
RICE: Remote Method Invocation in ICN
Michał Król

UCL
m.krol@ucl.ac.uk

Karim Habak
Georgia Tech

karim.habak@gatech.edu

David Oran
Network Systems Research & Design

daveoran@orandom.net

Dirk Kutscher
Huawei

dirk.kutscher@huawei.com

Ioannis Psaras
UCL

i.psaras@ucl.ac.uk

ABSTRACT
Information Centric Networking has been proposed as a new net-
work layer for the Internet, capable of encompassing the full range
of networking facilities provided by the current IP architecture. In
addition to the obvious content-fetching use cases which have been
the subject of a large body of work, ICN has also shown promise as
a substrate to effectively support remote computation, both pure
functional programming (as exemplified by Named Function Net-
working) and more general remote invocation models such as RPC
and web transactions. Providing a unified remote computation ca-
pability in ICN presents some unique challenges, among which
are timer management, client authorization, and binding to state
held by servers, while maintaining the advantages of ICN proto-
col designs like CCN and NDN. In this paper we present a unified
approach to remote function invocation in ICN that exploits the at-
tractive ICN properties of name-based routing, receiver-driven flow
and congestion control, flow balance, and object-oriented security
while presenting a natural programming model to the application
developer.

CCS CONCEPTS
• Networks → Naming and addressing; In-network process-
ing; Network architectures; Session protocols;

KEYWORDS
Information Centric Networks, NamedDataNetworking, in-network
processing, naming, thunks

ACM Reference Format:
Michał Król, Karim Habak, David Oran, Dirk Kutscher, and Ioannis Psaras.
2018. RICE: Remote Method Invocation in ICN. In ICN ’18: 5th ACM Con-
ference on Information-Centric Networking (ICN ’18), September 21–23, 2018,
Boston, MA, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3267955.3267956

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICN ’18, September 21–23, 2018, Boston, MA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5959-7/18/09. . . $15.00
https://doi.org/10.1145/3267955.3267956

1 INTRODUCTION
Much of today’s network traffic consists of data sent for processing
to the cloud and web-servers exchanging high volumes of dynam-
ically generated content. While today’s ICN networks can deal
efficiently with static data delivery, they have difficulty handling
service/function invocation [24]. In view of these limitations, mul-
tiple works have recently tried to extend ICN’s capabilities to deal
with dynamic content.

Notable among these efforts, Named Function Networking (NFN)
[29] and Named Function as a Service (NFaaS) [17] extend ICN’s
named data access model to a remote function invocation capability,
enabling consumers to request the network to execute functions
remotely. In NFN [29], for instance, function invocation corresponds
to independent computational processes, evaluated as expressions
in a functional programming model.

ICN provides several attractive benefits compared to remote invo-
cation over current network protocol stacks (e.g. CORBA, RESTful
HTTP[11]). Name-based routing allows the network to optimise
the placement of computations with automatic load distribution
and failure resiliency. The built-in object-based security of ICN
frees application designers from the need to craft custom solutions
in the common cases where channel security alone is insufficient.
Short-term caching brings latency benefits under transient error
conditions and mobility events, while long-term caching can sub-
stantially reduce server load for referentially transparent computa-
tions.

There have been several approaches for integrating computation
with ICN, as we discuss in more detail in Section 2. However, when
using them to realize real-world applications like web-style inter-
actions, several additional aspects beyond the fundamental Named
Function invocation concept need to be addressed:

Consumer authentication and authorization: a producer
should not blindly answer any consumer request. In basic
ICN, this protection is provided by cryptographic data object
integrity and encryption, i.e., only authorized consumers are
able to decrypt a received data object. In a Named Function
Networking environment, the computation may be an expen-
sive operation, so just relying on encryption and performing
computations without validating consumer authorization
may critically impede scalability of the whole approach.

Parameter passing: Remote function execution typically re-
quires a set of input parameters/arguments. In dynamic web
content creation for example, the volume of such parame-
ters (in bytes) can easily surpass the volume of the actual
returned data objects [24]. Adding larger sets of parameters
to Interest messages can introduce additional unsolicited

https://doi.org/10.1145/3267955.3267956
https://doi.org/10.1145/3267955.3267956
https://doi.org/10.1145/3267955.3267956

ICN ’18, September 21–23, 2018, Boston, MA, USA Michał Król, Karim Habak, David Oran, Dirk Kutscher, and Ioannis Psaras

traffic in ICN networks that could interfere with congestion
control.

Accommodating non-trivial computations: Unlike respond-
ing to an Interest message with a (possibly pre-generated)
static Data message, constructing responses by performing
general computations (that could in turn invoke further re-
mote computations) may take relatively long. In CCN/NDN,
forwarders keep Interest state for matching received Data
messages. The design and dimensioning of Pending Inter-
est Tables (PITs) is typically based on the assumption that
corresponding Data messages are received in a time frame
that is based on typical network RTTs (e.g., order of 10s
or 100s of milliseconds for wide-area networks). PIT state
is, therefore, short-lived by design. As a result, Application
Timescales can differ significantly from Network Timescales,
which must be considered by a general purpose function
invocation scheme.

In this paper, we aim to overcome these three limitations by
enhancing the ICN model with function-oriented capabilities while
preserving the core architectural and protocol design elements of
ICN networks. RICE is a general-purpose network-layer framework
that is currently missing from the ICN literature and can be applied
to any named-function networking context. The main contributions
of this paper are, therefore, as follows:

• We introduce a secure, 4-way handshake for ICN networks
in order to achieve shared secret derivation, consumer au-
thentication and parameter passing.

• We employ the concept of thunks [14] from the programming
language literature to decouple method invocation from the
return of results to enable long-running computations. The
thunk is used to name the results for retrieval purposes.

• We discuss additional data acquisition techniques in the
context of dynamic content.

• Finally, we provide a security evaluation, extensive simula-
tion and a prototype of the presented mechanisms.

The ultimate goal of the proposed framework is to enable in-
network function execution with client authentication and non-trivial
parameter passing, to support cases where computation takes longer
than PIT expiry time. We achieve this goal by decoupling application
processing time from PIT timers and network RTT. We argue that
this is a necessary feature of any name-based remote function invo-
cation scheme, where computation is accommodated in distributed
compute spots in local or wide area networks at the core or edge of
the network. The mechanisms we propose follow ICN principles
and require minimal and short-lived additional network state.

The remainder of the paper is organized as follows. In Section
2 we summarize previous work on function invocation for ICN.
The model and the design goals are discussed in Section 3, while
the design details of RICE are presented in Section 4. In Section
5 we provide a security analysis. Section 6 presents initial results
evaluating the design with simulations, a comparison to alternative
approaches, and a real-world prototype.

2 RELATEDWORK
Various approaches have been proposed to integrate dynamic com-
putation into ICN. In principle, generating a Data message as a

response to an ICN Interest message can always involve computa-
tion – from a protocol perspective, ICN is not limited to static data
delivery only. However, in order to specify computation requests, to
optimize their execution in a distributed system, and to implement
the corresponding platforms, different proposals have been made
in the past.

