
L95: Natural Language Syntax and Parsing
8) Unification-based Grammars and Parsing

Paula Buttery

Dept of Computer Science & Technology, University of Cambridge

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 1 / 29



Reminder...

Last time we looked at lexicalisation and features to help us with:

modelling structural dependency across the tree as a whole

e.g. correctly modelling NP expansion

modelling the structural behaviour specific to a lexical item:

pp-attachment
subcategorisation
co-ordination

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 2 / 29



Alternative approach represents features in DAGs

Re-conceptualise words, non-terminal nodes and parses as Directed
Acyclic Graphs which may be represented as Attribute Value Matrices

computational linguistics 5

feature structure of unknown person and number as follows:

NP

agreement []




Directed Acyclic Graphs

Since there are many computational methods for traversing graphs
it is sometimes helpful to think of a AVM as a DIrected Acyclic
Graphs (DAG). In this alternative representation we think of the
features as labelled transitions in a feature path which ends at an
atomic value. The DAG for our original NP feature structure would
be:

● ●

●NP

●sing

●3rd

cat

agreement number

person




cat NP

agreement

�
number sing
person 3rd

�



In these diagrams each node is representing a feature structure;
and all of the transitions from the node are features of that feature
structure. A typed feature structure then, might have type names
on the DAG nodes:

NP●
● ●num

●3rd

agreement number

person




NP

AGREEMENT

�
number num
person 3rd

�



J&M use angle bracket notation to indicate feature paths: in our
example <agreement person> would represent the feature path
leading to the atomic value 3rd.

Re-entrancy

It is possible for a node in the DAG to be accessible by more than
one feature path (or in other words it is possible for a particular
feature structure to occur more than once in an enclosing feature
structure. The following shows a S type feature structure similar to
J&M (page 526) with a path <S head agreement> that leads to
the same feature structure as the path <S head subject agree-

computational linguistics 5

feature structure of unknown person and number as follows:

NP

agreement []




Directed Acyclic Graphs

Since there are many computational methods for traversing graphs
it is sometimes helpful to think of a AVM as a DIrected Acyclic
Graphs (DAG). In this alternative representation we think of the
features as labelled transitions in a feature path which ends at an
atomic value. The DAG for our original NP feature structure would
be:

● ●

●NP

●sing

●3rd

cat

agreement number

person




cat NP

agreement

�
number sing
person 3rd

�



In these diagrams each node is representing a feature structure;
and all of the transitions from the node are features of that feature
structure. A typed feature structure then, might have type names
on the DAG nodes:

NP●
● ●num

●3rd

agreement number

person




NP

AGREEMENT

�
number num
person 3rd

�



J&M use angle bracket notation to indicate feature paths: in our
example <agreement person> would represent the feature path
leading to the atomic value 3rd.

Re-entrancy

It is possible for a node in the DAG to be accessible by more than
one feature path (or in other words it is possible for a particular
feature structure to occur more than once in an enclosing feature
structure. The following shows a S type feature structure similar to
J&M (page 526) with a path <S head agreement> that leads to
the same feature structure as the path <S head subject agree-

We have atomic values at each of the terminal nodes and another
AVM/DAG at all other nodes

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 3 / 29



Some grammars allow the AVMs to be typed

Typing facilitates grammar building. Hierarchies of AVM types can be used
to automatically populate attributes

computational linguistics 5

feature structure of unknown person and number as follows:

NP

agreement []




Directed Acyclic Graphs

Since there are many computational methods for traversing graphs
it is sometimes helpful to think of a AVM as a DIrected Acyclic
Graphs (DAG). In this alternative representation we think of the
features as labelled transitions in a feature path which ends at an
atomic value. The DAG for our original NP feature structure would
be:

● ●

●NP

●sing

●3rd

cat

agreement number

person




cat NP

agreement

�
number sing
person 3rd

�



In these diagrams each node is representing a feature structure;
and all of the transitions from the node are features of that feature
structure. A typed feature structure then, might have type names
on the DAG nodes:

NP●
● ●num

●3rd

agreement number

person




NP

AGREEMENT

�
number num
person 3rd

�



J&M use angle bracket notation to indicate feature paths: in our
example <agreement person> would represent the feature path
leading to the atomic value 3rd.

Re-entrancy

It is possible for a node in the DAG to be accessible by more than
one feature path (or in other words it is possible for a particular
feature structure to occur more than once in an enclosing feature
structure. The following shows a S type feature structure similar to
J&M (page 526) with a path <S head agreement> that leads to
the same feature structure as the path <S head subject agree-

computational linguistics 5

feature structure of unknown person and number as follows:

NP

agreement []




Directed Acyclic Graphs

Since there are many computational methods for traversing graphs
it is sometimes helpful to think of a AVM as a DIrected Acyclic
Graphs (DAG). In this alternative representation we think of the
features as labelled transitions in a feature path which ends at an
atomic value. The DAG for our original NP feature structure would
be:

● ●

●NP

●sing

●3rd

cat

agreement number

person




cat NP

agreement

�
number sing
person 3rd

�



In these diagrams each node is representing a feature structure;
and all of the transitions from the node are features of that feature
structure. A typed feature structure then, might have type names
on the DAG nodes:

NP●
● ●num

●3rd

agreement number

person




NP

AGREEMENT

�
number num
person 3rd

�



J&M use angle bracket notation to indicate feature paths: in our
example <agreement person> would represent the feature path
leading to the atomic value 3rd.

Re-entrancy

It is possible for a node in the DAG to be accessible by more than
one feature path (or in other words it is possible for a particular
feature structure to occur more than once in an enclosing feature
structure. The following shows a S type feature structure similar to
J&M (page 526) with a path <S head agreement> that leads to
the same feature structure as the path <S head subject agree-

An shorthand notation uses angle bracket notation to indicate attribute
paths: e.g. <NP agreement person> would represent the attribute
path leading to the atomic value 3rd .

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 4 / 29



DAGs and AVMs may exhibit re-entrancycomputational linguistics 6

subject agreement>:



S

head




agreement 1


 number sing

person 3rd




subject
�

agreement 1
�







S●
●

●

●

●sing

●3rd

head

agreement

subject

agreement

number

person

Notice that re-entrancy indicates that a feature structure is being
encountered twice (we have two ways of getting to the same node);
for the purpose of grammar design this is subtly different to simply
encountering two feature paths that eventually evaluate to the same
atomic categories.

1. Non re-entrant:

Feature1 a

Feature2 a




S●

●a

●a

feature1

feature2

2. Re-entrant:

Feature1 1 a

Feature2 1




S● ●a

feature1

feature2

Integrating Feature Structures into CFGs

We now have methods of representing feature structures; the next
step then is to integrate them into our CFGs to see if we might im-
prove the over-generation problems without inflating the rule set.

computational linguistics 6

The following shows an S type feature structure similar to J&M
(page 526) with a path <S head agreement>
that leads to the same feature structure as the path
<S head subject agreement>:




S

head




agreement 1


 number sing

person 3rd




subject
�

agreement 1
�







S●
●

●

●

●sing

●3rd

head

agreement

subject

agreement

number

person

Notice that re-entrancy indicates that a feature structure is being
encountered twice (we have two ways of getting to the same node);
for the purpose of grammar design this is subtly different to simply
encountering two feature paths that eventually evaluate to the same
atomic categories.

1. Non re-entrant:

Feature1 a

Feature2 a




S●

●a

●a

feature1

feature2

2. Re-entrant:

Feature1 1 a

Feature2 1




S● ●a

feature1

feature2

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 5 / 29



DAGs and AVMs may exhibit re-entrancy

computational linguistics 6

The following shows an S type feature structure similar to J&M
(page 526) with a path <S head agreement> that leads to the
same feature structure as the path <S head subject agreement>:




S

head




agreement 1


 number sing

person 3rd




subject
�

agreement 1
�







S●
●

●

●

●sing

●3rd

head

agreement

subject

agreement

number

person

Note that re-entrancy indicates that a feature structure is encoun-
tered twice (i.e. we have two ways of reaching the same node). For
the purpose of grammar design this is subtly different to simply
encountering two feature paths that eventually evaluate to the same
atomic categories.

