
L95: Natural Language Syntax and Parsing
6) N-best Parsing

Paula Buttery

Dept of Computer Science & Technology, University of Cambridge

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 1 / 16



Reminder...

We have looked at the following algorithms:

CKY

Shift-Reduce

A*

But so far we have discussed finding the best parse... what if we want to
find the n-best parses?

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 2 / 16



Recall that full CKY is optimal and exhaustive

For the best parse we keep the most probable partial derivation for every
non-terminal at each cell

1 2 3

0

1
VV 0.2

(can)

VM1.0
(can)

. S0.5∗1.0∗0.8∗0.9∗1.0=0.36
([0,1]NP ,[1,3]VP )NP0.5

(they)

VP0.2∗0.5∗0.1=0.01
1→([1,2]VV ,[2,3]NP )

VP1.0∗0.8∗0.9=0.72
2→([1,2]VM ,[2,3]VV )

VP1.0∗0.8∗0.9=0.72
([1,2]VM ,[2,3]VV )

2 VV 0.8
(fish)

NP0.5
(fish)

they can fish

N = {S, NP, VP, VV , VM}
Σ = {can, fish, they}
S = S
P = {S → NP VP 1.0

VP → VM VV 0.9
VP → VV NP 0.1
VV → can 0.2 | fish 0.8
VM → can 1.0
NP → they 0.5 | fish 0.5 }

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 3 / 16



Recall that full CKY is optimal and exhaustive

For the best parse we keep the most probable partial derivation for every
non-terminal at each cell

1 2 3

0

1
VV 0.2

(can)

VM1.0
(can)

. S0.5∗1.0∗0.8∗0.9∗1.0=0.36
([0,1]NP ,[1,3]VP )NP0.5

(they)

VP0.2∗0.5∗0.1=0.01
1→([1,2]VV ,[2,3]NP )

VP1.0∗0.8∗0.9=0.72
2→([1,2]VM ,[2,3]VV )

VP1.0∗0.8∗0.9=0.72
([1,2]VM ,[2,3]VV )

2 VV 0.8
(fish)

NP0.5
(fish)

they can fish

N = {S, NP, VP, VV , VM}
Σ = {can, fish, they}
S = S
P = {S → NP VP 1.0

VP → VM VV 0.9
VP → VV NP 0.1
VV → can 0.2 | fish 0.8
VM → can 1.0
NP → they 0.5 | fish 0.5 }

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 3 / 16



Recall that full CKY is optimal and exhaustive

For the best parse we keep the most probable partial derivation for every
non-terminal at each cell

1 2 3

0

1
VV 0.2

(can)

VM1.0
(can)

. S0.5∗1.0∗0.8∗0.9∗1.0=0.36
([0,1]NP ,[1,3]VP )NP0.5

(they)

VP0.2∗0.5∗0.1=0.01
1→([1,2]VV ,[2,3]NP )

VP1.0∗0.8∗0.9=0.72
2→([1,2]VM ,[2,3]VV )

VP1.0∗0.8∗0.9=0.72
([1,2]VM ,[2,3]VV )

2 VV 0.8
(fish)

NP0.5
(fish)

they can fish

N = {S, NP, VP, VV , VM}
Σ = {can, fish, they}
S = S
P = {S → NP VP 1.0

VP → VM VV 0.9
VP → VV NP 0.1
VV → can 0.2 | fish 0.8
VM → can 1.0
NP → they 0.5 | fish 0.5 }

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 3 / 16



Recall that full CKY is optimal and exhaustive

For the best parse we keep the most probable partial derivation for every
non-terminal at each cell

1 2 3

0

1
VV 0.2

(can)

VM1.0
(can)

. S0.5∗1.0∗0.8∗0.9∗1.0=0.36
([0,1]NP ,[1,3]VP )NP0.5

(they)

VP0.2∗0.5∗0.1=0.01
1→([1,2]VV ,[2,3]NP )

VP1.0∗0.8∗0.9=0.72
2→([1,2]VM ,[2,3]VV )

VP1.0∗0.8∗0.9=0.72
([1,2]VM ,[2,3]VV )