Named Function Networking (NFN) [29] and Named Function
as a Service (NFaaS) [17] are two exemplary developments towards
dynamic in-network computations in NDN. NFN and NFaaS extend
ICN to execute functions/services at any element in the network
such as intermediate/edge nodes and end-user devices. While in
ICNs content is fetched from the network, named functions provide
results of dynamic computed content by evaluating expressions.
NFN utilises λ-expressions in the names to identify the requested
computations, while NFaaS focuses on hierarchical names and en-
capsulating functions in unikernels [19].

Within CCN [16], SCN [6] and NextServe [21] were proposed
to enhance the network’s capabilities by serving dynamic content.
Soccer [26] builds a control layer on top of CCN for the manipula-
tion of the underlying Forwarding Information Base (FIB) so that
it always points to the best service instance at any point in time.
In CCNxServe [28], authors focus on dynamic service deployment
and scalability in a content-centric networking implementation.

While these implementations differ significantly among them-
selves and to our framework, they also share some common features
with RICE:

• They use Interests to request computation and allow com-
putation requests to be satisfied with cached results of refer-
entially transparent functions.

• It remains transparent to the client whether the resulting
data is pre-generated, served from a cache or generated on-
demand.

Closer to our work, Gasparyan et al. presented an extension,
enhancing SCN with session support [12]. The system introduces 3
new types of messages and a 2-way handshake that creates perma-
nent FIB entries allowing the consumer to reach the same producer
multiple times. However, the framework does not allow for param-
eter passing, creates permanent entries that can be exploited by
malicious nodes and is susceptible to Denial of Service attacks.

None of the related work, however, includes the necessary mech-
anisms to deal with i) consumer authentication and authorization,
ii) parameter passing, and iii) dynamic content retrieval [29] [17] [6]
(apart from [12], which comes with its own weaknesses).

All of these needed capabilities interact with the question of
how to manage Network versus Application Timescale. If the data
generation time is longer than the PIT expiry timer, the future
data name has to be communicated to the consumer who then
will attempt to fetch the newly produced data by sending regular
Interests. Such an approach increases the overall communication
delay and requires the producer to globally advertise the newly
created content, ultimately limiting the usability of those systems.

In [25] and [8], authors present application-level NACK packets
to notify consumers when dynamically generated content will be
ready in order to avoid too frequent polling. In this paper, we add to
the discussion by presenting new results and allowing consumers
to reliably reach the corresponding producers.

RICE: Remote Method Invocation in ICN ICN ’18, September 21–23, 2018, Boston, MA, USA

3 MOTIVATION AND DESIGN GOALS
Our analysis of existing approaches has led us to rethink the rela-
tionship of ICN and distributed computing. Many remote method/-
function invocation schemes and frameworks are fundamentally
trying to leverage the ICN Interest-Data interaction scheme to
request function execution and then return results to the initiat-
ing party. Such schemes could potentially be used for realizing
web-style communication, service chaining and other application
services.

However, this approach is not viable for all but the most trivial
applications:

1) In ICN, Interest forwarding establishes pending Interest state
in the network. Pending Interest Tables (PITs) keep state per In-
terest message as "breadcrumbs" that are used to forward Data
messages back to the consumer. In addition to that, PITs also en-
able Interest aggregation (suppression of Interest forwarding when
there is already a pending Interest for the same named data object).
This, together with opportunistic caching, enables ICN’s efficiency
and producer offloading features. Correct ICN forwarding requires
Pending Interest state to expire fast (on the order of network RTT)
so that retransmitted Interests will actually be forwarded upstream.
ICN Interest retransmissions are not an exception in ICN: they
can occur in the presence of packet loss, congestion, or during con-
sumer mobility. Because Pending Interests have to expire, producers
cannot take an arbitrarily long time to respond to Interests – other-
wise their Data messages would just be dropped on the their way
downstream (because there would not be any next-hop forwarding
information). This makes the straightforward ICN Interest-Data
interaction unsuitable for invoking computations that take longer
than a few RTTs: application/computation completion Timescales
can be orders of magnitude larger than ICN Network Timescales.

2) ICN congestion control relies on the notion of flow balance,
i.e., every Data message corresponds to exactly one Interest mes-
sage. ICN’s receiver-driven congestion/flow control can thus adjust
the Interest sending rate to regulate the Data sending rate at pro-
ducers (or on-path caches). The assumption is that Data messages
consume the bulk of the resources on network links and in forward-
ing queues. Therefore, Interest messages act as congestion control
signals (in the reverse sense as TCP ACKs work) and are not in-
tended to carry much additional data other than the information
needed to forward the Interest correctly. Adding additional data
(for example, function parameters) would thus lead to more traffic
(more bits) in the network carried in messages that are preferen-
tially dropped (or NACKed) under congestion. Dropped Interest
messages are typically only observable through Data message time
out. We therefore concluded that requiring large Interest messages
for function invocation is not viable for non-trivial computation
requests.

With these observations in mind, we designed RICE as a gen-
eral Remote Method Invocation (RMI) service – providing a robust
and secure basis for a wide range of applications and in-network
computation scenarios, including scenarios where method invo-
cation requires a significant amount of input data and involves
computations that take significantly longer than a network RTT to
complete.

RICE is independent of any particular function execution envi-
ronment. RICE provides all the required ICN protocol mechanisms

and conventions for clients and servers and can serve as an under-
lying platform to support frameworks such as NFN and NFaaS (as
well as any other in-network compute framework that utilises core
ICN principles). In the description of RICE we use the following
terminology:

Consumer: ICN protocol entity that is sending an Interest
message

Producer: ICN protocol entity that is sending a Data message,
replying to a received Interest message

Client: RICE protocol user that wants to request a remote
method invocation

Server: RICE protocol user that is processing and answering
the remote method invocation request (this may be a logical
entity that is represented by more than one ICN protocol
entity)

3.1 Design Goals
We have chosen the following design goals for guiding the devel-
opment of RICE :

Decouple application time scale from network time scale:
RICE does not map remote method invocation directly to one In-
terest/Data exchange for the reasons discussed above. We want
clients to request remote method invocation from a server without
changing the network behavior with respect to Pending Interest
management.

Support client authorization: A RICE server should be able
to authorize clients before committing resources such as state, pro-
cessing power etc. A server that blindly accepts any RMI request
opens itself to computational and/or memory overload attacks. This
also implies that the authorization mechanisms must be designed
so that performing authorization itself does not overload servers
and open a vulnerability to computational attacks.

Support non-trivialmethod invocationwith arbitrarily com-
plex parameter sets

Be robust and ICN-friendly to a mix of RICE and non-
RICE traffic: we want RICE to coexist seamlessly in existing ICN
networks, e.g., it should adhere to the same flow balance principles.
The main consequence is that we do not transmit RMI parameters
in Interest messages.