1. Non re-entrant:

Feature1 a

Feature2 a




S●

●a

●a

feature1

feature2

2. Re-entrant:

Feature1 1 a

Feature2 1




S● ●a

feature1

feature2

computational linguistics 6

The following shows an S type feature structure similar to J&M
(page 526) with a path <S head agreement> that leads to the
same feature structure as the path <S head subject agreement>:




S

head




agreement 1


 number sing

person 3rd




subject
�

agreement 1
�







S●
●

●

●

●sing

●3rd

head

agreement

subject

agreement

number

person

Note that re-entrancy indicates that a feature structure is encoun-
tered twice (i.e. we have two ways of reaching the same node). For
the purpose of grammar design this is subtly different to simply
encountering two feature paths that eventually evaluate to the same
atomic categories.

1. Non re-entrant:

Feature1 a

Feature2 a




S●

●a

●a

feature1

feature2

2. Re-entrant:

Feature1 1 a

Feature2 1




S● ●a

feature1

feature2

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 6 / 29



Parsing with DAGs involves Unification

The unification of two DAGs is the most specific DAG which contains
all the information in both of the original attribute-value structures.

Unification fails if the two DAGs contain conflicting information.

[
person 3rd

]
t

[
number plural

]
=

[
person 3rd

number plural

]

[
person 1st

number plural

]
t

[
number num

]
=

[
person 1st

number plural

]

[
person 1st

number sing

]
t

[
number plural

]
= unification fails

feature1
[
feature2 1

]
feature3 1

 t
[
feature3 a

]
=

feature1
[
feature2 1 a

]
feature3 1 a



Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 7 / 29



Parsing with DAGs involves Unification

The unification of two DAGs is the most specific DAG which contains
all the information in both of the original attribute-value structures.

Unification fails if the two DAGs contain conflicting information.

[
person 3rd

]
t

[
number plural

]
=

[
person 3rd

number plural

]

[
person 1st

number plural

]
t

[
number num

]
=

[
person 1st

number plural

]

[
person 1st

number sing

]
t

[
number plural

]
= unification fails

feature1
[
feature2 1

]
feature3 1

 t
[
feature3 a

]
=

feature1
[
feature2 1 a

]
feature3 1 a



Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 7 / 29



Parsing with DAGs involves Unification

The unification of two DAGs is the most specific DAG which contains
all the information in both of the original attribute-value structures.

Unification fails if the two DAGs contain conflicting information.

[
person 3rd

]
t

[
number plural

]
=

[
person 3rd

number plural

]

[
person 1st

number plural

]
t

[
number num

]
=

[
person 1st

number plural

]

[
person 1st

number sing

]
t

[
number plural

]
= unification fails

feature1
[
feature2 1

]
feature3 1

 t
[
feature3 a

]
=

feature1
[
feature2 1 a

]
feature3 1 a



Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 7 / 29



Parsing with DAGs involves Unification

The unification of two DAGs is the most specific DAG which contains
all the information in both of the original attribute-value structures.

Unification fails if the two DAGs contain conflicting information.

[
person 3rd

]
t

[
number plural

]
=

[
person 3rd

number plural

]

[
person 1st

number plural

]
t

[
number num

]
=

[
person 1st

number plural

]

[
person 1st

number sing

]
t

[
number plural

]
= unification fails

feature1
[
feature2 1

]
feature3 1

 t
[
feature3 a

]
=

feature1
[
feature2 1 a

]
feature3 1 a



Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 7 / 29



Parsing with DAGs involves Unification

The unification of two DAGs is the most specific DAG which contains
all the information in both of the original attribute-value structures.

Unification fails if the two DAGs contain conflicting information.

[
person 3rd

]
t

[
number plural

]
=

[
person 3rd

number plural

]

[
person 1st

number plural

]
t

[
number num

]
=

[
person 1st

number plural

]

[
person 1st

number sing

]
t

[
number plural

]
=

unification fails

feature1
[
feature2 1

]
feature3 1

 t
[
feature3 a

]
=

feature1
[
feature2 1 a

]
feature3 1 a



Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 7 / 29



Parsing with DAGs involves Unification

The unification of two DAGs is the most specific DAG which contains
all the information in both of the original attribute-value structures.

Unification fails if the two DAGs contain conflicting information.

[
person 3rd

]
t

[
number plural

]
=

[
person 3rd

number plural

]

[
person 1st

number plural

]
t

[
number num

]
=

[
person 1st

number plural

]

[
person 1st

number sing

]
t

[
number plural

]
= unification fails

feature1
[
feature2 1

]
feature3 1

 t
[
feature3 a

]
=

feature1
[
feature2 1 a

]
feature3 1 a



Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 7 / 29



Parsing with DAGs involves Unification

The unification of two DAGs is the most specific DAG which contains
all the information in both of the original attribute-value structures.

Unification fails if the two DAGs contain conflicting information.

[
person 3rd

]
t

[
number plural

]
=

[
person 3rd

number plural

]

[
person 1st

number plural

]
t

[
number num

]
=

[
person 1st

number plural

]

[
person 1st

number sing

]
t

[
number plural

]
= unification fails

feature1
[
feature2 1

]
feature3 1

 t
[
feature3 a

]

=

feature1
[
feature2 1 a

]
feature3 1 a



Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 7 / 29



Parsing with DAGs involves Unification

The unification of two DAGs is the most specific DAG which contains
all the information in both of the original attribute-value structures.

Unification fails if the two DAGs contain conflicting information.

[
person 3rd

]
t

[
number plural

]
=

[
person 3rd

number plural

]

[
person 1st

number plural

]
t

[
number num

]
=

[
person 1st

number plural

]

[
person 1st

number sing

]
t

[
number plural

]
= unification fails

feature1
[
feature2 1

]
feature3 1

 t
[
feature3 a

]
=

feature1
[
feature2 1 a

]
feature3 1 a



Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 7 / 29



Unification examples...

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 8 / 29



Unification algorithm requires extra graph structure

DR
AF
T

514 Chapter 15. Features and Unification

CONTENT

POINTER

POINTER

PERSON

3rd

NULL

NULL

CONTENT

CONTENT

POINTER

POINTER

NUMBER

sg

NULL

NULL

CONTENT

Figure 15.6 The original arguments to Example 15.20.

As with all recursive algorithms, the next step is to test for the various base cases
of the recursion before proceeding on to a recursive call involving some part of the
original arguments. In this case, there are three possible base cases:

• The arguments are identical
• One or both of the arguments has a null value
• The arguments are non-null and non-identical

If the structures are identical, then the pointer of the first is set to the second and
the second is returned. It is important to understand why this pointer change is done
in this case. After all, since the arguments are identical, returning either one would
appear to suffice. This might be true for a single unification but recall that we want
the two arguments to the unification operator to be truly unified. The pointer change
is necessary since we want the arguments to be truly identical, so that any subsequent
unification that adds information to one will add it to both.

In the case where either of the arguments is null, the pointer field for the null argu-
ment is changed to point to the other argument, which is then returned. The result is
that both structures now point at the same value.

If neither of the preceding tests is true then there are two possibilities: they are
non-identical atomic values, or they are non-identical complex structures. The former

From Jurafsky and Martin version 2

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 9 / 29



Unification algorithm requires extra graph structure

DR
AF
T

516 Chapter 15. Features and Unification

CONTENT

POINTER

POINTER

PERSON

3rd

NULL

NULL

CONTENT

CONTENT

POINTER

POINTER

NUMBER

sg

NULL

NULL

CONTENT

PERSON
NULL

CONTENT

POINTER

POINTER

Figure 15.8 The final result of unifying F1 and F2.

