# Type Systems

Lecture 1

Neel Krishnaswami University of Cambridge

# Type Systems for Programming Languages

- Type systems lead a double life
- They are an essential part of modern programming languages
- They are a fundamental concept from logic and proof theory
- As a result, they form the most important channel for connecting theoretical computer science to practical programming language design.

## What are type systems used for?

- · Error detection via type checking
- Support for structuring large (or even medium) sized programs
- Documentation
- Efficiency
- Safety

#### A Language of Booleans and Integers

Terms 
$$e$$
 ::= true | false |  $n$  |  $e \le e$  |  $e + e$  |  $e \land e$  |  $\neg e$ 

Some terms make sense:

- · 3 + 4
- $3+4 \le 5$
- $(3+4 \le 7) \land (7 \le 3+4)$

Some terms don't:

- 4∧true
- 3 ≤ true
- true +7

### Types for Booleans and Integers

```
Types 	au ::= bool | \mathbb N Terms e ::= true | false | n | e \le e | e+e | e \wedge e
```

- How to connect term (like 3 + 4) with a type (like  $\mathbb{N}$ )?
- $\cdot$  Via a typing judgement e : au
- A two-place relation saying that "the term e has the type  $\tau$ "
- So \_ : \_ is an infix relation symbol
- · How do we define this?

## **Typing Rules**

- · Above the line: premises
- · Below the line: conclusion

5

#### An Example Derivation Tree

$$\frac{\overline{3:\mathbb{N}} \quad \overline{4:\mathbb{N}}}{3+4:\mathbb{N}} \quad PLUS \quad \frac{}{5:\mathbb{N}} \quad NUM \\ \hline 3+4 \leq 5: bool \quad LEQ$$

## Adding Variables

```
Types \tau ::= bool | \mathbb{N}
Terms e ::= ... | x | let x = e in e'
```

- Example: let x = 5 in  $(x + x) \le 10$
- But what type should x have: x : ?
- To handle this, the typing judgement must know what the variables are.
- So we change the typing judgement to be  $\Gamma \vdash e : \tau$ , where  $\Gamma$  associates a list of variables to their types.

#### Contexts

$$\frac{X : \tau \in I}{\Gamma \vdash X : \tau} VAR$$

$$\frac{X : \tau \in \Gamma}{\Gamma \vdash X : \tau} \text{ VAR} \qquad \frac{\Gamma \vdash e : \tau \qquad \Gamma, X : \tau \vdash e' : \tau'}{\Gamma \vdash \text{let } X = e \text{ in } e' : \tau'} \text{ LET}$$

#### Does this make sense?

- We have: a type system, associating elements from one grammar (the terms) with elements from another grammar (the types)
- · We claim that this rules out "bad" terms
- · But does it really?
- · To prove, we must show type safety

#### **Prelude: Substitution**

We have introduced variables into our language, so we should introduce a notion of substitution as well

```
[e/x]true
                                = true
[e/x] false
                                = false
[e/x]n
[e/x](e_1 + e_2) = [e/x]e_1 + [e/x]e_2
[e/x](e_1 \le e_2) = [e/x]e_1 \le [e/x]e_2
                     = [e/x]e_1 \wedge [e/x]e_2
[e/x](e_1 \wedge e_2)
                               = \begin{cases} e & \text{when } z = x \\ z & \text{when } z \neq x \end{cases}
[e/x]z
[e/x](\text{let }z = e_1 \text{ in } e_2) = \text{let }z = [e/x]e_1 \text{ in } [e/x]e_2 \ (*)
```

(\*)  $\alpha$ -rename to ensure z does not occur in e!