Support non-trivial, long-running computationswith large
amounts of result data

Support session-like interactions,where a client and a server
use a sequence of RICE exchanges: RICE result data should be
chunkable, and it should also be possible to retrieve result data that
is generated over time, for example in multiple invocations in the
same “session”.

Allow ICN caching for referentially transparent method
invocations: ICN generally supports location-independent data
access and opportunistic caching. In RICE, we want to support refer-
entially transparent functions efficiently, i.e., function expressions
that can be replaced with the result of the actual function execution.
In other words, RICE is able to cache the result from such function
invocations and enables the network to answer subsequent Inter-
est messages from caches. Since not all functions are referentially
transparent (some functions may depend on other data from the
environment that is not specified in arguments), our framework

ICN ’18, September 21–23, 2018, Boston, MA, USA Michał Król, Karim Habak, David Oran, Dirk Kutscher, and Ioannis Psaras

distinguishes between functions that are referentially transparent
and those that are not.

Adhere to ICN principles: RICE should not give up important
ICN principles, such as flow balance, implicit support for consumer
mobility, consumer anonymity (no source addresses). This last prop-
erty is worth mentioning, because some ICN extensions/applica-
tions rely on the fact that one end of an interaction would provide a
globally routable “source” address to the other end to achieve “call-
back” behavior or generally enable bidirectional communication.
Since such schemes would expose client identity information to the
network (and to peers), we deem this approach an unacceptable
deviation from ICN principles. Client identities should be exposed
only to the application layer. Other forms of identifiers that help
the network for maintaining reverse forwarding state to clients
should be designed so that they do not expose clients’ identities.

Be compatible with ICN extension mechanisms: Some re-
cent proposed extensions make benign changes to ICN forwarding
behavior (without compromising general interoperability). One
example would be fast forwarding information updates using tech-
nique such as Map-ME [5]. RICE should be designed to work with
such extensions. In this particular case, this means that RICE should
support client and server mobility in a Map-ME-enhanced network.

Make minimal changes to ICN protocols and forwarder
behavior: We want to allow for some changes to ICN forwarder
behavior, but these should be limited and designed so that they do
not complicate forwarder implementations or impair their perfor-
mance.

Our general guideline for achieving these goals is to prioritize
robustness, security and scalability over absolute efficiency (with
respect to number of handshakes and message exchanges), while
still arriving at a design with reasonable efficiency.

4 RICE REMOTE METHOD INVOCATION
Remote Method Invocation (RMI) operations in RICE are split in
two ICN interaction phases: 1) RMI Initiation (eventually triggering
the remote method execution), and 2) the Result Retrieval. The
RMI Initiation phase is designed to complete in Network Timescale
(on the order of a few RTTs), whereas the remote method execu-
tion is decoupled from that and can take as long as required. The
Result Retrieval phase can consist of several ICN Interest-Data ex-
changes (for chunked results or for computations that generate
results iteratively).

4.1 Naming
Wedescribe a generic naming scheme for remotemethod invocation
that can be used with multiple existing frameworks. We distinguish
between Function Names and Thunk Names (Fig. 1). A function
name identifies a method requested by a client that can be executed
by any server able to perform the computations. In contrast, a thunk
name identifies a specific method instance already being run on a
specific node.

When a client initially requests the invocation of a referentially
transparent function, the name in the Interest must unambiguously
specify both the invoked function and the set of input parameters.
The function part can be system-specific (e.g., λ-expressions in
[29] or expressed as a hierarchical name structure as in [17]), but
must unambiguously identify the function to invoke. The input

function name

Function Names

input hash

/foo/functionA /3fg3bc42

function name unique

/foo/functionA /cbdt3wbf

Thunk Names
forwarder function

/bar/node3 /functionA

state

/f357hd3

Referentially transparent

Referentially opaque

Figure 1: Naming convention.

parameters can be represented directly when very small in size
(e.g., username, number of iterations to perform), or as a hash
when larger.1 One trade-off is the increased size of the Interest
message versus the extra round trip for fetching the actual input
parameters. Another, perhaps more important consideration is that
the parameter values are protected by existing ICN encryption
mechanisms when fetched via reference by the server, but would
require custom confidentiality mechanisms by the application if
sent in the Interest message.

For referentially opaque functions, the result can be different
even when using the same input parameters. Every invocation
(either from the same client or from other clients) must lead to
a new computation instance. Therefore, Interests for triggering
referentially opaque function invocations must use a unique name
for each invocation, while Interest retransmissions from the same
client must use the same name. This prevents the network from ag-
gregating the corresponding Interests and limits cached responses
to only answer retransmitted interests from a individual consumer.
To achieve this, the client includes a name component that dis-
tinguishes its request from those generated by other clients. This
component should be chosen by the client such that other nodes
cannot predict the value.2

The thunk name must unambiguously identify the server’s for-
warder, the instantiated function and the function’s internal state3.
In that way, when the client uses the thunk name in consecutive
requests, the Interest can be forwarded to the correct server and
dispatched to the application possessing the associated result data.
With thunk names, we do not need to distinguish between names
for referentially transparent and opaque functions. They unambigu-
ously identify a handler to a function execution instance and it is
up to the server to return the same or different handlers to multiple
clients.

4.2 Handshake
We propose a 4-way handshake which serves the purposes of i)
deriving a shared secret, ii) authenticating and authorizing clients,
and iii) providing input parameters to functions. In the following,
we begin by describing the 4-way handshake and we continue by
showing how this handshake serves those three purposes.

1The choice of the actual hashing method can be left to the application.
2Using predictable information (e.g., a MAC address) opens an additional attack surface
and can leak client’s sensitive information.
3i.e., input parameters, chunk number

RICE: Remote Method Invocation in ICN ICN ’18, September 21–23, 2018, Boston, MA, USA

Figure 2: 4-way handshake. The procedure
enables bidirectional information exchange
between the consumer and the producer.

Figure 3: Handshake temporary FIB entry. Figure 4: Thunks. The consumer retrieves function
thunk name and uses it to download the result when
the computation is finished.

A client starts a 4-way handshake by sending an Interest message
I1 towards a server (Fig. 2). Similarly to the TCP SYN flag, the
message contains an additional TLV Handshake field4. The field
contains an identifier that is chosen by the client and distinguishes
among different handshakes (Fig.3). Upon receipt of the Interest,
each forwarder creates a corresponding PIT entry as with regular
Interests. Forwarders also inject a new temporary entry in the FIB
formed from the identifier and pointing to the face on which the
Interest was received. This FIB entry has a short expiry time after
which it is deleted (we experiment with different expiry time values
and discuss the implications for FIB performance in Sec. 6).

When the server receives the Interest, it responds with an I2
Interest message and forms the name from the received identifier.
The Interest thus follows the previously established FIB entries
towards the client. The forwarder also increases the expiry timer
of I1’s PIT entry. At this point, the client must be ready to respond
and send a D2 Data message.5 When the server receives D2 it
allocates resources for the computation for the client and sends
back a confirmation in D1 Data message. Delivery of D1 is possible
despite the extra I2/D2 exchange because I1’s PIT entry timer was
increased by I2.