(15.21)
⎡
⎢⎣
AGREEMENT 1

[
NUMBER sg

]

SUBJECT
[
AGREEMENT 1

]

⎤
⎥⎦

!
[
SUBJECT

[
AGREEMENT

[
PERSON 3rd

]]]

Figure 15.10 shows the extended representations for the arguments to this unifica-
tion. These original arguments are neither identical, nor null, nor atomic, so the main
loop is entered. Looping over the features of f2, the algorithm is led to a recursive
attempt to unify the values of the corresponding SUBJECT features of f1 and f2.[

AGREEMENT 1
]
!
[
AGREEMENT

[
PERSON 3rd

]]

These arguments are also non-identical, non-null, and non-atomic so the loop is
entered again leading to a recursive check of the values of the AGREEMENT features.[

NUMBER sg
]
!
[
PERSON 3rd

]

In looping over the features of the second argument, the fact that the first argu-
ment lacks a PERSON feature is discovered. A PERSON feature initialized with a NULL
value is, therefore, added to the first argument. This, in effect, changes the previous
unification to the following.[

NUMBER sg
PERSON null

]
!
[
PERSON 3rd

]

From Jurafsky and Martin version 2

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 29



DAGs can be straighforwardly associated with the lexicon

computational linguistics 7

Integrating Feature Structures into CFGs

We now have methods for representing feature structures 6. The 6 Please don’t be put off by the var-
ious notations for feature structure
grammars. The ideas behind the no-
tations are the same and there is no
right or wrong way of expressing the
structures—the choice is often one of
grammar design.

next step is to integrate them into our CFGs to see if we might im-
prove the over-generation problem without inflating the rule set.
Recall the mini ruleset from earlier in the lecture that became at
least three times larger when we tried to add simple agreement (re-
produced in Figure 2). In order to capture subject-verb agreement
we could rewrite the grammar rules as:

S → NP VP
VP → V NP
NP → N
V → {can, fish, fishes, cans}
N → {it, fish, rivers, pools, I,

you, December, Scotland, they}

Figure 2: Mini-ruleset with atomic
non-terminal categories and over-
generation problem due to lack of
agreement.


S

agreement 1




→ 
NP

agreement 1




VP

agreement 1





VP

agreement 1




→ 
V

agreement 1




NP

agreement
��




NP

agreement 1




→ 
N

agreement 1




Note that J&M use feature path shorthand to represent the same
thing: they list out all the feature constraints beneath the rules
using feature path notation:

S → NP VP
<NP agreement> = <VP agreement>

VP → V NP
<VP agreement> = <V agreement>

NP → N
<NP agreement> = <N agreement>

Lexical elements of the grammar may also be specified in several
ways:

1. As rule based AVMs 7: 7 Again I use the short hand of {fish,
rivers, pools, they} to indicate that
there would be 4 rules, one for each
word.




N

agreement


person 3rd

number plural







→ {fish, rivers, pools, they}

2. As rules with feature path constraints:

V → {cans, fishes}
<V agreement person> = 3rd
<V agreement number> = sing

computational linguistics 7

Integrating Feature Structures into CFGs

We now have methods for representing feature structures 6. The 6 Please don’t be put off by the var-
ious notations for feature structure
grammars. The ideas behind the no-
tations are the same and there is no
right or wrong way of expressing the
structures—the choice is often one of
grammar design.

next step is to integrate them into our CFGs to see if we might im-
prove the over-generation problem without inflating the rule set.
Recall the mini ruleset from earlier in the lecture that became at
least three times larger when we tried to add simple agreement (re-
produced in Figure 2). In order to capture subject-verb agreement
we could rewrite the grammar rules as:

S → NP VP
VP → V NP
NP → N
V → {can, fish, fishes, cans}
N → {it, fish, rivers, pools, I,

you, December, Scotland, they}

Figure 2: Mini-ruleset with atomic
non-terminal categories and over-
generation problem due to lack of
agreement.


S

agreement 1




→ 
NP

agreement 1




VP

agreement 1





VP

agreement 1




→ 
V

agreement 1




NP

agreement
��




NP

agreement 1




→ 
N

agreement 1




Note that J&M use feature path shorthand to represent the same
thing: they list out all the feature constraints beneath the rules
using feature path notation:

S → NP VP
<NP agreement> = <VP agreement>

VP → V NP
<VP agreement> = <V agreement>

NP → N
<NP agreement> = <N agreement>

Lexical elements of the grammar may also be specified in several
ways:

1. As rule based AVMs 7: 7 Again I use the short hand of {fish,
rivers, pools, they} to indicate that
there would be 4 rules, one for each
word.




N

agreement


person 3rd

number plural







→ {fish, rivers, pools, they}

2. As rules with feature path constraints:

V → {cans, fishes}
<V agreement person> = 3rd
<V agreement number> = sing

computational linguistics 8

3. Or as a tuple 8 to be looked up in a lexicon (this is how the lexi- 8 A tuple is simply a pair of things: in
this case the lexical item and a feature
structure.

cal elements are presented in Sag et al. [2003]).

�
they,




N

agreement


person 3rd

number sing







�

Unification of Feature Structures

Now we have a rule notation that allows us to succinctly express
the agreement we wished to capture but how do we use these new
rules? When we discussed parsing in Lecture 6 we had algorithms
that looked for matches with non-terminal symbols on either the
left-hand side or right-hand side of the production rules (depend-
ing on whether we were to-down or bottom up parsing). We might
think then, that now we simply need to match feature structures
rather than atomic non-terminals; indeed we do need to do this but
unfortunately things aren’t quite so straightforward. We are not
able to simple match feature structures against those in our new
rules because they not fully specified (for instance our new S rule
specifies that the NP and VP must have a agreement feature—it
even specifies that this must be the same agreement feature—
but it doesn’t specify exactly what the values of the agreement
feature are.9 9 The underspecification in the rules

is of course intentional since it allows
capture agreement generally using
only a single rule; rather adding many
rules as we had to do previously.

What we want to do then, rather than match feature structures, is
to check that they are compatible (i.e they don’t contain conflicting
information). We call this process unification.10

10 For more details see J&M section
15.2.• The unification of two feature structures is the most general

feature structure which contains all the information in both of
the original feature structures.

• Unification fails if the two feature structures contain conflicting
information.

J&M use the symbol � to be the unification operator. The follow-
ing are some unification examples:

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 29



DAGs can be straighforwardly associated with the lexicon

computational linguistics 7

Integrating Feature Structures into CFGs

We now have methods for representing feature structures 6. The 6 Please don’t be put off by the var-
ious notations for feature structure
grammars. The ideas behind the no-
tations are the same and there is no
right or wrong way of expressing the
structures—the choice is often one of
grammar design.

next step is to integrate them into our CFGs to see if we might im-
prove the over-generation problem without inflating the rule set.
Recall the mini ruleset from earlier in the lecture that became at
least three times larger when we tried to add simple agreement (re-
produced in Figure 2). In order to capture subject-verb agreement
we could rewrite the grammar rules as:

S → NP VP
VP → V NP
NP → N
V → {can, fish, fishes, cans}
N → {it, fish, rivers, pools, I,

you, December, Scotland, they}

Figure 2: Mini-ruleset with atomic
non-terminal categories and over-
generation problem due to lack of
agreement.


S

agreement 1




→ 
NP

agreement 1




VP

agreement 1





VP

agreement 1




→ 
V

agreement 1




NP

agreement
��




NP

agreement 1




→ 
N

agreement 1




Note that J&M use feature path shorthand to represent the same
thing: they list out all the feature constraints beneath the rules
using feature path notation:

S → NP VP
<NP agreement> = <VP agreement>

VP → V NP
<VP agreement> = <V agreement>

NP → N
<NP agreement> = <N agreement>

Lexical elements of the grammar may also be specified in several
ways:

1. As rule based AVMs 7: 7 Again I use the short hand of {fish,
rivers, pools, they} to indicate that
there would be 4 rules, one for each
word.




