Type Systems

Lecture 7: Programming with Effects

Neel Krishnaswami
University of Cambridge

Wrapping up Polymorphism

System F is Explicit

We saw that in System F has explicit type abstraction and

application:
©,a;THe:B ©;T'+Fe:Va.B © F Atype
©;T+Aa.e:Va.B ©;TFeA:[A/a]B

This is fine in theory, but what do programs look like in
practice?

System F is Very, Very Explicit

Suppose we have a map functional and an isEven function:

map : Va.VB.(a— B) = lista — listg
istven : N — bool

A function taking a list of numbers and applying isEven to it:
map Nboolistven : listN — listbool
If you have a list of lists of natural numbers:

map (listN) (listbool) (map N boolisEven)
s list (listN) — list (list bool)

The type arguments overwhelm everything else!

Type Inference

- Luckily, ML and Haskell have type inference

- Explicit type applications are omitted — we write
map iskven instead of map N boolisEven

- Constraint propagation via the unification algorithm
figsures out what the applications should have been

Example:

map isEven Term that needs type inference
map ?a ?b iskven Introduce placeholders ?a and ?b
map ?a ?b : (?a —»7?b) — list?a — list?b

iskven : N — bool So ?a —7?b must equal N — bool
?7a =N,?b = bool Only choice that makes ?a —+?b = N — bool

Effects

The Story so Far...

- We introduced the simply-typed lambda calculus
- ..and its double life as constructive propositional logic
- We extended it to the polymorphic lambda calculus

- ..and its double life as second-order logic

This is a story of pure, total functional programming

- Sometimes, we write programs that takes an input and
computes an answer:
- Physics simulations
- Compiling programs
- Ray-tracing software
- Other times, we write programs to do things:
- communicate with the world via I/0 and networking
- update and modify physical state (eg, file systems)
- build interactive systems like GUIs
- control physical systems (eg, robots)
- generate random numbers

- PL jargon: pure vs effectful code

Two Paradigms of Effects

- From the POV of type theory, two main classes of effects:
1. State:

- Mutable data structures (hash tables, arrays)
- References/pointers

2. Control:

- Exceptions
- Coroutines/generators
- Nondeterminism

- Other effects (eg, 1/0 and concurrency/multithreading)
can be modelled in terms of state and control effects

- In this lecture, we will focus on state and how to model it

let r = ref 5;;
val r : int ref = {contents = 5}

#1lr;;

- :1nt =5
#r := !r + 15;;
- unit = ()

'r;;

- :int = 20

- We can create fresh reference with ref e
- We can read a reference with !e
- We can update a reference with e := e'

A Type System for State

Types X == 1| N|X=Y]| refX
Terms e == () | n| Mx:Xe]|eée
| newe | le | e=¢|I

Values % () | n| Mx:Xe |l
Stores o = - |aol:v
Contexts r o= -] Mhx:X

Store Typings ¥ == - | X, [:X

Operational Semantics

(0;€e9) ~ <a'; 66> (0;e1) ~ <U’; eﬁ>

(o;e0e1) ~ (o' eper) (o;:vo) ~ (o’;voer)

(o; (A X.e)v) ~ (o;[v/X]e)

- Similar to the basic STLC operational rules

- Threads a store o through each transition

Operational Semantics

(g:€) ~ (d’;€e) [& dom(o)
(o;newe) ~ (o’;newe’) (o;new V) ~ {((o,1:Vv);[)
(g:€) ~ (o’ €) l:veo
(o;1e) ~ (o';1€") (o 1) ~ (o; V)
(o;eq) ~ <O'/; e6> (o;e1) ~ <U'; e§>
(0,60 :=e1)~ (o', =€) (0:v0 =€) ~ (o' vp =€)

((o,L:v,0)i L=V~ {(o,1:V,0"): ()

10

Typing for Terms

x:Xefl
Hyp — 1l

_— —— NI
Y:Tkx:X YLTE() >:T'+n:N

Y;Mx:Xke:Y
YTEXM: Xe: X=Y

— |

>:FTFe: X—Y Y Irke: X
Y Ttee:y

—E

- Similar to STLC rules + thread X through all judgements

n

Typing for Imperative Terms

Y:T'Fe: X Y:e:refx
REFI —— REFGET
Y:IFnewe:refX Y:TkEle: X
Y:e:refX YTHe:X
REFSET
YTFe:=¢:1
[: XeX
——— REFBAR
Y:IEL:refX