Interest I1 of the first handshake contains a function name that
is delivered to a server advertising the corresponding prefix. At
the end of the first handshake, in D1, the server returns its thunk
name. This name can be then used by the client in I1 message of
consecutive handshakes to assure future invocations reach the same
function instance.

4.2.1 Shared Secret Derivation. Common secret derivation plays
an important role in many security protocols. Once a common
secret is established, both parties can encrypt the communication
using symmetric cryptography.6 Common secret derivation (e.g.,
via Diffie-Hellman Key Exchange) requires sending data in both
directions between the involved parties and is clumsy to implement
in vanilla ICN networks where not all nodes have globally routable
prefixes. Using one or multiple handshakes as described above allows

4This description assumes NDN[30] implementation of ICN. However, our solution
can be easily adapted to other implementations such as CCNx[2]
5Authorization information and parameters may be larger than what can be carried in
a single D2 message. Therefore, multiple I2/D2 exchanges using the built-in chunking
capabilities of the underlying ICN protocols can be employed
6Symmetric encryption is less CPU-intensive than public key infrastructure (PKI) and
can be easier to implement when the same function is hosted by different servers, and
the client does not know which one will handle the request.

use of any symmetric key scheme to secure the communication over
arbitrary paths.

4.2.2 Client Authentication. Upon reception of a method invok-
ing Interest, the server normally wants to verify the identity of
the client and apply an authorization policy. A naive approach
would include client credentials and function parameters directly
in the Interest name or payload. However, as noted earlier this
can significantly increase the size of the message and lead to addi-
tional, non-congestion-controlled, messages in the network[24]. A
straightforward way of authenticating clients in ICN would be to
use either signed Interests or command Interests. While theoreti-
cally this could be done, in practice it would introduce problems
for the design of scalable, high-performance servers. If a server had
to validate client signatures and certificates before being able to de-
cide how to process (or not) a request, this could lead to significant
server load.

Reliable and secure authentication requires multiple messages
to be exchanged between the server and the client. Utilizing the
handshake for client authentication, specially the exchanged I2/D2
messages, we achieve this goal and we decouple it from function invo-
cation and input parameter passing. In addition, by using the I2/D2
messages for client authentication and avoiding adding authenti-
cation information in the original interest (I2/D2), our handshake
mechanism becomes protected against any record-and-replay attack
by a malicious party which can intercept the traffic. Once authenti-
cated, the client creates a security token that can be included as a
last component of the thunk name. In further communication such
as commands (i.e., pause, stop) or referentially opaque functions,
the token can changed for each consecutive Interest message (i.e.
based on the last received Data message).

It should be noted that RICE can rely on idiomatic ICN mecha-
nisms for server authentication, i.e., validate the signatures on Data
or signed Interest messages. The client could also encrypt input
parameters using the public key of the server. We leave a detailed
description to future work.

Following ICN principles, clients should not authenticate the
server performing computations, but rather authenticate the re-
turned result. If submitted input contains confidential data, it can be
encrypted and shared using existing ICN access control techniques
[15].

ICN ’18, September 21–23, 2018, Boston, MA, USA Michał Król, Karim Habak, David Oran, Dirk Kutscher, and Ioannis Psaras

4.2.3 Input Parameters. Many functions require considerable
input to complete the requested task (e.g., frames for image process-
ing). When the data is hosted on the network with a routable name,
the server can simply request it with Interest messages. However,
in common cases the input is present only at the requesting client,
who typically does not possess a routable prefix.

Wemodel input parameters to remote functions on the passing of
arguments "by reference" in regular function calls. Since the server
cannot access memory in the client, we use the I2/D2 Interest/Data
Exchange as a "callback" from the server to the client to fetch the
input parameters. This preserves the ICN principle that data is never
pushed to the server if not requested. The server piggybacks on the
PIT entry established by I1 to reach the client and pull the required
data. If the input contains sensitive information, the client can
encrypt it using a common secret derived in previous handshakes
as described above.

4.3 Dynamic Content Retrieval using Thunks
In dynamic content generation or function execution, the server
may require a significant amount of time to create the requested
data. In this section, we describe our use of thunks to allow clients
to retrieve computation results.

Thunks are illustrated in Fig. 4. The client starts by sending an
Interest with a function name. Thunks allow multiple clients calling
the same referentially transparent function with identical param-
eter sets to share one PIT entry and efficiently retrieve the data,
while keeping entries separate for referentially opaque computa-
tions. Upon receipt of the Interest, the server starts the requested
computation and immediately responds with a thunk Data message.
For the network, the thunk does not differ from a regular Data
message that consumes the pending PIT entry. The payload of the
message contains a thunk name and an estimated completion time.
The client waits for the time indicated in the server’s response and
issues a new Interest with the received thunk name.

If the computation has finished, the function responds with a
Data message containing the result. If the server mis-estimated the
completion time and the data is not ready, it returns the same thunk
target with an updated completion time estimate.

Thunks allow for efficient dynamic content retrieval while minimis-
ing the state present on intermediary nodes. In case of client mobility,
Thunks provide an extra advantage: when the client changes its
location during the data generation, the established thunk remains
valid and can be used to retrieve the result from the client’s new
location.

4.4 Alternative Retrieval Techniques
While thunks represent the most robust approach in a wide range of
scenarios (see Sec. 6 for detailed results), in this section we consider
hypothetical alternative techniques to retrieve dynamic content.

4.4.1 Network Timescale Interest Timers. In this approach the
client assumes computations complete in a small number of net-
work RTTs and hence sets his Interest Lifetime based on Network
Timescale.7 The client sends its first Interest using a function name

7RTT estimation is important for anything to work effectively, irrespective of whether
one chooses to operate the remote method invocation using Network or Application
Timescale. For example, nearly all workable congestion control schemes rely on some
form of RTT estimation.

and upon its reception, the server starts generating the content.
If the generation process takes longer than the Interest Lifetime,
the PIT entry expires. In this case, the client resends the Interest
using the same name in an attempt to recover since it cannot tell
the difference between a lost interest and a delayed response (Fig.
5). When the data is created, it is immediately sent to the client.
Apart from the increased overhead of sending multiple Interests,
the Network Timescale approach comes with another major weak-
ness: when multiple servers are present, the network in general
does not guarantee delivery of Interests from the same client to the
same server.

4.4.2 Application Timescale Interest Timers. In this alternative
approach to Network Timescale , the client sets Interest Lifetime long
enough to cover the entire computation time (in addition to the
network latency). Therefore PIT entries are kept during the whole
data generation process (Fig. 6). The client needs to send only one
Interest that will be satisfied when the data is created. In error-free
conditions, nodes exchange only the minimal 2 messages to retrieve
a data chunk, and unlike Network Timescale, Application Timescale
can support multiple servers. However, the intermediary nodes
need to keep state for the whole time of data generation. Moreover,
if the Interest is lost, the client does not detect the loss and send a
new Interest until the Application Timescale timer expires.