2 VV 0.8
(fish)

NP0.5
(fish)

they can fish

N = {S, NP, VP, VV , VM}
Σ = {can, fish, they}
S = S
P = {S → NP VP 1.0

VP → VM VV 0.9
VP → VV NP 0.1
VV → can 0.2 | fish 0.8
VM → can 1.0
NP → they 0.5 | fish 0.5 }

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 3 / 16



Recall that full CKY is optimal and exhaustive

For the best parse we keep the most probable partial derivation for every
non-terminal at each cell

1 2 3

0

1
VV 0.2

(can)

VM1.0
(can)

. S0.5∗1.0∗0.8∗0.9∗1.0=0.36
([0,1]NP ,[1,3]VP )NP0.5

(they)

VP0.2∗0.5∗0.1=0.01
1→([1,2]VV ,[2,3]NP )

VP1.0∗0.8∗0.9=0.72
2→([1,2]VM ,[2,3]VV )

VP1.0∗0.8∗0.9=0.72
([1,2]VM ,[2,3]VV )

2 VV 0.8
(fish)

NP0.5
(fish)

they can fish

N = {S, NP, VP, VV , VM}
Σ = {can, fish, they}
S = S
P = {S → NP VP 1.0

VP → VM VV 0.9
VP → VV NP 0.1
VV → can 0.2 | fish 0.8
VM → can 1.0
NP → they 0.5 | fish 0.5 }

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 3 / 16



Recall that full CKY is optimal and exhaustive

For the best parse we keep the most probable partial derivation for every
non-terminal at each cell

1 2 3

0

1
VV 0.2

(can)

VM1.0
(can)

. S0.5∗1.0∗0.8∗0.9∗1.0=0.36
([0,1]NP ,[1,3]VP )NP0.5

(they)

VP0.2∗0.5∗0.1=0.01
1→([1,2]VV ,[2,3]NP )

VP1.0∗0.8∗0.9=0.72
2→([1,2]VM ,[2,3]VV )

VP1.0∗0.8∗0.9=0.72
([1,2]VM ,[2,3]VV )

2 VV 0.8
(fish)

NP0.5
(fish)

they can fish

N = {S, NP, VP, VV , VM}
Σ = {can, fish, they}
S = S
P = {S → NP VP 1.0

VP → VM VV 0.9
VP → VV NP 0.1
VV → can 0.2 | fish 0.8
VM → can 1.0
NP → they 0.5 | fish 0.5 }

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 3 / 16



Recall that full CKY is optimal and exhaustive

For the best parse we keep the most probable partial derivation for every
non-terminal at each cell

1 2 3

0

1
VV 0.2

(can)

VM1.0
(can)

. S0.5∗1.0∗0.8∗0.9∗1.0=0.36
([0,1]NP ,[1,3]VP )NP0.5

(they)

VP0.2∗0.5∗0.1=0.01
1→([1,2]VV ,[2,3]NP )

VP1.0∗0.8∗0.9=0.72
2→([1,2]VM ,[2,3]VV )

VP1.0∗0.8∗0.9=0.72
([1,2]VM ,[2,3]VV )

2 VV 0.8
(fish)

NP0.5
(fish)

they can fish

N = {S, NP, VP, VV , VM}
Σ = {can, fish, they}
S = S
P = {S → NP VP 1.0

VP → VM VV 0.9
VP → VV NP 0.1
VV → can 0.2 | fish 0.8
VM → can 1.0
NP → they 0.5 | fish 0.5 }

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 3 / 16



Recall that full CKY is optimal and exhaustive

For the best parse we keep the most probable partial derivation for every
non-terminal at each cell

1 2 3

0

1
VV 0.2

(can)

VM1.0
(can)

. S0.5∗1.0∗0.8∗0.9∗1.0=0.36
([0,1]NP ,[1,3]VP )NP0.5

(they)

VP0.2∗0.5∗0.1=0.01
1→([1,2]VV ,[2,3]NP )

VP1.0∗0.8∗0.9=0.72
2→([1,2]VM ,[2,3]VV )

VP1.0∗0.8∗0.9=0.72
([1,2]VM ,[2,3]VV )

2 VV 0.8
(fish)

NP0.5
(fish)

they can fish

N = {S, NP, VP, VV , VM}
Σ = {can, fish, they}
S = S
P = {S → NP VP 1.0

VP → VM VV 0.9
VP → VV NP 0.1
VV → can 0.2 | fish 0.8
VM → can 1.0
NP → they 0.5 | fish 0.5 }

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 3 / 16



For n-best in CKY discard based on beam

An example beam strategy:

Discard partial derivations based on a score rather than their
non-terminal type.