N

agreement


person 3rd

number plural







→ {fish, rivers, pools, they}

2. As rules with feature path constraints:

V → {cans, fishes}
<V agreement person> = 3rd
<V agreement number> = sing

computational linguistics 7

Integrating Feature Structures into CFGs

We now have methods for representing feature structures 6. The 6 Please don’t be put off by the var-
ious notations for feature structure
grammars. The ideas behind the no-
tations are the same and there is no
right or wrong way of expressing the
structures—the choice is often one of
grammar design.

next step is to integrate them into our CFGs to see if we might im-
prove the over-generation problem without inflating the rule set.
Recall the mini ruleset from earlier in the lecture that became at
least three times larger when we tried to add simple agreement (re-
produced in Figure 2). In order to capture subject-verb agreement
we could rewrite the grammar rules as:

S → NP VP
VP → V NP
NP → N
V → {can, fish, fishes, cans}
N → {it, fish, rivers, pools, I,

you, December, Scotland, they}

Figure 2: Mini-ruleset with atomic
non-terminal categories and over-
generation problem due to lack of
agreement.


S

agreement 1




→ 
NP

agreement 1




VP

agreement 1





VP

agreement 1




→ 
V

agreement 1




NP

agreement
��




NP

agreement 1




→ 
N

agreement 1




Note that J&M use feature path shorthand to represent the same
thing: they list out all the feature constraints beneath the rules
using feature path notation:

S → NP VP
<NP agreement> = <VP agreement>

VP → V NP
<VP agreement> = <V agreement>

NP → N
<NP agreement> = <N agreement>

Lexical elements of the grammar may also be specified in several
ways:

1. As rule based AVMs 7: 7 Again I use the short hand of {fish,
rivers, pools, they} to indicate that
there would be 4 rules, one for each
word.




N

agreement


person 3rd

number plural







→ {fish, rivers, pools, they}

2. As rules with feature path constraints:

V → {cans, fishes}
<V agreement person> = 3rd
<V agreement number> = sing

computational linguistics 8

3. Or as a tuple 8 to be looked up in a lexicon (this is how the lexi- 8 A tuple is simply a pair of things: in
this case the lexical item and a feature
structure.

cal elements are presented in Sag et al. [2003]).

�
they,




N

agreement


person 3rd

number sing







�

Unification of Feature Structures

Now we have a rule notation that allows us to succinctly express
the agreement we wished to capture but how do we use these new
rules? When we discussed parsing in Lecture 6 we had algorithms
that looked for matches with non-terminal symbols on either the
left-hand side or right-hand side of the production rules (depend-
ing on whether we were to-down or bottom up parsing). We might
think then, that now we simply need to match feature structures
rather than atomic non-terminals; indeed we do need to do this but
unfortunately things aren’t quite so straightforward. We are not
able to simple match feature structures against those in our new
rules because they not fully specified (for instance our new S rule
specifies that the NP and VP must have a agreement feature—it
even specifies that this must be the same agreement feature—
but it doesn’t specify exactly what the values of the agreement
feature are.9 9 The underspecification in the rules

is of course intentional since it allows
capture agreement generally using
only a single rule; rather adding many
rules as we had to do previously.

What we want to do then, rather than match feature structures, is
to check that they are compatible (i.e they don’t contain conflicting
information). We call this process unification.10

10 For more details see J&M section
15.2.• The unification of two feature structures is the most general

feature structure which contains all the information in both of
the original feature structures.

• Unification fails if the two feature structures contain conflicting
information.

J&M use the symbol � to be the unification operator. The follow-
ing are some unification examples:

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 29



DAGs can be straighforwardly associated with the lexicon

computational linguistics 7

Integrating Feature Structures into CFGs

We now have methods for representing feature structures 6. The 6 Please don’t be put off by the var-
ious notations for feature structure
grammars. The ideas behind the no-
tations are the same and there is no
right or wrong way of expressing the
structures—the choice is often one of
grammar design.

next step is to integrate them into our CFGs to see if we might im-
prove the over-generation problem without inflating the rule set.
Recall the mini ruleset from earlier in the lecture that became at
least three times larger when we tried to add simple agreement (re-
produced in Figure 2). In order to capture subject-verb agreement
we could rewrite the grammar rules as:

S → NP VP
VP → V NP
NP → N
V → {can, fish, fishes, cans}
N → {it, fish, rivers, pools, I,

you, December, Scotland, they}

Figure 2: Mini-ruleset with atomic
non-terminal categories and over-
generation problem due to lack of
agreement.


S

agreement 1




→ 
NP

agreement 1




VP

agreement 1





VP

agreement 1




→ 
V

agreement 1




NP

agreement
��




NP

agreement 1




→ 
N

agreement 1




Note that J&M use feature path shorthand to represent the same
thing: they list out all the feature constraints beneath the rules
using feature path notation:

S → NP VP
<NP agreement> = <VP agreement>

VP → V NP
<VP agreement> = <V agreement>

NP → N
<NP agreement> = <N agreement>

Lexical elements of the grammar may also be specified in several
ways:

1. As rule based AVMs 7: 7 Again I use the short hand of {fish,
rivers, pools, they} to indicate that
there would be 4 rules, one for each
word.




N

agreement


person 3rd

number plural







→ {fish, rivers, pools, they}

2. As rules with feature path constraints:

V → {cans, fishes}
<V agreement person> = 3rd
<V agreement number> = sing

computational linguistics 7

Integrating Feature Structures into CFGs

We now have methods for representing feature structures 6. The 6 Please don’t be put off by the var-
ious notations for feature structure
grammars. The ideas behind the no-
tations are the same and there is no
right or wrong way of expressing the
structures—the choice is often one of
grammar design.

next step is to integrate them into our CFGs to see if we might im-
prove the over-generation problem without inflating the rule set.
Recall the mini ruleset from earlier in the lecture that became at
least three times larger when we tried to add simple agreement (re-
produced in Figure 2). In order to capture subject-verb agreement
we could rewrite the grammar rules as:

S → NP VP
VP → V NP
NP → N
V → {can, fish, fishes, cans}
N → {it, fish, rivers, pools, I,

you, December, Scotland, they}

Figure 2: Mini-ruleset with atomic
non-terminal categories and over-
generation problem due to lack of
agreement.


S

agreement 1




→ 
NP

agreement 1




VP

agreement 1





VP

agreement 1




→ 
V

agreement 1




NP

agreement
��




NP

agreement 1




→ 
N

agreement 1




Note that J&M use feature path shorthand to represent the same
thing: they list out all the feature constraints beneath the rules
using feature path notation:

S → NP VP
<NP agreement> = <VP agreement>

VP → V NP
<VP agreement> = <V agreement>

NP → N
<NP agreement> = <N agreement>

Lexical elements of the grammar may also be specified in several
ways:

1. As rule based AVMs 7: 7 Again I use the short hand of {fish,
rivers, pools, they} to indicate that
there would be 4 rules, one for each
word.




N

agreement


person 3rd

number plural







→ {fish, rivers, pools, they}

2. As rules with feature path constraints:

V → {cans, fishes}
<V agreement person> = 3rd
<V agreement number> = sing

computational linguistics 8

3. Or as a tuple 8 to be looked up in a lexicon (this is how the lexi- 8 A tuple is simply a pair of things: in
this case the lexical item and a feature
structure.

cal elements are presented in Sag et al. [2003]).

�
they,




N

agreement


person 3rd

number sing







�

Unification of Feature Structures

Now we have a rule notation that allows us to succinctly express
the agreement we wished to capture but how do we use these new
rules? When we discussed parsing in Lecture 6 we had algorithms
that looked for matches with non-terminal symbols on either the
left-hand side or right-hand side of the production rules (depend-
ing on whether we were to-down or bottom up parsing). We might
think then, that now we simply need to match feature structures
rather than atomic non-terminals; indeed we do need to do this but
unfortunately things aren’t quite so straightforward. We are not
able to simple match feature structures against those in our new
rules because they not fully specified (for instance our new S rule
specifies that the NP and VP must have a agreement feature—it
even specifies that this must be the same agreement feature—
but it doesn’t specify exactly what the values of the agreement
feature are.9 9 The underspecification in the rules

is of course intentional since it allows
capture agreement generally using
only a single rule; rather adding many
rules as we had to do previously.