#### Structural Properties and Substitution

- 1. (Weakening) If  $\Gamma, \Gamma' \vdash e : \tau$  then  $\Gamma, x : \tau'', \Gamma' \vdash e : \tau$ . If a term typechecks in a context, then it will still typecheck in a bigger context.
- (Exchange) If Γ, x₁: τ₁, x₂: τ₂, Γ' ⊢ e: τ then Γ, x₂: τ₂, x₁: τ₁, Γ' ⊢ e: τ.
   If a term typechecks in a context, then it will still typecheck after reordering the variables in the context.
- (Substitution) If Γ ⊢ e : τ and Γ,x : τ ⊢ e' : τ' then Γ ⊢ [e/x]e' : τ'.
   Substituting a type-correct term for a variable will preserve type correctness.

#### A Proof of Weakening

- Proof goes by structural induction
- Suppose we have a derivation tree of  $\Gamma$ ,  $\Gamma' \vdash e : \tau$
- By case-analysing the root of the derivation tree, we construct a derivation tree of  $\Gamma, x : \tau'', \Gamma' \vdash e : \tau$ , assuming inductively that the theorem works on subtrees.

#### Proving Weakening, 1/4

$$\frac{}{\Gamma,\Gamma'\vdash n:\mathbb{N}} \overset{\mathsf{NUM}}{\longrightarrow} \\ \frac{}{\Gamma,x:\tau'',\Gamma'\vdash n:\mathbb{N}} \overset{\mathsf{NUM}}{\longrightarrow} \\ \mathsf{By\ rule\ NUM} \\ }$$

Similarly for TRUE and FALSE rules

### Proving Weakening, 2/4

$$\frac{\Gamma, \Gamma' \vdash e_1 : \mathbb{N} \qquad \Gamma, \Gamma' \vdash e_2 : \mathbb{N}}{\Gamma, \Gamma' \vdash e_1 + e_2 : \mathbb{N}} \text{ PLUS}$$

$$\Gamma, \Gamma' \vdash e_1 : \mathbb{N}$$
  
 $\Gamma, \Gamma' \vdash e_2 : \mathbb{N}$ 

$$\Gamma, x:\tau'', \Gamma' \vdash e_1:\mathbb{N}$$

$$\Gamma, x : \tau'', \Gamma' \vdash e_2 : \mathbb{N}$$

$$\Gamma, X : \tau'', \Gamma' \vdash e_1 + e_2 : \mathbb{N}$$

By assumption

Subderivation 1
Subderivation 2
Induction on subderivation 1
Induction on subderivation 2
By rule PLUS

Similarly for LEQ and AND rules

## Proving Weakening, 3/4

$$\frac{\Gamma, \Gamma' \vdash e_1 : \tau_1 \qquad \Gamma, \Gamma', z : \tau_1 \vdash e_2 : \tau_2}{\Gamma, \Gamma' \vdash \text{let } z = e_1 \text{ in } e_2 : \tau_2} \text{ Let}$$
By assumption

$$\Gamma, \Gamma' \vdash e_1 : \tau_1$$
  
 $\Gamma, \Gamma', z : \tau_1 \vdash e_2 : \tau_2$   
 $\Gamma, x : \tau'', \Gamma' \vdash e_1 : \tau_1$ 

Subderivation 1
Subderivation 2
Induction on subderivation 1

Extended context

$$\Gamma, x : \tau'', \qquad \Gamma', z : \tau_1 \qquad \vdash e_2 : \tau_2 \quad \text{Induction on subderivation 2}$$

$$\Gamma, x : \tau'', \Gamma' \vdash \text{let } z = e_1 \text{ in } e_2 : \tau_2 \qquad \text{By rule LET}$$

## Proving Weakening, 4/4

$$\frac{\mathbf{z}:\tau\in\Gamma,\Gamma'}{\Gamma,\Gamma'\vdash\mathbf{z}:\tau}\,\,\mathrm{Var}$$
 By assumption

 $z: \tau \in \Gamma, \Gamma'$  By assumption  $z: \tau \in \Gamma, x: \tau'', \Gamma'$  An element of a list is also in a bigger list  $\Gamma, x: \tau'', \Gamma' \vdash z: \tau$  By rule VAR

