Type Systems

Lecture 1

Neel Krishnaswami
University of Cambridge

Type Systems for Programming Languages

- Type systems lead a double life

- They are an essential part of modern programming
languages

- They are a fundamental concept from logic and proof
theory

- As a result, they form the most important channel for
connecting theoretical computer science to practical
programming language design.

What are type systems used for?

- Error detection via type checking

- Support for structuring large (or even medium) sized
programs

- Documentation
- Efficiency
- Safety

A Language of Booleans and Integers

Terms e == true | false | n | e<e | e+e | ene| —e

Some terms make sense:

© 344
©3+44<5
S BHA<T)A(T<3+4)

Some terms don't:

- L Atrue
« 3 <true
- true +7

Types for Booleans and Integers

Types 7 == bool | N
Terms e == true | false | n | e<e | e+e | ene

- How to connect term (like 3 + 4) with a type (like N)?

- Via a typing judgement e : T

- Atwo-place relation saying that “the term e has the type 7"
- So _: _is aninfix relation symbol

- How do we define this?

Typing Rules

—— Num —— TRUE —— FALSE
n:N true : bool false : bool
e:N e N e : bool e’ : bool
——F PLUS AND
e+e:N e Aée :bool
e:N e N
—— |LEQ
e < e :bool

- Above the line: premises

- Below the line: conclusion

An Example Derivation Tree

—— NuM — NUM
3:N 4: N

34+4:N
3+4<5:bool

PLUS —— NUM
5:N

LEQ

Adding Variables

Types 7 == bool | N
Terms e == ... | x| letx=eine¢e

- Example: letx=51in (x+x) <10

- But what type should x have: x : ?

- To handle this, the typing judgement must know what the
variables are.

- So we change the typing judgement to be ' e : 7, where
I associates a list of variables to their types.

Contexts ' == - | x:7
——— NuUM —— TRUE FALSE
l-n:N I+ true : bool I - false : bool
Nle:N NrN-¢e¢:N
PLUS
NN-e+ée:N
I+ e: bool e :bool Nle:N N-¢e:N
AND LEQ
N~enée :bool M-e<eée' :bool
xX:Ttel N-e:r Mx:rkeée:71
VAR LET

FTEx:7 M-letx=eine : 7 8

Does this make sense?

- We have: a type system, associating elements from one
grammar (the terms) with elements from another
grammar (the types)

- We claim that this rules out “bad” terms
- But does it really?
- To prove, we must show type safety

Prelude: Substitution

We have introduced variables into our language, so we should
introduce a notion of substitution as well

[e/X]true = true
[e/x]false = false
[e/x]n = n
le/XI(e1 + e2) = [e/xer + [e/xle;
[e/X](er < e2) = [e/xer < [e/Alez
[e/x](e1 A e7) = [e/x]e1 A [e/x]ez
/X2 B e whenz=x
z whenz#x
[e/x](letz=er1ine)) = letz=[e/x]erin[e/x]es (x)

(*) a-rename to ensure z does not occur in e!

10

Structural Properties and Substitution

1. (Weakening) If I, I"Fe:rthenT,x: 7" "e:T.
If a term typechecks in a context, then it will still
typecheck in a bigger context.
2. (Exchange) If [, xq : 74, % : 7, " = e : 7 then
M Xy:m,X:m,MEFe:T.
If a term typechecks in a context, then it will still
typecheck after reordering the variables in the context.
3. (Substitution) IfTFe:7and Mx:7F e : 7 then
Mt le/xle : 7.
Subsituting a type-correct term for a variable will preserve
type correctness.

n

A Proof of Weakening

- Proof goes by structural induction
- Suppose we have a derivation tree of I, [e : 7

- By case-analysing the root of the derivation tree, we
construct a derivation tree of I, x : 7/, " e : 7, assuming
inductively that the theorem works on subtrees.

