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N
Reminder...

We have looked at:
e grammars (PCFG, dependency, CCG)
@ parsing algorithms (dynamic, deterministic, heuristic)
@ parse scoring models (Bayesian, log-linear, cost-functions)
@ methods for selecting n-best parses (beams, agendas)

But what do we need to do to make the parses as accurate as possible... 7
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Reminder: PCFGs have some shortcomings

When we looked at PCFGs we noted two sources of inaccuracy:

@ The independence assumption: unable to model structural
dependency across the tree as a whole

e The choice of how a non-terminal expands depend on the location in
the parse tree.

o In English, subject NPs are more likely to be pronouns (= 90%), and
objects NPs are more likely to be non-pronominal (~ 60%)

@ Lack of lexical specificity: unable to model the structural behaviour
specific to a lexical item
o If the PCFG reflect thats VP-attachment of PPs are more common
then we will always get some people like beer in cold glasses wrong
o Lack of subcategorisation
o Non-sensical co-ordination can be probable...
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Reminder: PCFGs have some shortcomings

Lack of lexical specificity: these co-ordinated trees have the same
probability...

NP NP
/\ /\
NP Conj NP NP PP
N N
NP PP a1‘1d Noun Noun Prep NP
N |
Noun Prep NP cats dogs in NP  Conj NP
] | |
dogs in  Noun Noun a1‘1d Noun
houses houses cats

From Jurafsky and Martin version 3, following Collins
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Reminder: PCFGs have some shortcomings

Lack of lexical specificity: these co-ordinated trees have the same
probability...

NP NP
/\ /\
NP Conj NP NP PP
N N
NP PP ald Noun Noun Prep NP
N |
Noun Prep NP cats dogs in NP  Conj NP
] | |
dogs in  Noun Noun a1‘1d Noun
houses houses cats

From Jurafsky and Martin version 3, following Collins

Today will we look as how to get around these issues.
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Relax independence by splitting non-terminals

For the pronoun issue, intuition is that we need more NP rules:
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-
Relax independence by splitting non-terminals

For the pronoun issue, intuition is that we need more NP rules:
instead of NP — PRP we need two rules:

o NPsubject — PRP
o NPobject — PRP

How can we implement this without a semantic treebank?
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Relax independence by splitting non-terminals

For the pronoun issue, intuition is that we need more NP rules:

instead of NP — PRP we need two rules:
o NPsubject — PRP
o NPobject — PRP

How can we implement this without a semantic treebank? by annotating

non-terminals with their parent nodes

a) S b) S

/\ /\

NP VP NP"S VP'S
N N

PRP VBD NP PRP VBD NP"VP
N N
I need DT NN 1 need DT NN

From Jurafsky and Martin version 3 (‘1 flight L‘l fight
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Parent annotation helps in several scenarios

@ Other examples of parent annotation:

e.g. differentiating between adverbs by annotating pre-terminals

(called tag splitting) with their parents: most common adverbs

directly under ADVP are also and now; under VP are n’t and not;
under NP are only and just ...

e.g. subordinating conjunctions, while, as, if, occur under S

@ Where parent annotation can't help we could split on other features
(i.e. hand write rules for specific feature scenarios)

@ See https://nlp.stanford.edu/manning/papers/
unlexicalized-parsing.pdf for some discussion
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A trade-off between splitting and training

@ Splitting non-terminals increases the grammar size
@ Increased grammar size means less data per rule instance for MLE

o split and merge techniques automatically search for the optimal
splits by maximising the likelihood of the training set (e.g. Petrov

et al. 2006)
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non-terminal splitting example...
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Lexicalised-PCFGs include lexical info in the grammar

Collins and Charniak parsers use lexicalised-PCFGs

@ Lexicalisation can include both the head word token and its
part-of-speech

TOP
S(dumped,VBD)
/\
NP(workers,NNS) VP(dumped,VBD)
] T
NNS(worl‘(ers,NNS) VBD(dumped,VBD) NP(sacks,NNS) PP(into,P)
A
wor‘kers dum‘ped N NS(sac‘ks,NN S) P(into,P) NP(bin,NN)
sa‘cks in‘ta DT(a@n,NN)
L‘l b‘in

From Jurafsky and Martin version 3
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Lexicalised-PCFGs include lexical info in the grammar

Creating the treebank:
@ For each rule, one of the RHS daughters is the head

@ The head information for the LHS of the rule is the same as the RHS
head

Estimating probabilities:
@ Pre-terminal rules always have a probability of 1

@ All other rule probabilities need to be calculated ...
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Lexicalised-PCFGs include lexical info in the grammar

Creating the treebank:
@ For each rule, one of the RHS daughters is the head

@ The head information for the LHS of the rule is the same as the RHS
head

Estimating probabilities:
@ Pre-terminal rules always have a probability of 1
@ All other rule probabilities need to be calculated ...

... but the data available per rule is now very sparse
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Collins handles sparsity by generating the RHS of rules

@ RHS of every rule consists of a head plus all the non-terminals to the
head’s left and all the non-terminals to the head's right

LHS - Lpy... LiHRy ... Ry

@ To use a rule we:
- first generate the head,
- then all the left dependents from the head outwards

- and finally all the right dependents from the head outwards

@ We imagine a STOP non-terminal at the edges of the rule
LHS — STOP Ly, ...Li HRy ... R, STOP
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|
Rule probability is the product of all generated pieces

Remember that for PCFGs: P(A — B) = P(B|A)

For lexicalised-PCFGs rule probability is the product of its pieces:
* General rule form: A — STOP L,,...Li HRy ... R, STOP

- The probability of the head H with associated word h,, and tag h;
given the parent, A is:

P(H(wp, tp)) = P(H(hw, ht)|A, hy, ht)

- The probability of modifiers to the left of the head is:

m—+1
[T P(Li(Iw;, It;)|A, H, hy, ht)
i=1

- The probability of modifiers to the right of the head is:
n+1
H P(R,-(rw,-, rt,-)\A, H, h,, ht)
i=1
where L1 1 = STOP and R,11 = STOP
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lexicalised-PCFG rule probability estimation...
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Collins models have other conditional features

Collins 1 includes a distance metric in the conditional probabilities

Collins 2 includes conditioning on subcategorisation and
argument/adjunct

In training Collin's interpolates three models:

fully lexicalised (conditioning on the head word and tag),

just the head tag

unlexicalized

https://www.aclweb.org/anthology/J03-4003.pdf
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Remember Coarse-to-fine strategy, Charniak

We can now understand better Charniak’s coarse-to-fine parsing strategy:

1 produce a parse forest using simple version of the grammar
i.e. find possible parses using coarse-grained non-terminals, e.g. VP

2 refine most promising of coarse-grained parses using complex grammar
i.e with feature-based, lexicalised non-terminals, e.g. VP[buys/VBZ]

o Coarse-grained step can be efficiently parsed using e.g. CKY

@ But the simple grammar ignores contextual features so best parse
might not be accurate

@ Output a pruned packed parse forest for the parses generated by
the simple grammar (using a beam threshold)

e Evaluate remaining parses with complex grammar (i.e. each
coarse-grained state is split into several fine-grained states)
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