4.4.3 Interest Acknowledgements. It is possible to ameliorate
the long loss recovery time of Application Timescale approach by
adding Interest Acknowledgement messages to the ICN protocol
(Fig. 7). The client can therefore use an Interest Lifetime of Net-
work Timescale. The client starts by sending an Interest with a
function name. Upon reception of the message, the server starts
the computations and responds with an ACK message. This (provi-
sional) acknowledgement is a separate type of message and must
be recognised by all the forwarders. The ACK does not consume
the pending PIT entry in the forwarders of the original Interest
message, but increases its expiry time by enough to cover the ex-
pected response time. The PIT entry will thus be maintained until
the requested computations are finished. When the server finishes
the task it simply responds with a Data message. The addition of
ACK packets allows for faster detection and recovery of Interest
loss, but the solution remains vulnerable to network dynamics and
client mobility8.

5 SECURITY AND PRIVACY ANALYSIS
By building on a well-studied ICN protocol framework, our ap-
proach to remote method invocation shares the fundamental secu-
rity advantages and difficulties of those protocols [3, 7, 23]. RICE em-
ploys native CCN/NDN machinery for cryptographic data integrity,
origin authentication, confidentiality, and key management [20].
Similarly, we share the privacy problems and limitations of extant
ICN protocols [13]. In general, the additional threat that needs to
be addressed is a computational or state-creation attack against a
server by un-authorized clients. These threats request long-running
computations, or flood the server with remote invocation requests
that start useless computations [4], [18].

8Acks can also introduce a conundrum for security - if they are not signed by the
server it is possible for off-path attackers to manufacture them. If they are signed,
there is increased exposure to computational attacks on the server.

RICE: Remote Method Invocation in ICN ICN ’18, September 21–23, 2018, Boston, MA, USA

Figure 5: Network Timescale. The Interest
Lifetime is set based on network RTT
estimation. The consumer resends the
Interest if the computation takes more time.

Figure 6: Application Timescale. The
Interest Lifetime is set based on estimated
computation time.

Figure 7: Acknowledgements. The Interest
Lifetime is set based on network RTT
estimation. The returning ACK inflates PIT expiry
timer to match estimated computation time.

In this section, we concentrate on the vulnerabilities associated
with RICE, and provide a brief security analysis of our machinery.
The proposed 4-way handshake provides secure input parameter
passing. It does so by fetching the parameters via the Interest-Data
exchange "callback" from the server to the client. Such callbacks
could open a reflection attack via interest flooding [7] if a globally
routable name were used for the callback operation. However, the
reverse-pathmechanism and non-routable name RICE uses confines
knowledge of the client’s input parameter set to the server and
on-path forwarders. The remaining vulnerability is the need to
maintain forwarding state for the entire duration of the four-way
handshake, rather than just a two-way exchange.

When a client sends I1 towards a producer, it creates additional
state in FIB tables on all the intermediary forwarders. However,
similarly to PIT entries, the created state is purged when its timer
expires. If the timer is set to the same value as the PIT entries divided
by 2, it does not expand the attack surface and existing Interest
flood prevention techniques can be applied [3]. Upon reception of
I1, the producer does not create any local state or allocate resources
for the client. This protects our system from DoS attacks similar
to the TCP SYN flood attack [9]. When the producer responds
with the I2 message, that follows the trail created by I1. Such an
approach assures that I2 is delivered only to the client initiating the
session and eliminates the threat of using the producer as a spam
bot. Following ICN principles, the data is effectively pulled by the
producer from the consumer assuring that the producer does not
receive large volume data that it did not request.

6 EVALUATION
Our evaluation focuses on the core RICE feature – the dynamic
content retrieval using Thunks. We implemented RICE using NDN
[30] and did our evaluation on ndnSim v2.5 [22]. The default PIT
entries expiry time is set to 1s . We make our implementation open
and publicly accessible to the research community.9

6.1 Handshake Evaluation
In this section, we evaluate the overhead introduced by the 4-way
handshake between a server and a client. We start by evaluating
the number of messages sent by both nodes for different loss rates
(Fig. 8). We provide results for different expiry time values for
9https://github.com/mharnen/timers

the ephemeral FIB entries. When the expiry time value is set to
1xRTT, increasing the loss rate causes many more messages being
exchanged by both parties. Even if a singlemessage is lost, thewhole
processmust be started from the beginning, increasing the overhead.
When setting the expiry time value to 2xRTT this influence is
much less visible. When I2 is lost (Sec. 4.2), the server can resend it
without waiting for the client to restart the whole process. However,
increasing the expiry time to higher values above 2xRTT does not
further reduce the overhead.

We repeat the test, this time measuring the completion time of
the whole process (Fig. 9). Similarly to the number of exchanged
messages, the completion time is heavily influenced by message
loss when the expiry time is set to RTT. When setting the expiry
time to 2xRTT, both parties can resend single messages instead of
starting the whole process from scratch. The completion time thus
increases less with message loss rate. Again, further increasing the
expiry timer does not significantly reduce the completion time.

We conclude that 2xRTT represents an optimal value for the
ephemeral FIB entry expiry time and the best trade-off between the
state size and the number of exchanged messages.

6.2 Data Retrieval Techniques
Next, we compare Thunks against Acknowledgements, Network
Timescale, and Application Timescale.We perform the evaluation in
a simple line topology containing 3 nodes: a client, an intermediary
node and a server. We set data generation time to 5s , Network
Timescale to 1s 10, loss rate to 0.01 and Application Timescale to 5s
unless stated differently. For the evaluation, we first assume that the
server is able to correctly estimate the time required to generate the
requested data and then we evaluate the impact in bandwidth and
delay of mis-estimation.11 When evaluating Application Timescale,
we assume that the PIT expiry time is equal to the data generation
time.

6.2.1 Interest Satisfaction Time. We begin by measuring how
much time the network requires to deliver the generated data to
the client.

10default PIT expiry time value in NDN
11Inaccuracy in the time estimation of computation for real systems could be biased
either way depending on the relative importance of bandwidth (for retransmitted
thunk interests) versus delay (due to waiting longer to transmit the thunk)

https://github.com/mharnen/timers

ICN ’18, September 21–23, 2018, Boston, MA, USA Michał Król, Karim Habak, David Oran, Dirk Kutscher, and Ioannis Psaras

 4

 4.5

 5

 5.5

 6

 6.5

 0 0.05 0.1 0.15 0.2 0.25

M
e
ss

a
g
e
s

S
e
n
t

Packet Loss Ratio

1xRTT
2xRTT
3xRTT

Figure 8: Handshake
Overhead.

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.05 0.1 0.15 0.2 0.25In
te

re
st

 S
a
ti

sf
a
ct

io
n
 T

im
e
[s

]

Packet Loss Ratio

1xRTT
2xRTT
3xRTT

Figure 9: Handshake
Completion Time.