12

Proving Weakening, 1/4

———— Num .
Lr’=n:N By assumption

Cx: 7 MkEn: o
X T n:N By rule Num

- Similarly for TRUE and FALSE rules

13

Proving Weakening, 2/4

rr~e:N rr-e:N
I',I"I—e1+ezzN

PLUS

F,F’I—equ
F,F’I—ez:N

Mrx:7" IM"kFe;: N
Mx:7",I"kFe;: N
rx:7".I"kFe; +e;: N

- Similarly for LEQ and AND rules

By assumption

Subderivation 1
Subderivation 2

Induction on subderivation 1
Induction on subderivation 2
By rule PLus

14

rr'Ee :m

Proving Weakening, 3/4

F,F’,z:ﬁ }—92:7'2

LET

MFletz=ejine,:m

rree :mn

rrz:.nke:n

Fx:m TMke:n
Extended context

rox:r" Mz m

Fx:7 TMkletz=ejine:n

FeziTz

By assumption

Subderivation 1
Subderivation 2
Induction on subderivation 1

Induction on subderivation 2
By rule LET

15

Proving Weakening, 4/4

z:Tell

—— VAR .

rrez:r By assumption
z:tell By assumption

z:tel,x:7",T" Anelementof a listis also in a bigger list
Mx:7" . I"kz:7 Byrule VAR

Proving Exchange, 1/4

NUM .
F,x1:7,% 1, 'Fn: N By assumption

NuMm
[, X0 @ T, X ZT1,r/|—I’)ZN By rule Num

- Similarly for TRUE and FALSE rules

Proving Exchange, 2/4

Fx1:m,% :m,"Fe:N C,x1:m,% 1, "Fe: N

PLUS
[, X107, %0 0, M+ e1+e: N
By assumption
X :1,% :m,"Fe :N Subderivation 1
X :1m,% 1, "Fe: N Subderivation 2
M X):m,X:7m,,MN~e ;N Induction on subderivation 1
M X):m,X:m,,"e; ' N Induction on subderivation 2

[, X 0, X 27'1,,r/ Fei+e:N By rule PLUsS

- Similarly for LEQ and AND rules

Proving Exchange, 3/4

CX1:m,% 1, Fep: 1
r,X1 1T, X2 Tz,r/,Z:T, F €)M

LET
MEFletz=ejiney:m By assumption
Fx1:m,% :n, e 7 Subderivation 1
X :7m,% :Tz,r/,ZZTll—ez) Subderivation 2
X :m,X:m, " Fei:n Induction on s.d. 1
Extended context
——)

[,X:1,X1 1T, Mz:n Fe,: N Induction onsd.?2
FXx:m,Xx:m,"Fletz=ejine :n By rule LET

19

Proving Exchange, 4/4

Z.TE r,X1 1T, X2l Tz,r/

VAR)
rr’eEz:r By assumption

z:Tel,xy:m,%:m, [’ Byassumption
z:tel,x:mx:m, " Anelementof alistis

also in a permutation of the list
X :7m,X:m,["+=z:7 Byrule VAR

20

A Proof of Substitution

- Proof also goes by structural induction

- Suppose we have derivation trees T e : 7 and
rx:7keée:7.

- By case-analysing the root of the derivation tree of
I x:7Fe 7 we construct a derivation tree of
'+ [e/x]e’ : 7/, assuming inductively that substitution
works on subtrees.

21

Substitution 1/4

—————— Num ,
Mx:7kn:N By assumption
le:r By assumption
N-n:N By rule Num
-le/xjn: N Def. of substitution

- Similarly for TRUE and FALSE rules

22

Proving Substitution, 2/4

MNx:7FHe;:N Mx:7Fe:N

x:TkFe +e:N By assumption: (1)
lFe:r By assumption: (2)
Mx:7hFe:N Subderivation of (1): (3)
Mx:7Fe: N Subderivation of (1): (4)
r+le/xler: N Induction on (2), (3): (5)
I+[e/x]e; : N Induction on (2), (4): (6)
[+ [e/x]er + [e/x]es : N By rule PLus on (5), (6)
l-le/x](e1+e): N Def. of substitution

- Similarly for LEQ and AND rules
23

Proving Substitution, 3/4

Frx:the:7 F,x:r,z:r’l—ez:szET

Fx:thletz=ejine;: m By assumption: (1)
lke:r By assumption: (2)
Fx:the:7 Subderivation of (1): (3)
FIx:rz:7"Fe:n Subderivation of (1): (4)

[le/xler: 7 Induction on (2) and (3): (4)
Nz:7ke:r Weakening on (2): (5)
Nz:7'.x:7hFey:n Exchange on (4): (6)
Fz:7F[e/Xey:n Induction on (5) and (6): (7)
[+ letz=[e/x]e;in[e/x]e; : » By rule LET on (6), (7)