#### Proving Exchange, 1/4

$$\frac{}{\Gamma,x_1:\tau_1,x_2:\tau_2,\Gamma'\vdash n:\mathbb{N}} \text{ Num} \\ \frac{}{\Gamma,x_2:\tau_2,x_1:\tau_1,\Gamma'\vdash n:\mathbb{N}} \text{ Num} \\ \text{By rule Num}$$

Similarly for TRUE and FALSE rules

## Proving Exchange, 2/4

$$\frac{\Gamma, x_1: \tau_1, x_2: \tau_2, \Gamma' \vdash e_1: \mathbb{N} \qquad \Gamma, x_1: \tau_1, x_2: \tau_2, \Gamma' \vdash e_2: \mathbb{N}}{\Gamma, x_1: \tau_1, x_2: \tau_2, \Gamma' \vdash e_1 + e_2: \mathbb{N}} \text{ PLUS}$$

By assumption

$$\Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma' \vdash e_1 : \mathbb{N}$$
 Subderivation 1  
 $\Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma' \vdash e_2 : \mathbb{N}$  Subderivation 2

$$\Gamma, X_2 : \tau_2, X_1 : \tau_1, \Gamma' \vdash e_1 : \mathbb{N}$$
 Induction on subderivation 1  
 $\Gamma, X_2 : \tau_2, X_1 : \tau_1, \Gamma' \vdash e_2 : \mathbb{N}$  Induction on subderivation 2  
 $\Gamma, X_2 : \tau_2, X_3 : \tau_4, \Gamma' \vdash e_4 \vdash e_5 : \mathbb{N}$  By rule Plus

 $\Gamma, x_2 : \tau_2, x_1 : \tau_1, , \Gamma' \vdash e_1 + e_2 : \mathbb{N}$  By rule PLUS

· Similarly for LEQ and AND rules

### Proving Exchange, 3/4

$$\frac{\Gamma, x_1: \tau_1, x_2: \tau_2, \Gamma' \vdash e_1: \tau'}{\Gamma, x_1: \tau_1, x_2: \tau_2, \Gamma', z: \tau' \vdash e_2: \tau_2} \text{ LET}$$

$$\frac{\Gamma, \Gamma' \vdash \text{let } z = e_1 \text{ in } e_2: \tau_2}{\Gamma, \Gamma' \vdash \text{let } z = e_1 \text{ in } e_2: \tau_2}$$

By assumption

$$\Gamma, x_1:\tau_1, x_2:\tau_2, \Gamma' \vdash e_1:\tau'$$

 $\Gamma$ ,  $\chi_1$ :  $\chi_2$ :  $\chi_2$ :  $\chi_3$ :  $\chi_4$ :  $\chi_5$ :  $\chi_7$ :  $\chi_$ 

 $\Gamma, X_2: \tau_2, X_1: \tau_1, \Gamma' \vdash e_1: \tau_1$ 

Subderivation 1

Subderivation 2

Induction on s.d. 1

#### Extended context

 $\Gamma, x_2 : \tau_2, x_1 : \tau_1, \qquad \widetilde{\Gamma', z : \tau_1} \qquad \vdash e_2 : \mathbb{N} \quad \text{Induction on s.d. 2}$ 

 $\Gamma, x_2 : \tau_2, x_1 : \tau_1, \Gamma' \vdash \text{let } z = e_1 \text{ in } e_2 : \tau_2$  By rule LET

### Proving Exchange, 4/4

$$\frac{z:\tau\in\Gamma,X_1:\tau_1,X_2:\tau_2,\Gamma'}{\Gamma,\Gamma'\vdash z:\tau}\,\,\text{Var}$$
 By assumption

 $z: au \in \Gamma, x_1: au_1, x_2: au_2, \Gamma'$  By assumption  $z: au \in \Gamma, x_2: au_2, x_1: au_1, \Gamma'$  An element of a list is also in a permutation of the list  $\Gamma, x_2: au_2, x_1: au_1, \Gamma' \vdash z: au$  By rule VAR

#### A Proof of Substitution

- Proof also goes by structural induction
- Suppose we have derivation trees  $\Gamma \vdash e : \tau$  and  $\Gamma, x : \tau \vdash e' : \tau'$ .
- By case-analysing the root of the derivation tree of  $\Gamma, x : \tau \vdash e' : \tau'$ , we construct a derivation tree of  $\Gamma \vdash [e/x]e' : \tau'$ , assuming inductively that substitution works on subtrees.