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

In
te

re
st

 S
a
ti

sf
a
ct

io
n
 T

im
e
[s

]

Packet Loss Ratio

Thunks
Net Timescale
App Timescale

ACK

Figure 10: Interest
Satisfaction Time.

 0

 2

 4

 6

 8

 10

 12

-4000 -2000 0 2000 4000In
te

re
st

 S
a
ti

sf
a
ct

io
n
 T

im
e
[s

]

Estimation Error[ms]

Thunks
Net Timescale
App Timescale

ACK

Figure 11: Number of Interests sent to re-
trieve a data chunk.

Fig. 10 presents the impact of increasing packet loss rate. With-
out any lost messages, all the approaches achieve the same minimal
Interest satisfaction time. With increasing loss rates, Thunks, Net-
work Timescale and ACKs require slightly more time to deliver the
data. This is because when an Interest is lost, those approaches need
to wait for 1s for the PIT entry to expire and then retry the transmis-
sion. In contrast, when using Application Timescale, the PIT entry
expires only after 5s , significantly delaying any re-transmissions.
When using Network Timescale only loosing the last Interest (sent
when the computation is finished) increases the satisfaction time.
When previous one are lost the satisfaction time remains unaffected.
This applies to ACK messages when using ACKs as well. This is
why Thunks achieve slightly higher satisfaction time.

We proceed by evaluating the impact of generation time mis-
calculation. Servers can only estimate the amount of time required
to compute the results and this estimation can be imprecise. Fig.
11 shows the impact of over (negative values) or underestimating
the data generation time. When the data is generated before the
declared time, ACKs, Network and Application Timescales can
retrieve the data right away. However, Thunks do not keep state
on intermediary nodes and thus cannot react before the declared
time. If the server needs more time to compute the results, it sends
back an updated time generation value instead of the actual data.
In this case, all the solutions behave alike – adapt and retrieve the
data as soon as it is ready.

6.2.2 Overhead. Next, we focus on the number of messages re-
quired to retrieve one data chunk.When usingApplication Timescale,
the client sends only one Interest that will be satisfied when the
data is generated. A client using Acknowledgements also has to
send only one Interest per Data message. However, in this case, the
server needs to confirm its reception by generating an acknowledge-
ment. When using Thunks, the client generates two messages per
data chunk - the first one to get the thunk name and the second one
to retrieve the generated data. Finally, with Network Timescale, the
client sends an Interest every second regardless the data generation
time.

Fig. 12 presents the introduced overhead for different message
loss rates. All the solutions are only slightly affected by the increas-
ing message loss ratio. When an Interest is lost, all the techniques
simply perform a re-transmission. Network Timescale, in spite of
sending more packets maintains almost unchanged overhead. This
is because the client needs to send an additional Interest only when
the last one transmitted before retrieving the result is lost.

We then investigate the impact of increasing generation time on
the number of sent Interests (Fig. 13). Thunks, ACKs and Applica-
tion Timescale maintain the same number of exchanged messages.

In contrast, when using Network Timescale, the client generates
one Interest per second. The overall number of sent Interests thus
increases linearly with the data generation time.

We proceed, by checking the impact of generation time mis-
calculation (Fig. 14). When the data is produced before the esti-
mated time, Network Timescale decreases the number of generated
Interests, while other techniques remain unaffected. If the deadline
is even slightly exceeded, ACKs and Application Timescale have to
repeat the data retrieval process. On the other hand, thunks toler-
ate up to 1s underestimation without sending additional packets.
Network Timescale increases the number of generated Interests
proportionally to the data generation time.

6.2.3 State size. We measure the maximum amount of state
kept at intermediary forwarders expressed in number of pending
PIT entries. Each client sends Interests for 10 different functions
per second.

Fig. 15 presents the impact of increasing data generation time.
Acknowledgements, Network and Application Timescales keep
state on the intermediary node through the whole time of data
generation process (Network Timescale, refreshes the state every
second). When the server takes longer to generate the data, the
state increases linearly as well. On the other hand, Thunks do not
keep any state on the intermediary nodes when waiting for data
and are not influenced by changing the generation time.

We continue by investigating the impact of loss rate on the
maximum state size with data generation time fixed to 5s (Fig. 16).
Again, thunks remain almost unaffected by loss rate. The small
amount of state is experienced only when an Interest is lost and
an entry remains in the PIT table until it expires. With increasing
loss rate, all the other solutions take longer to complete the data
retrieval and state size is significantly increased.

The two previous tests show only the highest recorded state
for each investigated scenario. We provide a better insight into
the state size by showing state size evolution in Fig. 17 for 5s data
generation time and 0.1 loss rate. Thunks record the lowest amount
of state that rises only when a message loss occurs. On the other
hand all the other solutions quickly increase the state stored on
the intermediary forwarders and keep it high during the whole
simulation period.

6.2.4 Large Topology Evaluation. We continue the evaluation
on a large network using the RocketFuel 1239 - Sprintlink topology
[27], containing 319 nodes. We choose routers having only one link
as clients (30 nodes) and randomly deploy 6 servers. We consider a
domain of 100 services, randomly spread among the servers so that
each service is present on at least 3 servers. Each service requires

RICE: Remote Method Invocation in ICN ICN ’18, September 21–23, 2018, Boston, MA, USA

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Pa
ck

e
ts

 S
e
n
t

Packet Loss Ratio

Thunks
Net Timescale
App Timescale

ACK

Figure 12: Packets sent for
different loss rates.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Pa
ck

e
ts

 S
e
n
t

Data Generation Time[ms]

Thunks
Net Timescale
App Timescale

ACK

Figure 13: Packets sent for different
Data Generation Times.

 0

 2

 4

 6

 8

 10

 12

-4000 -2000 0 2000 4000

In
te

re
st

s
S
e
n
t

Estimation error[ms]

Thunks
Net Timescale
App Timescale

ACKs

Figure 14: Number of Interests sent to retrieve a data
chunk.

 0

 20

 40

 60

 80

 100

 120

 140

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
ta

te
 s

iz
e

Data Generation Time[ms]

Thunks
Net Timescale
App Timescale

ACK

Figure 15: Forwarder state size.

 0

 20

 40

 60

 80

 100

 120

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

S
ta

te
 s

iz
e

Packet Loss Ratio

Thunks
Net Timescale
App Timescale

ACK

Figure 16: Forwarder state size.

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20

P
IT

 s
iz

e

Time[s]

Thunks
Net Timescale
App Timescale

ACK

Figure 17: Evolution of state size in time.

5s to complete. Each consumer generates 1 request per second for
1 out of 5 randomly chosen services. We assume that each server
can execute at most 5 function at the same time and use a load
balancing round robin strategy on forwarding nodes.