M=le/x|(letz=ejiney):n By def. of substitution 2%

Proving Substitution, 4a/4

z:7elx:1
—————— VAR .
Mx:tkz:7 By assumption

MN-e:r By assumption

Case x =z
MEle/x]x:t By def. of substitution

25

Proving Substitution, 4b/4

z:7el,x:7

VAR .
Fx:thkz:7 By assumption
M-e:r By assumption
Case x # z:
z:7erl sincex#zandz: 7 elx:r
rz:7rz:7 By rule VAR

r,z:7'+[e/x]z: 7" By def. of substitution

26

Operational Semantics

- We have a language and type system

- We have a proof of substitution

- How do we say what value a program computes?
- With an operational semantics

- Define a grammar of values

- Define a two-place relation on terms e ~ ¢’

- Pronounced as “e steps to e””

27

An operational semantics

Values v == n | true | false
e~ €
; ANDCONG ————— ANDTRUE
e1N\ey~ e e truene~e
ANDFALSE

false A e ~ false
(similar rules for < and +)

e~ @
LETCONG

letz=e;ine,~ letz=¢€,ine,
1

LETSTEP

letz=vin e, ~ [v/Z]e; .

Reduction Sequences

- A reduction sequence is a sequence of transitions ey ~ ey,
€1~ €y, ..., en_1 "~ €n.
- Aterm eis stuck if itis not a value, and there is no e’ such

thate~ €
Successful sequence Stuck sequence
34+4)< (243
()=) B+4)A(2+3)
~ 7<(2+3)
7 <5 ~ TA(2+3)
= ~ 277
~ false

Stuck terms are erroneous programs with no defined
behaviour.

29

Type Safety

A program is safe if it never gets stuck.

1. (Progress) If - e : 7 then either e is a value, or there
exists e such that e ~ €.

2. (Preservation) If -+e:7and e~ € then -+ €' : 7.

- Progress means that well-typed programs are not stuck:
they can always take a step of progress (or are done).

- Preservation means that if a well-typed program takes a
step, it will stay well-typed.

- So a well-typed term won't reduce to a stuck term: the
final term will be well-typed (due to preservation), and
well-typed terms are never stuck (due to progress).

30

Proving Progress

(Progress) If - - e : 7 then either e is a value, or there exists e’
such that e ~ €.

- To show this, we do structural induction on the derivation
of -Fe:r.

- For each typing rule, we show that either e is a value, or
can step.

31

Progress: Values

—— Num .
-Fn:N By assumption

nis avalue Def. of value grammar

Similarly for boolean literals...

32

Progress: Let-bindings

ke T xX:thkey: 7

LET
Fletx=ejine, : 7 By assumption: (1)
ke T Subderivation of (1): (2)
X:They: 7 Subderivation of (1): (3)
e;~ e} or eq value Induction on (2)

Case e; ~ €] :

letx=ejine,~ letx=e}ine, By rule LETCONG
Case eq value :

let x =eqin e; ~ [e1/x]ex By rule LETSTEP

33

Type Preservation

(Preservation) If -Fe:7and e~ e then-+ ¢ : 7.

1. We will use structural induction again, but on which
derivation?

2. Two choices: (1) -Fe:7and (2) e~ ¢
3. The right choice is induction on e ~ ¢’

4. We will still need to deconstruct - + e : 7 alongside it!

34

Type Preservation: Let Bindings 1

e~ €

letx =ejine,~ letx=ejine; Byassumption: (1)

FepiT x:they: 1

Fletx=ejine : 7 By assumption: (2)
e;~ e Subderivation of (1): (3)
et Subderivation of (2): (4)
X:ThFey: 7 Subderivation of (2): (5)
kel Induction on (3), (4): (6)

‘Fletx=¢eliney: 7 Rule LET on (6), (4)

35

Type Preservation: Let Bindings 2

let x = v in ey ~~ [V1/X]€2

“FviiT xX:Thke: 1

Fletx=viney: 7

“FviiT
X:They: 7

“Fwi/xley : 7

By assumption: (1)

By assumption: (2)

Subderivation of (2): (3)
Subderivation of (2): (4)

Substitution on (3), (4)

36

Conclusion

Given a language of program terms and a language of types:

- A type system ascribes types to terms
- An operational semantics describes how terms evaluate

- A type safety proof connects the type system and the
operational semantics

- Proofs are intricate, but not difficult

37

Exercises

1. Give cases of the operational semantics for < and —+.
2. Extend the progress proof to cover e A €.

3. Extend the preservation proof to cover e A €.

(This should mostly be review of IB Semantics of Programming
Languages.)

38