Discard all partial derivations whose score is less than α times the
maximum score for that cell.

Practically, we apply beam dynamically at each cell.

Typical value for α is 0.0001

To find n-best, select n most probable S parses from top right cell.

Strategy can cause some loss of accuracy.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 4 / 16



For n-best in CKY discard based on beam

An example beam strategy:

Discard partial derivations based on a score rather than their
non-terminal type.

Discard all partial derivations whose score is less than α times the
maximum score for that cell.

Practically, we apply beam dynamically at each cell.

Typical value for α is 0.0001

To find n-best, select n most probable S parses from top right cell.

Strategy can cause some loss of accuracy.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 4 / 16



For n-best in CKY discard based on beam

An example beam strategy:

Discard partial derivations based on a score rather than their
non-terminal type.

Discard all partial derivations whose score is less than α times the
maximum score for that cell.

Practically, we apply beam dynamically at each cell.

Typical value for α is 0.0001

To find n-best, select n most probable S parses from top right cell.

Strategy can cause some loss of accuracy.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 4 / 16



For n-best in CKY discard based on beam

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 5 / 16



For n-best in CKY discard based on n-best lists

Alternatively, exploit fact that 2nd best parse will differ from best
parse by just 1 of its parsing decisions

First find the best parse, then find the second-best parse, then the
third-best, and so on...

Practically, at each cell keep an ordered list of n-best partial
derivations, combine with n-best lists for adjacent partial
derivations until you have exactly n to store in the new cell

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 6 / 16



For n-best in CKY discard based on n-best lists

Alternatively, exploit fact that 2nd best parse will differ from best
parse by just 1 of its parsing decisions

First find the best parse, then find the second-best parse, then the
third-best, and so on...

Practically, at each cell keep an ordered list of n-best partial
derivations, combine with n-best lists for adjacent partial
derivations until you have exactly n to store in the new cell

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 6 / 16



Coarse-to-fine n-best strategies, Charniak

Charniak parser adopts a coarse-to-fine parsing strategy:

1 produce a parse forest using simple version of the grammar
i.e. find possible parses using coarse-grained non-terminals, e.g. VP

2 refine most promising of coarse-grained parses using complex grammar
i.e with feature-based, lexicalised non-terminals, e.g. VP[buys/VBZ ]

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 7 / 16



Coarse-to-fine n-best strategies, Charniak

Coarse-grained step can be efficiently parsed using e.g. CKY

But the simple grammar ignores contextual features so best parse
might not be accurate

Output a pruned packed parse forest for the parses generated by
the simple grammar (using a beam threshold)

Evaluate remaining parses with complex grammar (i.e. each
coarse-grained state is split into several fine-grained states)

To create n-best parses, fine-grained step keeps the n-best
possibilities at each cell

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 8 / 16



Discriminative reranking can recover a best parse

Use parser to produce n-best list of parses

Define an initial ranking of these parses based on original parse score

Use second model (e.g. max-ent) to improve the initial ranking
(using additional features)

Collins re-ranking:
http://www.aclweb.org/anthology/J05-1003

Charniak re-ranking:
https://dl.acm.org/citation.cfm?id=1219862

Provides small improvements parseval metrics on Penn Treebank

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 9 / 16

http://www.aclweb.org/anthology/J05-1003
https://dl.acm.org/citation.cfm?id=1219862


Reminder: the shift-reduce dependency parser

Example of shift-reduce parse for the string bacdfe

Actions selected from a classifier based on the features of the
configuration of items on the buffer and stack

b a c d f e

stack buffer action record
bacdfe

shift
b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 16



Reminder: the shift-reduce dependency parser

Example of shift-reduce parse for the string bacdfe

Actions selected from a classifier based on the features of the
configuration of items on the buffer and stack