Fig. 18 presents cumulative distribution of Interest satisfaction
time for referentially opaque methods. Thunks retrieve the majority
of the results within 5s which represents the optimal value. Net-
work Timescale records much higher retrieval time. This is because
consecutive Interests for the same method can be forwarded to
different servers triggering parallel computations. This also applies
to Application Timescale and Acknowledgements when an Interest
is lost. Application Timescale performs worse than Acknowledge-
ments as it requires more time to perform a re-transmission.

We repeat the same tests for referentially transparent methods
and enable result caching (Fig. 19). Interests can now be directly
satisfied by already computed results, decreasing the satisfaction
time for all the techniques. Surprisingly, thunks experience lower
rate of returned cached results (values below 5s) than other solu-
tions. This is because results can be cached under method or thunk
names (when requested for the first time) directly decreasing cache
hit ratio. One possible remedy entails using thunk names only as
forwarding hints [1] and keeping method names in all the Interests.
However, such a solution requires support for forwarding hints by
every forwarder in the network.

All the techniques except network time require the producer to
know or estimate the time required to generate the result. However,
while with thunks the consumer can receive this information in the
first Data message, with Application Timescale and ACKs the con-
sumer needs to know it in advance to correctly inflate the duration
of the PIT entries. Thunks also exhibit the lowest overhead and
scale well with increasing number of requests, but they come with

a cost of the consumer not being notified if the data is generated
before the extimated completion time.

6.3 FIB performance considerations
Forwarding tables in routers are usually designed with algorithms
strongly biased for reads over writes. Our handshake design how-
ever requires changes to the FIB at a rate that is some fraction of
the rate of change to the PIT. One approach of course is to choose
a FIB access algorithm with excellent write performance and no
read/write locks that could interfere with normal forwarding. An
alternative is to use a separate data structure for the temporary FIB
entries that has balanced read and write performance. It is relatively
straightforward to do the necessary "lookaside" into this temporary
FIB table since the names used for the I2 Interest messages can be
identified with an architectural constant name prefix whose longest
prefix match points to the temporary FIB. We however did not
evaluate or implement the separate temporary FIB described here.

6.4 Prototype
To confirm the performance and efficiency of RICE in a real-world
scenario, we implement and evaluate a simple Optical Character
Recognition (OCR) algorithm [10]. This setting allowed us to illus-
trate the execution of functions requiring large input. We assume
2 clients residing on Raspberry PIs 3 Model B and a server on a
Dell XPS 13 laptop. Our function is initialised on a server with a
model of each letter of the alphabet; the model can then be fed
with input images to detect the list of embedded letters. Clients
randomly submit 1 of 5 prepared 1.6KB images to the server. The
server processes each image 500 times, to extend the execution
time.

ICN ’18, September 21–23, 2018, Boston, MA, USA Michał Król, Karim Habak, David Oran, Dirk Kutscher, and Ioannis Psaras

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18

C
D

F

Interest Satisfaction Time[s]

Thunks
Net Timescale
App Timescale

ACK

Figure 18: Interest Satisfaction Time
for referentially opaque methods.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18

C
D

F

Interest Satisfaction Time[s]

Thunks
Net Timescale
App Timescale

ACK

Figure 19: Interest Satisfaction Time for
referentially transparent methods.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25

B
a
n
d
w

id
th

[B
]

Time[s]

Total
Sent

Received

Figure 20: Prototype. Bandwidth used by different
workers.

Fig. 20 presents the number of sent and received bytes measured
on the server usingwireshark and 100ms resolution.We can observe
clients submitting images using the 4-way handshake (high 2000B
spikes). After 2s, the submitting client uses thunks to retrieve the
computed result (low 500B spikes). While the experiment continues,
the server accumulates cached results and is able to respond to the
handshake directly with computed data. We thus observe only 5
high spikes for 5 different submitted images and multiple low spikes
to retrieve the results.

7 CONCLUSION
We presented RICE, a framework for Remote Method Invocation
in ICN. We evaluate various trade-offs in the protocol dynamics
associated with long-running computations, and provide a natural
set of primitives to enable both client authorization and efficient
and secure input parameter passing. We show that modest protocol
extensions can achieve efficient and architecturally clean remote
invocation while preserving the attractive properties of a pull-based
ICN design like CCN or NDN.

RICE demonstrates how ICN can enable the elegant integration
of dynamic computing and named data access, with low overhead,
hostname and address independence, security and high efficiency
through caching and result data sharing. We believe that RICE is a
robust foundation for many ICN compute applications, including
web access, distributed NFN, and distributed edge computing envi-
ronments, where data needs to be processed close the data source
before being sent to the back-end permanent storage point.

Our plans for future work include studying potential optimiza-
tions for efficient client/server and network interaction, for exam-
ple the use of NACKs and forwarding hints, implementing highly
scalable server systems, and testing RICE in different application
scenarios. This would also include more in-depth analysis of spe-
cific protocol features such as client authentication and parameter
passing.

8 ACKNOWLEDGEMENTS
Börje Ohlman participated in the design discussions that led to this
paper and provided valuable insights and feedback. The authors are
grateful to the ACM ICN’18 anonymous reviewers and our shepherd
Peter Steenkiste for their constructive comments and suggestions.
Michał Król is supported by the EC H2020 ICN2020 project under
grant agreement number 723014, and Ioannis Psaras is supported
by the EPSRC INSP Early Career Fellowship under grant agreement
number EP/M003787/1.

REFERENCES
[1] [n. d.]. ForwardingHints. https://named-data.net/doc/NDN-packet-spec/current/

interest.html. ([n. d.]).
[2] 2018. Project CCNx. http://www.ccnx.org/. (2018).
[3] Alexander Afanasyev, Priya Mahadevan, Ilya Moiseenko, Ersin Uzun, and Lixia

Zhang. 2013. Interest flooding attack and countermeasures in Named Data
Networking. In IFIP Networking Conference, 2013. IEEE, 1–9.

[4] Mustafa Al-Bassam, Alberto Sonnino, Michał Król, and Ioannis Psaras. 2018.
Airtnt: Fair Exchange Payment for Outsourced Secure Enclave Computations.
(2018). https://www.ee.ucl.ac.uk/~uceeips/files/airtnt-payments-v1.pdf

[5] Jordan Augé, Giovanna Carofiglio, Giulio Grassi, Luca Muscariello, Giovanni
Pau, and Xuan Zeng. 2016. MAP-Me: Managing Anchor-less Producer Mobility
in Information-Centric Networks. arXiv preprint arXiv:1611.06785 (2016).

[6] Torsten Braun, Volker Hilt, Markus Hofmann, Ivica Rimac, Moritz Steiner, and
Matteo Varvello. 2011. Service-centric networking. In CommunicationsWorkshops
(ICC), 2011 IEEE International Conference on. IEEE, 1–6.

[7] Seungoh Choi, Kwangsoo Kim, Seongmin Kim, and Byeong-hee Roh. 2013. Threat
of DoS by interest flooding attack in content-centric networking. In Information
Networking (ICOIN), 2013 International Conference on. IEEE, 315–319.