What we want to do then, rather than match feature structures, is
to check that they are compatible (i.e they don’t contain conflicting
information). We call this process unification.10

10 For more details see J&M section
15.2.• The unification of two feature structures is the most general

feature structure which contains all the information in both of
the original feature structures.

• Unification fails if the two feature structures contain conflicting
information.

J&M use the symbol � to be the unification operator. The follow-
ing are some unification examples:

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 29



We can modify CFG algorithms to parse with DAGs

We can use any CFG parsing algorithm if:

- associate attribute paths with CFG rules

- unify DAGs in the states

S → NP VP

< NP head agreement >=< VP head agreement >

< S head >=< VP head >

We would have items like [X , [a, b],DAG ] on the agenda or at each
cell

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 12 / 29



Parsing example...

They like Peter[
S

agreement 1

]
→

[
NP

agreement 1

][
VP

agreement 1

]
[

VP

agreement 1

]
→

[
V

agreement 1

]NP

agreement
[]

V

agreement

[
person 3rd

number plural

] → {like}


V

agreement

[
person 3rd

number sing

] → {likes}


NP

agreement

[
person 3rd

number plural

] → {fish, rivers, pools, they}


NP

agreement

[
person 3rd

number sing

] → {it, fish, Peter}

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 13 / 29



Parsing example...

They like Peter[
S

agreement 1

]
→

[
NP

agreement 1

][
VP

agreement 1

]
[

VP

agreement 1

]
→

[
V

agreement 1

]NP

agreement
[]

V

agreement

[
person 3rd

number plural

] → {like}


V

agreement

[
person 3rd

number sing

] → {likes}


NP

agreement

[
person 3rd

number plural

] → {fish, rivers, pools, they}


NP

agreement

[
person 3rd

number sing

] → {it, fish, Peter}

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 14 / 29



Parsing example...

They like Peter[
S

agreement 1

]
→

[
NP

agreement 1

][
VP

agreement 1

]
[

VP

agreement 1

]
→

[
V

agreement 1

]NP

agreement
[]

V

agreement

[
person 3rd

number plural

] → {like}


V

agreement

[
person 3rd

number sing

] → {likes}


NP

agreement

[
person 3rd

number plural

] → {fish, rivers, pools, they}


NP

agreement

[
person 3rd

number sing

] → {it, fish, Peter}

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 15 / 29



Parsing example...

They like Peter[
S

agreement 1

]
→

[
NP

agreement 1

][
VP

agreement 1

]
[

VP

agreement 1

]
→

[
V

agreement 1

]
NP

agreement

[
person 3rd

number sing

]
V

agreement

[
person 3rd

number plural

] → {like}


V

agreement

[
person 3rd

number sing

] → {likes}


NP

agreement

[
person 3rd

number plural

] → {fish, rivers, pools, they}


NP

agreement

[
person 3rd

number sing

] → {it, fish, Peter}

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 16 / 29



Parsing example...

They like Peter[
S

agreement 1

]
→

[
NP

agreement 1

][
VP

agreement 1

]
[

VP

agreement 1

]
→

[
V

agreement 1

] 
NP

agreement

[
person 3rd

number sing

]
V

agreement

[
person 3rd

number plural

] → {like}


V

agreement

[
person 3rd

number sing

] → {likes}


NP

agreement

[
person 3rd

number plural

] → {fish, rivers, pools, they}


NP

agreement

[
person 3rd

number sing

] → {it, fish, Peter}

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 17 / 29



Parsing example...

They like Peter[
S

agreement 1

]
→

[
NP

agreement 1

][
VP

agreement 1

]
[

VP

agreement 1

]
→


V

agreement 1

[
person 3rd

number plural

]


NP

agreement

[
person 3rd

number sing

]
V

agreement

[
person 3rd

number plural

] → {like}


V

agreement

[
person 3rd

number sing

] → {likes}


NP

agreement

[
person 3rd

number plural

] → {fish, rivers, pools, they}


NP

agreement

[
person 3rd

number sing

] → {it, fish, Peter}

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 18 / 29



Parsing example...

They like Peter[
S

agreement 1

]
→

[
NP

agreement 1

][
VP

agreement 1

]


VP

agreement 1

[
person 3rd

number plural

] →


V

agreement 1

[
person 3rd

number plural

]


NP

agreement

[
person 3rd

number sing

]
V

agreement

[
person 3rd

number plural

] → {like}


V

agreement

[
person 3rd

number sing

] → {likes}


NP

agreement

[
person 3rd

number plural

] → {fish, rivers, pools, they}


NP

agreement

[
person 3rd

number sing

] → {it, fish, Peter}

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 19 / 29



Parsing example...

They like Peter

[
S

agreement 1

]
→

[
NP

agreement 1

]
VP

agreement 1

[
person 3rd

number plural

]
VP

agreement 1

[
person 3rd

number plural

] →


V

agreement 1

[
person 3rd

number plural

]


NP

agreement

[
person 3rd

number sing

]
V

agreement

[
person 3rd

number plural

] → {like}


V

agreement

[
person 3rd

number sing

] → {likes}


NP

agreement

[
person 3rd

number plural

] → {fish, rivers, pools, they}


NP

agreement

[
person 3rd

number sing

] → {it, fish, Peter}

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 20 / 29



Parsing example...

They like Peter

[
S

agreement 1

]
→

[
NP

agreement 1

]
VP

agreement 1

[
person 3rd

number plural

]
VP

agreement 1

[
person 3rd

number plural

] →


V

agreement 1

[
person 3rd

number plural

]


NP

agreement

[
person 3rd

number sing

]
V

agreement

[
person 3rd

number plural

] → {like}


V

agreement

[
person 3rd

number sing

] → {likes}


NP

agreement

[
person 3rd

number plural

] → {fish, rivers, pools, they}


NP

agreement

[
person 3rd

number sing

] → {it, fish, Peter}

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 21 / 29



Parsing example...

They like Peter

[
S

agreement 1

]
→


NP

agreement 1

[
person 3rd

number plural

]


VP

agreement 1

[
person 3rd

number plural

]
VP

agreement 1

[
person 3rd

number plural

] →


V

agreement 1

[
person 3rd

number plural

]


NP

agreement

[
person 3rd

number sing

]
V

agreement

[
person 3rd

number plural

] → {like}


V

agreement

[
person 3rd

number sing

] → {likes}


NP

agreement

[
person 3rd

number plural

] → {fish, rivers, pools, they}


NP

agreement

[
person 3rd

number sing

] → {it, fish, Peter}

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 22 / 29



Parsing example...

They like Peter
S

agreement 1

[
person 3rd

number plural

] →


NP

agreement 1

[
person 3rd

number plural

]


VP

agreement 1

[
person 3rd

number plural

]
VP

agreement 1

[
person 3rd

number plural

] →


V

agreement 1

[
person 3rd

number plural

]


NP

agreement

[
person 3rd

number sing

]
V

agreement

[
person 3rd

number plural

] → {like}


V

agreement

[
person 3rd

number sing

] → {likes}


NP

agreement

[
person 3rd

number plural

] → {fish, rivers, pools, they}


NP

agreement

[
person 3rd

number sing

] → {it, fish, Peter}

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 23 / 29



Parsing example...