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 16



Reminder: the shift-reduce dependency parser

Example of shift-reduce parse for the string bacdfe

Actions selected from a classifier based on the features of the
configuration of items on the buffer and stack

b a c d f e

stack buffer action record
bacdfe shift

b acdfe

shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 16



Reminder: the shift-reduce dependency parser

Example of shift-reduce parse for the string bacdfe

Actions selected from a classifier based on the features of the
configuration of items on the buffer and stack

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift

ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 16



Reminder: the shift-reduce dependency parser

Example of shift-reduce parse for the string bacdfe

Actions selected from a classifier based on the features of the
configuration of items on the buffer and stack

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe

left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 16



Reminder: the shift-reduce dependency parser

Example of shift-reduce parse for the string bacdfe

Actions selected from a classifier based on the features of the
configuration of items on the buffer and stack

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b

a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 16



Reminder: the shift-reduce dependency parser

Example of shift-reduce parse for the string bacdfe

Actions selected from a classifier based on the features of the
configuration of items on the buffer and stack

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe

shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 16



Reminder: the shift-reduce dependency parser

Example of shift-reduce parse for the string bacdfe

Actions selected from a classifier based on the features of the
configuration of items on the buffer and stack

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift

ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 16



Reminder: the shift-reduce dependency parser

Example of shift-reduce parse for the string bacdfe

Actions selected from a classifier based on the features of the
configuration of items on the buffer and stack

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe

right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 16



Reminder: the shift-reduce dependency parser

Example of shift-reduce parse for the string bacdfe

Actions selected from a classifier based on the features of the
configuration of items on the buffer and stack

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c

a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 16



Reminder: the shift-reduce dependency parser

Example of shift-reduce parse for the string bacdfe

Actions selected from a classifier based on the features of the
configuration of items on the buffer and stack

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe

shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 16



Reminder: the shift-reduce dependency parser

Example of shift-reduce parse for the string bacdfe

Actions selected from a classifier based on the features of the
configuration of items on the buffer and stack

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift

ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 16



Reminder: the shift-reduce dependency parser

Example of shift-reduce parse for the string bacdfe

Actions selected from a classifier based on the features of the
configuration of items on the buffer and stack

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe

shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 16



Reminder: the shift-reduce dependency parser

Example of shift-reduce parse for the string bacdfe

Actions selected from a classifier based on the features of the
configuration of items on the buffer and stack

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift

adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 16



Reminder: the shift-reduce dependency parser

Example of shift-reduce parse for the string bacdfe

Actions selected from a classifier based on the features of the
configuration of items on the buffer and stack

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e

shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 16



Reminder: the shift-reduce dependency parser

Example of shift-reduce parse for the string bacdfe

Actions selected from a classifier based on the features of the
configuration of items on the buffer and stack

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift

adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 16



Reminder: the shift-reduce dependency parser

Example of shift-reduce parse for the string bacdfe

Actions selected from a classifier based on the features of the
configuration of items on the buffer and stack

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe

left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 16



Reminder: the shift-reduce dependency parser

Example of shift-reduce parse for the string bacdfe

Actions selected from a classifier based on the features of the
configuration of items on the buffer and stack

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f

ade right-arc d → e
ad right-arc a → d
a terminate root → a

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 16



Reminder: the shift-reduce dependency parser

Example of shift-reduce parse for the string bacdfe

Actions selected from a classifier based on the features of the
configuration of items on the buffer and stack

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade

right-arc d → e
ad right-arc a → d
a terminate root → a

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 16



Reminder: the shift-reduce dependency parser

Example of shift-reduce parse for the string bacdfe

Actions selected from a classifier based on the features of the
configuration of items on the buffer and stack

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e

ad right-arc a → d
a terminate root → a

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 16



Reminder: the shift-reduce dependency parser

Example of shift-reduce parse for the string bacdfe

Actions selected from a classifier based on the features of the
configuration of items on the buffer and stack

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad

right-arc a → d
a terminate root → a

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 16



Reminder: the shift-reduce dependency parser

Example of shift-reduce parse for the string bacdfe

Actions selected from a classifier based on the features of the
configuration of items on the buffer and stack

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d

a terminate root → a

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 16



Reminder: the shift-reduce dependency parser

Example of shift-reduce parse for the string bacdfe

Actions selected from a classifier based on the features of the
configuration of items on the buffer and stack

