for compute and I/O.
Have practical skills in system tracing and performance analysis.

Have learned how to perform systems-style performance evaluations.

L41 only: Have been exposed to several current topics in systems research.

L41 only: have developed scientific writing skills.

5 Coursework

The nature of the coursework depends on which version of the module or unit is being taken:

ACS/Part I1I L41: Advanced Operating Systems Students taking the masters-level module will write and sub-

mit three lab reports to be marked by the instructor. The first report is a ‘practice run’ intended to help
students develop analysis techniques and writing styles, and contributes 10% to the final mark. The remain-
ing two reports are marked and assessed, each constituting 45% of the final mark.



Part I1: Advanced Operating Systems Students taking the undergraduate-level unit of assessment will complete
two required homework assignments to be marked by the instructor. The first assignment is a ‘practice run’
intended to help students develop data collection and analysis skills, and contributes 10% to the final mark.
The remaining assignment is marked and assessed, constituting 90% of the final mark.

Students may optionally complete a third lab assignment, corresponding to the third ACS/Part III L41 lab
report. This lab assignment will neither be marked nor assessed.

6 Practical work

Five online lab exercises, accompanied by short lab lecturelets and Q&A sessions, will ask students to develop
and use skills in tracing and performance analysis as applied to real-world systems artefacts. Results from these
labs will be the primary input to lab reports and assignments.

Please see the handout, Advanced Operating Systems: Lab Setup, for details on the lab platform. Typical labs
will involve using tracing and profiling to characterise specific behaviours (e.g., file I/O in terms of system calls
and traps) to diagnose application-level behaviours (e.g., with respect to effective use of TCP sockets for bulk
data transport). Students may find it useful to work in pairs within the lab, but must prepare lab assignments and
reports independently.

Students may seek support for lab activities via the Advanced Operating Systems Slack, as well as in scheduled
demonstration sessions.

7 Assessment

Please see the handout, Advanced Operating Systems: Lab Reports and Assignments, for a description of the L41
lab-report format and its assessment, as well as Part II lab-assignment expectations.

8 Recommended reading

Please see the handout, Advanced Operating Systems: Readings, for a list of module texts, research readings, and
supplemental texts.