They likes Peter

[
S

agreement 1

]
→


NP

agreement 1

[
person 3rd

number plural

]


VP

agreement 1

[
person 3rd

number sing

]
VP

agreement 1

[
person 3rd

number sing

] →


V

agreement 1

[
person 3rd

number sing

]


NP

agreement

[
person 3rd

number sing

]
V

agreement

[
person 3rd

number plural

] → {like}


V

agreement

[
person 3rd

number sing

] → {likes}


NP

agreement

[
person 3rd

number plural

] → {fish, rivers, pools, they}


NP

agreement

[
person 3rd

number sing

] → {it, fish, Peter}

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 24 / 29



Parsing example...

They likes Peter — unification fails because of co-indexation

[
S

agreement 1

]
→


NP

agreement 1

[
person 3rd

number plural

]


VP

agreement 1

[
person 3rd

number sing

]
VP

agreement 1

[
person 3rd

number sing

] →


V

agreement 1

[
person 3rd

number sing

]


NP

agreement

[
person 3rd

number sing

]
V

agreement

[
person 3rd

number plural

] → {like}


V

agreement

[
person 3rd

number sing

] → {likes}


NP

agreement

[
person 3rd

number plural

] → {fish, rivers, pools, they}


NP

agreement

[
person 3rd

number sing

] → {it, fish, Peter}

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 25 / 29



Subcategorization is captured by the feature constraints

computational linguistics 11

Adding Sub-categorization Constraints

Subcategorization may be dealt with by adding extra features to
capture subject-object relations. It becomes helpful now to incorpo-
rate a notion of headedness11 into the feature structure rules and 11 For a thorough analysis of the fea-

tures required for sub-categorization
and long-distance dependencies,
see Sag et al. [2003]

so our grammars start to look analogous to what you will have en-
countered in your syntax classes. The incorporation of headedness
might be effected as follows 12: 12 This formulation won’t quite work as

is: it serves to illustrate the point in a
succinct space.


S

head 1




→
2


NP

head
�

agreement 3
�





VP

head 1
�

agreement 3
�

subj 2







VP

head 1

subj 3




→ 


V

head 1

obj 2

subj 3




2
��

�
can,




V

head
�

agreement
���

obj




VP

head
��



subj




NP

head
��






�

�
cans,




V

head


agreement


person 3rd

number sing






obj




NP

head
��



subj




NP

head
��






�

Including Morphological Information

So far we have assumed that we have a lexicon which has an entry
for all the inflected forms of a word: such a lexicon would be very
large and difficult to maintain. However, we can be smarter than
this. Recall from Lecture 3 that we may use an FST to create mor-
phological parses for a word: i.e. given a word return its stem and
affixes (e.g. f oxes → f oxˆs).

computational linguistics 11

Adding Sub-categorization Constraints

Subcategorization may be dealt with by adding extra features to
capture subject-object relations. It becomes helpful now to incorpo-
rate a notion of headedness11 into the feature structure rules and 11 For a thorough analysis of the fea-

tures required for sub-categorization
and long-distance dependencies,
see Sag et al. [2003]

so our grammars start to look analogous to what you will have en-
countered in your syntax classes. The incorporation of headedness
might be effected as follows 12: 12 This formulation won’t quite work as

is: it serves to illustrate the point in a
succinct space.


S

head 1




→
2


NP

head
�

agreement 3
�





VP

head 1
�

agreement 3
�

subj 2







VP

head 1

subj 3




→ 


V

head 1

obj 2

subj 3




2
��

�
can,




V

head
�

agreement
���

obj




VP

head
��



subj




NP

head
��






�

�
cans,




V

head


agreement


person 3rd

number sing






obj




NP

head
��



subj




NP

head
��






�

Including Morphological Information

So far we have assumed that we have a lexicon which has an entry
for all the inflected forms of a word: such a lexicon would be very
large and difficult to maintain. However, we can be smarter than
this. Recall from Lecture 3 that we may use an FST to create mor-
phological parses for a word: i.e. given a word return its stem and
affixes (e.g. f oxes → f oxˆs).

computational linguistics 11

Adding Sub-categorization Constraints

Subcategorization may be dealt with by adding extra features to
capture subject-object relations. It becomes helpful now to incorpo-
rate a notion of headedness11 into the feature structure rules and 11 For a thorough analysis of the fea-

tures required for sub-categorization
and long-distance dependencies,
see Sag et al. [2003]

so our grammars start to look analogous to what you will have en-
countered in your syntax classes. The incorporation of headedness
might be effected as follows 12: 12 This formulation won’t quite work as

is: it serves to illustrate the point in a
succinct space.


S

head 1




→
2


NP

head
�

agreement 3
�





VP

head 1
�

agreement 3
�

subj 2







VP

head 1

subj 3




→ 


V

head 1

obj 2

subj 3




2
��

�
can,




V

head
�

agreement
���

obj




VP

head
��



subj




NP

head
��






�

�
cans,




V

head


agreement


person 3rd

number sing






obj




NP

head
��



subj




NP

head
��






�

Including Morphological Information

So far we have assumed that we have a lexicon which has an entry
for all the inflected forms of a word: such a lexicon would be very
large and difficult to maintain. However, we can be smarter than
this. Recall from Lecture 3 that we may use an FST to create mor-
phological parses for a word: i.e. given a word return its stem and
affixes (e.g. f oxes → f oxˆs).

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 26 / 29



Subcategorization is captured by the feature constraints

computational linguistics 11

Adding Sub-categorization Constraints

Subcategorization may be dealt with by adding extra features to
capture subject-object relations. It becomes helpful now to incorpo-
rate a notion of headedness11 into the feature structure rules and 11 For a thorough analysis of the fea-

tures required for sub-categorization
and long-distance dependencies,
see Sag et al. [2003]

so our grammars start to look analogous to what you will have en-
countered in your syntax classes. The incorporation of headedness
might be effected as follows 12: 12 This formulation won’t quite work as

is: it serves to illustrate the point in a
succinct space.


S

head 1




→
2


NP

head
�

agreement 3
�





VP

head 1
�

agreement 3
�

subj 2







VP

head 1

subj 3




→ 


V

head 1

obj 2

subj 3




2
��

�
can,




V

head
�

agreement
���

obj




VP

head
��



subj




NP

head
��






�

�
cans,




V

head


agreement


person 3rd

number sing






obj




NP

head
��



subj




NP

head
��






�

Including Morphological Information

So far we have assumed that we have a lexicon which has an entry
for all the inflected forms of a word: such a lexicon would be very
large and difficult to maintain. However, we can be smarter than
this. Recall from Lecture 3 that we may use an FST to create mor-
phological parses for a word: i.e. given a word return its stem and
affixes (e.g. f oxes → f oxˆs).

computational linguistics 11

Adding Sub-categorization Constraints

Subcategorization may be dealt with by adding extra features to
capture subject-object relations. It becomes helpful now to incorpo-
rate a notion of headedness11 into the feature structure rules and 11 For a thorough analysis of the fea-

tures required for sub-categorization
and long-distance dependencies,
see Sag et al. [2003]

so our grammars start to look analogous to what you will have en-
countered in your syntax classes. The incorporation of headedness
might be effected as follows 12: 12 This formulation won’t quite work as

is: it serves to illustrate the point in a
succinct space.


S

head 1




→
2


NP

head
�

agreement 3
�





VP

head 1
�

agreement 3
�

subj 2







VP

head 1

subj 3




→ 


V

head 1

obj 2

subj 3




2
��

�
can,




V

head
�

agreement
���

obj




VP

head
��



subj




NP

head
��






�

�
cans,




V

head


agreement


person 3rd

number sing






obj




NP

head
��



subj




NP

head
��






�

Including Morphological Information

So far we have assumed that we have a lexicon which has an entry
for all the inflected forms of a word: such a lexicon would be very
large and difficult to maintain. However, we can be smarter than
this. Recall from Lecture 3 that we may use an FST to create mor-
phological parses for a word: i.e. given a word return its stem and
affixes (e.g. f oxes → f oxˆs).

computational linguistics 11

Adding Sub-categorization Constraints

Subcategorization may be dealt with by adding extra features to
capture subject-object relations. It becomes helpful now to incorpo-
rate a notion of headedness11 into the feature structure rules and 11 For a thorough analysis of the fea-

tures required for sub-categorization
and long-distance dependencies,
see Sag et al. [2003]

so our grammars start to look analogous to what you will have en-
countered in your syntax classes. The incorporation of headedness
might be effected as follows 12: 12 This formulation won’t quite work as

is: it serves to illustrate the point in a
succinct space.