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a

terminate root → a

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 16



Reminder: the shift-reduce dependency parser

Example of shift-reduce parse for the string bacdfe

Actions selected from a classifier based on the features of the
configuration of items on the buffer and stack

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 16



The shift-reduce parser is greedy

Shift-reduce parser makes a single pass through the sentence making
greedy decisions

Makes the algorithm very efficient, O(n) for sentence length n

Stuck with early decisions no matter how much later evidence
contradicts them

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 16



Retrieve n-best shift-reduce parses using agenda

To get the n-best parses we need to systematically explore and score
alternative action sequences

This gives rise to an exponential number of potential sequences

Solution is to score and filter possible sequences to within a fixed
beam size

Use an agenda to store possible buffer/stack configurations along
with a score of the actions that led to that configuration

Apply all actions to top item on the agenda and then score the
resulting configurations

Add new configurations to the agenda until the beam is full and then
replace lowest scoring items with higher scoring ones

Continue as long as non-terminating configurations exist on the
agenda (guarantees best parse will be found)

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 12 / 16



Retrieve n-best shift-reduce parses using agenda

To get the n-best parses we need to systematically explore and score
alternative action sequences

This gives rise to an exponential number of potential sequences

Solution is to score and filter possible sequences to within a fixed
beam size

Use an agenda to store possible buffer/stack configurations along
with a score of the actions that led to that configuration

Apply all actions to top item on the agenda and then score the
resulting configurations

Add new configurations to the agenda until the beam is full and then
replace lowest scoring items with higher scoring ones

Continue as long as non-terminating configurations exist on the
agenda (guarantees best parse will be found)

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 12 / 16



Score reflects action-sequences rather than actions

In the greedy algorithm the classifier acted as an oracle — actions
are scored

With the beam search we want to score action sequences — action
sequences are scored

Notice that beam here is constrained by the size of the agenda

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 13 / 16



N-best dependency parse algorithm

13.5 • GRAPH-BASED DEPENDENCY PARSING 17

With a beam search we are now searching through the space of decision se-
quences, so it makes sense to base the score for a configuration on its entire history.
More specifically, we can define the score for a new configuration as the score of its
predecessor plus the score of the operator used to produce it.

ConfigScore(c0) = 0.0
ConfigScore(ci) = ConfigScore(ci�1)+Score(ti,ci�1)

This score is used both in filtering the agenda and in selecting the final answer.
The new beam search version of transition-based parsing is given in Fig. 13.11.

function DEPENDENCYBEAMPARSE(words, width) returns dependency tree

state {[root], [words], [], 0.0} ;initial configuration
agenda hstatei; initial agenda

while agenda contains non-final states
newagenda hi
for each state 2 agenda do

for all {t | t 2 VALIDOPERATORS(state)} do
child APPLY(t, state)
newagenda ADDTOBEAM(child, newagenda, width)

agenda newagenda
return BESTOF(agenda)

function ADDTOBEAM(state, agenda, width) returns updated agenda

if LENGTH(agenda) < width then
agenda INSERT(state, agenda)

else if SCORE(state) > SCORE(WORSTOF(agenda))
agenda REMOVE(WORSTOF(agenda))
agenda INSERT(state, agenda)

return agenda

Figure 13.11 Beam search applied to transition-based dependency parsing.

13.5 Graph-Based Dependency Parsing

Graph-based approaches to dependency parsing search through the space of possible
trees for a given sentence for a tree (or trees) that maximize some score. These
methods encode the search space as directed graphs and employ methods drawn
from graph theory to search the space for optimal solutions. More formally, given a
sentence S we’re looking for the best dependency tree in Gs, the space of all possible
trees for that sentence, that maximizes some score.

T̂ (S) = argmax
t2GS

score(t,S)

As with the probabilistic approaches to context-free parsing discussed in Chap-
ter 12, the overall score for a tree can be viewed as a function of the scores of the
parts of the tree. The focus of this section is on edge-factored approaches where theedge-factored

Psuedo code from Jurafsky and Martin version 3

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 14 / 16



n-best shift-reduce parser example...

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 15 / 16



Next time

Lexicalised PCFGs

More on features and training...

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 16 / 16