#### Substitution 1/4

\_\_\_\_\_ NUM

 $\begin{array}{ll} \Gamma, x: \tau \vdash n: \mathbb{N} & \text{By assumption} \\ \Gamma \vdash e: \tau & \text{By assumption} \end{array}$ 

 $\Gamma \vdash n : \mathbb{N}$  By rule NUM

 $\Gamma \vdash [e/x]n : \mathbb{N}$  Def. of substitution

Similarly for True and False rules

## Proving Substitution, 2/4

$$\frac{\Gamma,x:\tau\vdash e_1:\mathbb{N}\qquad \Gamma,x:\tau\vdash e_2:\mathbb{N}}{\Gamma,x:\tau\vdash e_1+e_2:\mathbb{N}}$$
 By assumption: (1) 
$$\Gamma\vdash e:\tau$$
 By assumption: (2) 
$$\Gamma,x:\tau\vdash e_1:\mathbb{N}$$
 Subderivation of (1): (3) 
$$\Gamma,x:\tau\vdash e_2:\mathbb{N}$$
 Subderivation of (1): (4) 
$$\Gamma\vdash [e/x]e_1:\mathbb{N}$$
 Induction on (2), (3): (5) 
$$\Gamma\vdash [e/x]e_2:\mathbb{N}$$
 Induction on (2), (4): (6) 
$$\Gamma\vdash [e/x]e_1+[e/x]e_2:\mathbb{N}$$
 By rule PLUS on (5), (6) 
$$\Gamma\vdash [e/x](e_1+e_2):\mathbb{N}$$
 Def. of substitution

Similarly for LEQ and AND rules

## Proving Substitution, 3/4

$$\frac{\Gamma, x: \tau \vdash e_1: \tau' \qquad \Gamma, x: \tau, z: \tau' \vdash e_2: \tau_2}{\Gamma, x: \tau \vdash \text{let } z = e_1 \text{ in } e_2: \tau_2} \text{ LET}$$
 By assumption: (1)

$$\Gamma \vdash e : \tau$$
  
 $\Gamma, X : \tau \vdash e_1 : \tau'$ 

$$\Gamma, X: \tau, Z: \tau' \vdash e_2: \tau_2$$

$$\Gamma \vdash [e/x]e_1 : \tau'$$

$$\Gamma, z : \tau' \vdash e : \tau$$
  
 $\Gamma, z : \tau', x : \tau \vdash e_2 : \tau_2$   
 $\Gamma, z : \tau' \vdash [e/x]e_2 : \tau_2$ 

$$\Gamma \vdash \text{let } z = [e/x]e_1 \text{ in } [e/x]e_2 : \tau_2$$

$$\Gamma \vdash [e/x](\text{let } z = e_1 \text{ in } e_2) : \tau_2$$

By assumption: (2)

Subderivation of (1): (3) Subderivation of (1): (4)

Induction on (2) and (3): (4)

Weakening on (2): (5) Exchange on (4): (6)

Induction on (5) and (6): (7)