S

head 1




→
2


NP

head
�

agreement 3
�





VP

head 1
�

agreement 3
�

subj 2







VP

head 1

subj 3




→ 


V

head 1

obj 2

subj 3




2
��

�
can,




V

head
�

agreement
���

obj




VP

head
��



subj




NP

head
��






�

�
cans,




V

head


agreement


person 3rd

number sing






obj




NP

head
��



subj




NP

head
��






�

Including Morphological Information

So far we have assumed that we have a lexicon which has an entry
for all the inflected forms of a word: such a lexicon would be very
large and difficult to maintain. However, we can be smarter than
this. Recall from Lecture 3 that we may use an FST to create mor-
phological parses for a word: i.e. given a word return its stem and
affixes (e.g. f oxes → f oxˆs).

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 26 / 29



Subcategorization is captured by the feature constraints

computational linguistics 11

Adding Sub-categorization Constraints

Subcategorization may be dealt with by adding extra features to
capture subject-object relations. It becomes helpful now to incorpo-
rate a notion of headedness11 into the feature structure rules and 11 For a thorough analysis of the fea-

tures required for sub-categorization
and long-distance dependencies,
see Sag et al. [2003]

so our grammars start to look analogous to what you will have en-
countered in your syntax classes. The incorporation of headedness
might be effected as follows 12: 12 This formulation won’t quite work as

is: it serves to illustrate the point in a
succinct space.


S

head 1




→
2


NP

head
�

agreement 3
�





VP

head 1
�

agreement 3
�

subj 2







VP

head 1

subj 3




→ 


V

head 1

obj 2

subj 3




2
��

�
can,




V

head
�

agreement
���

obj




VP

head
��



subj




NP

head
��






�

�
cans,




V

head


agreement


person 3rd

number sing






obj




NP

head
��



subj




NP

head
��






�

Including Morphological Information

So far we have assumed that we have a lexicon which has an entry
for all the inflected forms of a word: such a lexicon would be very
large and difficult to maintain. However, we can be smarter than
this. Recall from Lecture 3 that we may use an FST to create mor-
phological parses for a word: i.e. given a word return its stem and
affixes (e.g. f oxes → f oxˆs).

computational linguistics 11

Adding Sub-categorization Constraints

Subcategorization may be dealt with by adding extra features to
capture subject-object relations. It becomes helpful now to incorpo-
rate a notion of headedness11 into the feature structure rules and 11 For a thorough analysis of the fea-

tures required for sub-categorization
and long-distance dependencies,
see Sag et al. [2003]

so our grammars start to look analogous to what you will have en-
countered in your syntax classes. The incorporation of headedness
might be effected as follows 12: 12 This formulation won’t quite work as

is: it serves to illustrate the point in a
succinct space.


S

head 1




→
2


NP

head
�

agreement 3
�





VP

head 1
�

agreement 3
�

subj 2







VP

head 1

subj 3




→ 


V

head 1

obj 2

subj 3




2
��

�
can,




V

head
�

agreement
���

obj




VP

head
��



subj




NP

head
��






�

�
cans,




V

head


agreement


person 3rd

number sing






obj




NP

head
��



subj




NP

head
��






�

Including Morphological Information

So far we have assumed that we have a lexicon which has an entry
for all the inflected forms of a word: such a lexicon would be very
large and difficult to maintain. However, we can be smarter than
this. Recall from Lecture 3 that we may use an FST to create mor-
phological parses for a word: i.e. given a word return its stem and
affixes (e.g. f oxes → f oxˆs).

computational linguistics 11

Adding Sub-categorization Constraints

Subcategorization may be dealt with by adding extra features to
capture subject-object relations. It becomes helpful now to incorpo-
rate a notion of headedness11 into the feature structure rules and 11 For a thorough analysis of the fea-

tures required for sub-categorization
and long-distance dependencies,
see Sag et al. [2003]

so our grammars start to look analogous to what you will have en-
countered in your syntax classes. The incorporation of headedness
might be effected as follows 12: 12 This formulation won’t quite work as

is: it serves to illustrate the point in a
succinct space.


S

head 1




→
2


NP

head
�

agreement 3
�





VP

head 1
�

agreement 3
�

subj 2







VP

head 1

subj 3




→ 


V

head 1

obj 2

subj 3




2
��

�
can,




V

head
�

agreement
���

obj




VP

head
��



subj




NP

head
��






�

�
cans,




V

head


agreement


person 3rd

number sing






obj




NP

head
��



subj




NP

head
��






�

Including Morphological Information

So far we have assumed that we have a lexicon which has an entry
for all the inflected forms of a word: such a lexicon would be very
large and difficult to maintain. However, we can be smarter than
this. Recall from Lecture 3 that we may use an FST to create mor-
phological parses for a word: i.e. given a word return its stem and
affixes (e.g. f oxes → f oxˆs).

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 26 / 29



Alternatively use unification as the parsing operation

Alternatively we can use unification as the parsing operation instead of
just for feature checking:

X0 → X1X2

< X1 head agreement >=< X2 head agreement >

< X0 head >=< X1 head >

X0 → X1X2

< X0 head >< X1 head >

< X2 cat >= PP

X0 → X1 and X2

< X0 cat >< X1 cat >

< X1 cat >< X2 cat >

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 27 / 29



Alternatively use unification as the parsing operation

Alternatively we can use unification as the parsing operation instead of
just for feature checking:

X0 → X1X2

< X1 head agreement >=< X2 head agreement >

< X0 head >=< X1 head >

X0 → X1X2

< X0 head >< X1 head >

< X2 cat >= PP

X0 → X1 and X2

< X0 cat >< X1 cat >

< X1 cat >< X2 cat >

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 27 / 29



Alternatively use unification as the parsing operation

Alternatively we can use unification as the parsing operation instead of
just for feature checking:

X0 → X1X2

< X1 head agreement >=< X2 head agreement >

< X0 head >=< X1 head >

X0 → X1X2

< X0 head >< X1 head >

< X2 cat >= PP

X0 → X1 and X2

< X0 cat >< X1 cat >

< X1 cat >< X2 cat >

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 27 / 29



Lexical AVMs may be derived through unification

We have assumed we have a lexicon entry for all the inflected forms
of a word.

With a morphological analysis step we can return a word its stem and
affixes and then build the AVM from the pieces: foxes → fox^s

computational linguistics 12

Since each affix is associated with a specific grammatical function
we encode this within our feature structures. The feature structure
representing a lexical item is then simply the unification of the
feature structure representing its stem with the feature structure(s)
representing any affixes. For example we might have the following
feature structure listed in the lexicon:

�
ˆs,


head


N

agreement pl





�

�
fox,


head




N

agreement
��





�

On encountering the word, foxes, in a sentence we wish to parse, we
can now convert it to, f oxˆs, using our finite state transducer and
build the following feature structure to represent it:


head


N

agreement pl





�

head




N

agreement
��






=

head


N

agreement pl






Post Lecture Exercises

• * Complete exercises 15.1 and 15.2 from J&M.

• * Review the section in J&M on sub-categorization and, following
their notations, modify our toy grammar (Figure 1) so that it
over-generates less for sub-categorization. You may add extra
words and features as you need. If you have no problems with
that then also add the lexical item give to the language such that
it takes two NPs.

• Have a look at Sag et al. [2003] Chapter 4 for a motivated intro-
duction to the comp (Complement) and spr (Specifier) features.
Consider how this relates to the syntax you have learned in other
papers and think also about the expressiveness of the grammars
we are now able to create.

The starred items (together with those from Lecture 6) form the
work for the 3rd supervision.