- Usual rules for references

- But why do we have the bare reference rule?
12

Proving Type Safety

- Original progress and preservations talked about
well-typed terms e and evaluation steps e ~ e’

- New operational semantics (o; e) ~ (o¢’; €’) mentions
stores, t0o.
- To prove type safety, we will need a notion of store typing

13

Store and Configuration Typing

(o:€) : (T:X)

Yo' Y Yook v:X
STORENIL STORECONS
YhEo Y (o L:v) (2 X)

>hFo: X Y.-ke: X
(o;e) : (;X)

CONFIGOK

- Check that all the closed values in the store o’ are
well-typed

- Types come from ¥/, checked in store ¥

- Configurations are well-typed if the store and term are

well-typed "

A Broken Theorem

Progress:

If (o;e) : (X;X) then e is a value or {o;e) ~ (o’;€).
Preservation:

If (o;e) : (£;X) and (o; e) ~ (d’;€') then (¢/;€) : (L; X).

- One of these theorems is false!

15

The Counterexample to Preservation

Note that

. (s new () - (- ref1)
2. (new())~ ((L:());l) forsome !l

However, it is not the case that

(L: ()5 (- ref1)

The heap has grown!

Store Monotonicity

Definition (Store extension):

Define > < ¥/ to mean thereisa X" such that ¥’ = ¥,¥".
Lemma (Store Monotonicity):

If ¥ < ¥'then:

1. IfX:TFe: XthenX:Tke: X

2. IfXFop:Xothen X' F op: Xo.
The proof is by structural induction on the appropriate
definition.

This property means allocating new references never breaks
the typability of a term.

Substitution and Structural Properties

- (Weakening)

fX: M MMFe:XthenX;l,z: Z,"Fe: X
- (Exchange)

f;My:Y,z:Z"be:XthenX;T,z: Z,y:Y,"Fe: X
- (Substitution)

IfX;FFe:Xand ;M x: XF e : Zthen X;T + [e/x]e’ : Z.

Type Safety, Repaired

Theorem (Progress):
If (o;e) : (¥X;X) then e is a value or (c; e) ~ (d’;€').
Theorem (Preservation):

If (o;e) : (£;X) and (c; e) ~ (o’; €') then there exists ¥’ > ¥
such that (o/; ¢’) : (¥; X).

Proof:

- For progress, induction on derivation of X;- F e : X

- For preservation, induction on derivation of
(0,) ~ (0" €)

19

A Curious Higher-order Function

- Suppose we have an unknown function in the STLC:
f[(0—=1)—=1)—>N

- Q: What can this function do?

- A: It is a constant function, returning some n

- Q: Why?

- A: No matter what f(g) does with its argument g, it can

only gets () out of it. So the argument can never influence
the value of type N that f produces.

20

The Power of the State

count : (=1 —=1)—N

count f = letr:refN=new0in
letinc:T—1=Xz:1.r:=!r+1in
flinc)

- This function initializes a counter r

- It creates a function inc which silently increments r
- It passes inc to its argument f

- Then it returns the value of the counter r

- That is, it returns the number of times inc was called!

21

Backpatching with Landin’s Knot

1 let knot : ((int -> int) -> int -> int) -> int -> int =
2 fun f ->

3 let r = ref (fun n -> 0) in

4 let recur = fun n -> !r n in

5 let () =1 := fun n -> f recur n in
6 recur

1. Create a reference holding a function
2. Define a function that forwards its argument to the ref

3. Set the reference to a function that calls f on the
forwarder and the argument n

4. Now fwill call itself recursively!

22

Another False Theorem

Not a Theorem: (Termination) Every well-typed program
.+ Fe: Xterminates.

- Landin’s knot lets us define recursive functions by
backpatching

- As a result, we can write nonterminating programs

- So every type is inhabited, and consistency fails

23

Consistency vs Computation

- Do we have to choose between state/effects and logical
consistency?

- Is there a way to get the best of both?
- Alternately, is there a Curry-Howard interpretation for
effects?

- Next lecture:

- A modal logic suggested by Curry in 1952
- Now known to functional programmers as monads
- Also known as effect systems

2%

Questions

1. Using Landin’s knot, implement the fibonacci function.

2. The type safety proof for state would fail if we added a
C-like free() operation to the reference API.
21 Give a plausible-looking typing rule and operational
semantics for free.
2.2 Find an example of a program that would break.

25

	Wrapping up Polymorphism
	Effects