[8] Alberto Compagno, Mauro Conti, Cesar Ghali, and Gene Tsudik. 2015. To NACK
or not to NACK? negative acknowledgments in information-centric network-
ing. In Computer Communication and Networks (ICCCN), 2015 24th International
Conference on. IEEE, 1–10.

[9] WesleyM Eddy. 2007. TCP SYN flooding attacks and commonmitigations. (2007).
[10] Line Eikvil. 1993. Optical character recognition. citeseer. ist. psu. edu/142042. html

(1993).
[11] Roy Thomas Fielding. 2000. Architectural Styles and the Design of Network-based

Software Architectures. Ph.D. Dissertation. University of California, Irvine.
[12] Mikael Gasparyan, Guillaume Corsini, Torsten Braun, Eryk Jerzy Schiller, Saltarin

de Arco, and Jonnahtan Eduardo. 2017. Session Support for SCN. (2017).
[13] Cesar Ghali, Gene Tsudik, and Christopher A. Wood. 2016. (The Futility of)

Data Privacy in Content-Centric Networking. Proceedings of the 2016 ACM on
Workshop on Privacy in the Electronic Society - WPES’16 (2016). https://doi.org/
10.1145/2994620.2994639

[14] P. Z. Ingerman. 1961. Thunks: A Way of Compiling Procedure Statements with
Some Comments on Procedure Declarations. Commun. ACM 4, 1 (Jan. 1961),
55–58. https://doi.org/10.1145/366062.366084

[15] Mihaela Ion, Jianqing Zhang, and Eve M Schooler. 2013. Toward content-centric
privacy in ICN: Attribute-based encryption and routing. In Proceedings of the 3rd
ACM SIGCOMM workshop on Information-centric networking. ACM, 39–40.

[16] Van Jacobson, Diana K Smetters, James D Thornton, Michael F Plass, Nicholas H
Briggs, and Rebecca L Braynard. 2009. Networking named content. In Proceed-
ings of the 5th international conference on Emerging networking experiments and
technologies. ACM, 1–12.

[17] Michał Król and Ioannis Psaras. 2017. NFaaS: named function as a service. In
Proceedings of the 4th ACM Conference on Information-Centric Networking. ACM,
134–144.

[18] Michał Król and Ioannis Psaras. 2018. SPOC: Secure Payments for Outsourced
Computations. In NDSS’18 Workshop on Decentralised IoT Security and Standards
(DISS). https://www.ee.ucl.ac.uk/~ipsaras/files/spoc-payments.pdf

[19] Anil Madhavapeddy and David J. Scott. 2013. Unikernels: Rise of the Virtual
Library Operating System. Queue 11, 11 (2013).

[20] Priya Mahadevan, Ersin Uzun, Spencer Sevilla, and J.J. Garcia-Luna-Aceves. 2014.
CCN-KRS. Proceedings of the 1st international conference on Information-centric
networking - INC ’14 (2014). https://doi.org/10.1145/2660129.2660154

[21] Dima Mansour, Torsten Braun, and Carlos Anastasiades. 2014. Nextserve frame-
work: Supporting services over content-centric networking. In International
Conference on Wired/Wireless Internet Communications. Springer, 189–199.

[22] Spyridon Mastorakis, Alexander Afanasyev, Ilya Moiseenko, and Lixia Zhang.
2015. ndnSIM 2.0: A new version of the NDN simulator for NS-3. NDN, Technical

https://named-data.net/doc/NDN-packet-spec/current/interest.html
https://named-data.net/doc/NDN-packet-spec/current/interest.html
http://www.ccnx.org/
https://www.ee.ucl.ac.uk/~uceeips/files/airtnt-payments-v1.pdf
https://doi.org/10.1145/2994620.2994639
https://doi.org/10.1145/2994620.2994639
https://doi.org/10.1145/366062.366084
https://www.ee.ucl.ac.uk/~ipsaras/files/spoc-payments.pdf
https://doi.org/10.1145/2660129.2660154

RICE: Remote Method Invocation in ICN ICN ’18, September 21–23, 2018, Boston, MA, USA

Report NDN-0028 (2015).
[23] Satyajayant Misra, Reza Tourani, and Nahid Ebrahimi Majd. 2013. Secure content

delivery in information-centric networks. Proceedings of the 3rd ACM SIGCOMM
workshop on Information-centric networking - ICN ’13 (2013). https://doi.org/10.
1145/2491224.2491228

[24] Ilya Moiseenko, Mark Stapp, and David Oran. 2014. Communication patterns
for web interaction in named data networking. In Proceedings of the 1st ACM
Conference on Information-Centric Networking. ACM, 87–96.

[25] Ilya Moiseenko, LijingWang, and Lixia Zhang. 2015. Consumer/producer commu-
nication with application level framing in named data networking. In Proceedings
of the 2nd ACM Conference on Information-Centric Networking. ACM, 99–108.

[26] Shashank Shanbhag, Nico Schwan, Ivica Rimac, and Matteo Varvello. 2011. SoC-
CeR: Services over content-centric routing. In Proceedings of the ACM SIGCOMM
workshop on Information-centric networking. ACM, 62–67.

[27] Neil Spring, Ratul Mahajan, and David Wetherall. 2002. Measuring ISP topologies
with Rocketfuel. ACM SIGCOMM Computer Communication Review 32, 4 (2002),
133–145.

[28] Suman Srinivasan, Amandeep Singh, Dhruva Batni, Jae Woo Lee, Henning
Schulzrinne, Volker Hilt, and Gerald Kunzmann. 2012. Ccnxserv: Dynamic
service scalability in information-centric networks. In Communications (ICC),
2012 IEEE International Conference on. IEEE, 2617–2622.

[29] Christian Tschudin and Manolis Sifalakis. 2014. Named functions and cached
computations. In Consumer Communications and Networking Conference (CCNC),
2014 IEEE 11th. IEEE, 851–857.

[30] Lixia Zhang, Deborah Estrin, Jeffrey Burke, Van Jacobson, James D Thornton,
Diana K Smetters, Beichuan Zhang, Gene Tsudik, Dan Massey, Christos Pa-
padopoulos, et al. 2010. Named data networking (ndn) project. Relatório Técnico
NDN-0001, Xerox Palo Alto Research Center-PARC (2010).

https://doi.org/10.1145/2491224.2491228
https://doi.org/10.1145/2491224.2491228

	Abstract
	1 Introduction
	2 Related Work
	3 Motivation and Design Goals
	3.1 Design Goals

	4 RICE Remote Method Invocation
	4.1 Naming
	4.2 Handshake
	4.3 Dynamic Content Retrieval using Thunks
	4.4 Alternative Retrieval Techniques

	5 Security and Privacy Analysis
	6 Evaluation
	6.1 Handshake Evaluation
	6.2 Data Retrieval Techniques
	6.3 FIB performance considerations
	6.4 Prototype

	7 Conclusion
	8 Acknowledgements
	References