References

I. Sag, T. Wasow, and E. Bender. Syntax: a formal introduction,
2003.

computational linguistics 12

Since each affix is associated with a specific grammatical function
we encode this within our feature structures. The feature structure
representing a lexical item is then simply the unification of the
feature structure representing its stem with the feature structure(s)
representing any affixes. For example we might have the following
feature structure listed in the lexicon:

�
ˆs,


head


N

agreement pl





�

�
fox,


head




N

agreement
��





�

On encountering the word, foxes, in a sentence we wish to parse, we
can now convert it to, f oxˆs, using our finite state transducer and
build the following feature structure to represent it:


head


N

agreement pl





�

head




N

agreement
��






=

head


N

agreement pl






Post Lecture Exercises

• * Complete exercises 15.1 and 15.2 from J&M.

• * Review the section in J&M on sub-categorization and, following
their notations, modify our toy grammar (Figure 1) so that it
over-generates less for sub-categorization. You may add extra
words and features as you need. If you have no problems with
that then also add the lexical item give to the language such that
it takes two NPs.

• Have a look at Sag et al. [2003] Chapter 4 for a motivated intro-
duction to the comp (Complement) and spr (Specifier) features.
Consider how this relates to the syntax you have learned in other
papers and think also about the expressiveness of the grammars
we are now able to create.

The starred items (together with those from Lecture 6) form the
work for the 3rd supervision.

References

I. Sag, T. Wasow, and E. Bender. Syntax: a formal introduction,
2003.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 28 / 29



Lexical AVMs may be derived through unification

We have assumed we have a lexicon entry for all the inflected forms
of a word.

With a morphological analysis step we can return a word its stem and
affixes and then build the AVM from the pieces: foxes → fox^s

computational linguistics 12

Since each affix is associated with a specific grammatical function
we encode this within our feature structures. The feature structure
representing a lexical item is then simply the unification of the
feature structure representing its stem with the feature structure(s)
representing any affixes. For example we might have the following
feature structure listed in the lexicon:

�
ˆs,


head


N

agreement pl





�

�
fox,


head




N

agreement
��





�

On encountering the word, foxes, in a sentence we wish to parse, we
can now convert it to, f oxˆs, using our finite state transducer and
build the following feature structure to represent it:


head


N

agreement pl





�

head




N

agreement
��






=

head


N

agreement pl






Post Lecture Exercises

• * Complete exercises 15.1 and 15.2 from J&M.

• * Review the section in J&M on sub-categorization and, following
their notations, modify our toy grammar (Figure 1) so that it
over-generates less for sub-categorization. You may add extra
words and features as you need. If you have no problems with
that then also add the lexical item give to the language such that
it takes two NPs.

• Have a look at Sag et al. [2003] Chapter 4 for a motivated intro-
duction to the comp (Complement) and spr (Specifier) features.
Consider how this relates to the syntax you have learned in other
papers and think also about the expressiveness of the grammars
we are now able to create.

The starred items (together with those from Lecture 6) form the
work for the 3rd supervision.

References

I. Sag, T. Wasow, and E. Bender. Syntax: a formal introduction,
2003.

computational linguistics 12

Since each affix is associated with a specific grammatical function
we encode this within our feature structures. The feature structure
representing a lexical item is then simply the unification of the
feature structure representing its stem with the feature structure(s)
representing any affixes. For example we might have the following
feature structure listed in the lexicon:

�
ˆs,


head


N

agreement pl





�

�
fox,


head




N

agreement
��





�

On encountering the word, foxes, in a sentence we wish to parse, we
can now convert it to, f oxˆs, using our finite state transducer and
build the following feature structure to represent it:


head


N

agreement pl





�

head




N

agreement
��






=

head


N

agreement pl






Post Lecture Exercises

• * Complete exercises 15.1 and 15.2 from J&M.

• * Review the section in J&M on sub-categorization and, following
their notations, modify our toy grammar (Figure 1) so that it
over-generates less for sub-categorization. You may add extra
words and features as you need. If you have no problems with
that then also add the lexical item give to the language such that
it takes two NPs.

• Have a look at Sag et al. [2003] Chapter 4 for a motivated intro-
duction to the comp (Complement) and spr (Specifier) features.
Consider how this relates to the syntax you have learned in other
papers and think also about the expressiveness of the grammars
we are now able to create.

The starred items (together with those from Lecture 6) form the
work for the 3rd supervision.

References

I. Sag, T. Wasow, and E. Bender. Syntax: a formal introduction,
2003.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 28 / 29



Lexical AVMs may be derived through unification

We have assumed we have a lexicon entry for all the inflected forms
of a word.

With a morphological analysis step we can return a word its stem and
affixes and then build the AVM from the pieces: foxes → fox^s

computational linguistics 12

Since each affix is associated with a specific grammatical function
we encode this within our feature structures. The feature structure
representing a lexical item is then simply the unification of the
feature structure representing its stem with the feature structure(s)
representing any affixes. For example we might have the following
feature structure listed in the lexicon:

�
ˆs,


head


N

agreement pl





�

�
fox,


head




N

agreement
��





�

On encountering the word, foxes, in a sentence we wish to parse, we
can now convert it to, f oxˆs, using our finite state transducer and
build the following feature structure to represent it:


head


N

agreement pl





�

head




N

agreement
��






=

head


N

agreement pl






Post Lecture Exercises

• * Complete exercises 15.1 and 15.2 from J&M.

• * Review the section in J&M on sub-categorization and, following
their notations, modify our toy grammar (Figure 1) so that it
over-generates less for sub-categorization. You may add extra
words and features as you need. If you have no problems with
that then also add the lexical item give to the language such that
it takes two NPs.

• Have a look at Sag et al. [2003] Chapter 4 for a motivated intro-
duction to the comp (Complement) and spr (Specifier) features.
Consider how this relates to the syntax you have learned in other
papers and think also about the expressiveness of the grammars
we are now able to create.

The starred items (together with those from Lecture 6) form the
work for the 3rd supervision.

References

I. Sag, T. Wasow, and E. Bender. Syntax: a formal introduction,
2003.

computational linguistics 12

Since each affix is associated with a specific grammatical function
we encode this within our feature structures. The feature structure
representing a lexical item is then simply the unification of the
feature structure representing its stem with the feature structure(s)
representing any affixes. For example we might have the following
feature structure listed in the lexicon:

�
ˆs,


head


N

agreement pl





�

�
fox,


head




N

agreement
��





�

On encountering the word, foxes, in a sentence we wish to parse, we
can now convert it to, f oxˆs, using our finite state transducer and
build the following feature structure to represent it:


head


N

agreement pl





�

head




N

agreement
��






=

head


N

agreement pl






Post Lecture Exercises

• * Complete exercises 15.1 and 15.2 from J&M.

• * Review the section in J&M on sub-categorization and, following
their notations, modify our toy grammar (Figure 1) so that it
over-generates less for sub-categorization. You may add extra
words and features as you need. If you have no problems with
that then also add the lexical item give to the language such that
it takes two NPs.

• Have a look at Sag et al. [2003] Chapter 4 for a motivated intro-
duction to the comp (Complement) and spr (Specifier) features.
Consider how this relates to the syntax you have learned in other
papers and think also about the expressiveness of the grammars
we are now able to create.

The starred items (together with those from Lecture 6) form the
work for the 3rd supervision.

References

I. Sag, T. Wasow, and E. Bender. Syntax: a formal introduction,
2003.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 28 / 29



Unification based parsing in the wild...

Focus on adequacy for a wide range of languages as well as tractable
for parsing

Examples include Lexical Functional Grammar, LFG (Bresnan and
Kaplan) and Head-driven Phrase Structure Grammar, HPSG
(Pollard and Sag)

Grammars tend to incorporate aspects of morphology, syntax and
compositional semantics:

If you are interested see: http://www.delph-in.net

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 29 / 29

http://www.delph-in.net