By rule LET on (6), (7) By def. of substitution

24

#### Proving Substitution, 4a/4

$$\frac{\mathbf{Z}: \tau' \in \Gamma, \mathbf{X}: \tau}{\Gamma, \mathbf{X}: \tau \vdash \mathbf{Z}: \tau'} \text{ VAR}$$
 By assumption

$$\Gamma \vdash e : \tau$$
 By assumption

Case 
$$x = z$$
:

$$\Gamma \vdash [e/x]x : \tau$$
 By def. of substitution

### Proving Substitution, 4b/4

$$\begin{array}{ll} \underline{z}:\tau'\in\Gamma,\underline{x}:\tau\\ \hline \Gamma,\underline{x}:\tau\vdash\underline{z}:\tau' \end{array} \quad \text{By assumption} \\ \hline \Gamma\vdash\underline{e}:\tau \qquad \qquad \text{By assumption} \\ \hline \text{Case }\underline{x}\neq\underline{z}:\\ \underline{z}:\tau'\in\Gamma \qquad \qquad \text{since }\underline{x}\neq\underline{z} \text{ and }\underline{z}:\tau'\in\Gamma,\underline{x}:\tau\\ \hline \Gamma,\underline{z}:\tau'\vdash\underline{z}:\tau' \qquad \text{By rule VAR} \\ \hline \Gamma,\underline{z}:\tau'\vdash[\underline{e}/x]\underline{z}:\tau' \quad \text{By def. of substitution} \end{array}$$

#### Operational Semantics

- · We have a language and type system
- · We have a proof of substitution
- · How do we say what value a program computes?
- · With an operational semantics
- · Define a grammar of values
- · Define a two-place relation on terms  $e \leadsto e'$
- Pronounced as "e steps to e'"

#### An operational semantics

Values 
$$v ::= n \mid \text{true} \mid \text{false}$$
 
$$\frac{e_1 \leadsto e_1'}{e_1 \land e_2 \leadsto e_1' \land e_2} \text{ AndCong} \qquad \frac{}{\text{true} \land e \leadsto e} \text{ AndTrue}$$
 
$$\overline{\text{false} \land e \leadsto \text{false}} \text{ AndFalse}$$
 
$$\text{(similar rules for} \leq \text{and} +\text{)}$$
 
$$\frac{e_1 \leadsto e_1'}{\text{let } z = e_1 \text{ in } e_2 \leadsto \text{let } z = e_1' \text{ in } e_2} \text{ LetCong}$$
 
$$\overline{\text{let } z = v \text{ in } e_2 \leadsto [v/z]e_2} \text{ LetStep}$$

#### **Reduction Sequences**

- A reduction sequence is a sequence of transitions  $e_0 \sim e_1$ ,  $e_1 \sim e_2$ , ...,  $e_{n-1} \sim e_n$ .
- A term e is stuck if it is not a value, and there is no e' such that  $e \leadsto e'$

| Successful sequence                                                     | Stuck sequence                                        |
|-------------------------------------------------------------------------|-------------------------------------------------------|
| $(3+4) \le (2+3)$ $\sim 7 \le (2+3)$ $\sim 7 \le 5$ $\sim \text{false}$ | $(3+4) \wedge (2+3)$ $\sim 7 \wedge (2+3)$ $\sim ???$ |

Stuck terms are erroneous programs with no defined behaviour.

#### Type Safety

A program is safe if it never gets stuck.

- 1. (Progress) If  $\cdot \vdash e : \tau$  then either e is a value, or there exists e' such that  $e \rightsquigarrow e'$ .
- 2. (Preservation) If  $\cdot \vdash e : \tau$  and  $e \leadsto e'$  then  $\cdot \vdash e' : \tau$ .
  - Progress means that well-typed programs are not stuck: they can always take a step of progress (or are done).
  - Preservation means that if a well-typed program takes a step, it will stay well-typed.
  - So a well-typed term won't reduce to a stuck term: the final term will be well-typed (due to preservation), and well-typed terms are never stuck (due to progress).

### **Proving Progress**

(Progress) If  $\cdot \vdash e : \tau$  then either e is a value, or there exists e' such that  $e \leadsto e'$ .

- To show this, we do structural induction on the derivation of  $\cdot \vdash e : \tau$ .
- For each typing rule, we show that either *e* is a value, or can step.

#### Progress: Values

---- NUM By assumption

*n* is a value Def. of value grammar

Similarly for boolean literals...

#### Progress: Let-bindings

$$\begin{array}{lll} \cdot \vdash e_1 : \tau & x : \tau \vdash e_2 : \tau' \\ \hline \cdot \vdash \operatorname{let} x = e_1 \operatorname{in} e_2 : \tau' & \operatorname{By \ assumption:} \ (1) \\ \hline \cdot \vdash e_1 : \tau & \operatorname{Subderivation \ of} \ (1) : \ (2) \\ x : \tau \vdash e_2 : \tau' & \operatorname{Subderivation \ of} \ (1) : \ (3) \\ \hline e_1 \leadsto e_1' \ \operatorname{or} \ e_1 \ \operatorname{value} & \operatorname{Induction \ on} \ (2) \\ \hline \operatorname{Case} \ e_1 \leadsto e_1' : & \operatorname{let} x = e_1 \ \operatorname{in} \ e_2 \leadsto \operatorname{let} x = e_1' \ \operatorname{in} \ e_2 \\ \hline \operatorname{Case} \ e_1 \ \operatorname{value} : & \operatorname{let} x = e_1 \ \operatorname{in} \ e_2 \leadsto [e_1/x]e_2 & \operatorname{By \ rule \ LetStep} \\ \hline \end{array}$$

### Type Preservation

(Preservation) If  $\cdot \vdash e : \tau$  and  $e \leadsto e'$  then  $\cdot \vdash e' : \tau$ .

- 1. We will use structural induction again, but on which derivation?
- 2. Two choices: (1)  $\cdot \vdash e : \tau$  and (2)  $e \leadsto e'$
- 3. The right choice is induction on  $e \sim e'$
- 4. We will still need to deconstruct  $\cdot \vdash e : \tau$  alongside it!

#### Type Preservation: Let Bindings 1

$$e_{1} \sim e'_{1}$$

$$let x = e_{1} in e_{2} \sim let x = e'_{1} in e_{2}$$

$$\cdot \vdash e_{1} : \tau \qquad x : \tau \vdash e_{2} : \tau'$$

$$\cdot \vdash let x = e_{1} in e_{2} : \tau'$$

$$e_{1} \sim e'_{1}$$

$$\cdot \vdash e_{1} : \tau$$

$$x : \tau \vdash e_{2} : \tau'$$

$$\cdot \vdash e'_{1} : \tau$$

$$\cdot \vdash let x = e'_{1} in e_{2} : \tau'$$

By assumption: (1)

By assumption: (2)

Subderivation of (1): (3) Subderivation of (2): (4) Subderivation of (2): (5) Induction on (3), (4): (6) Rule LET on (6), (4)

# Type Preservation: Let Bindings 2

| $\overline{\text{let } x = v_1 \text{ in } e_2 \rightsquigarrow [v_1/x]e_2}$                                                  | By assumption: (1)                                     |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| $\frac{\cdot \vdash v_1 : \tau \qquad x : \tau \vdash e_2 : \tau'}{\cdot \vdash \text{let } x = v_1 \text{ in } e_2 : \tau'}$ | By assumption: (2)                                     |
| $\cdot \vdash V_1 : \tau$<br>$x : \tau \vdash e_2 : \tau'$                                                                    | Subderivation of (2): (3)<br>Subderivation of (2): (4) |
| $\cdot \vdash [v_1/x]e_2 : \tau'$                                                                                             | Substitution on (3), (4)                               |

#### Conclusion

Given a language of program terms and a language of types:

- A type system ascribes types to terms
- · An operational semantics describes how terms evaluate
- A type safety proof connects the type system and the operational semantics
- · Proofs are intricate, but not difficult

#### **Exercises**

- 1. Give cases of the operational semantics for  $\leq$  and +.
- 2. Extend the progress proof to cover  $e \wedge e'$ .
- 3. Extend the preservation proof to cover  $e \wedge e'$ .

(This should mostly be review of IB Semantics of Programming Languages.)