
1 . 1

[01] INTRODUCTION

1 . 2

OUTLINE

Course Summary

Recap

Encodings: Text, Numbers, Data Structures, Instructions

A Model Computer and the Fetch-Execute Cycle

Some IO Devices, Buses, Interrupts, DMA

Key Concepts

Layering & Multiplexing

Synchronous & Asynchronous

Latency, Bandwidth, Jitter

Caching & Buffering

Bottlenecks, 80/20 Rule, Tuning

Operating Systems

What is and is not an Operating System?

Evolution of Operating Systems

2 . 1

COURSE SUMMARY

I Processor

02 Protection What is the OS protecting?

03 Processes On what does the OS operate?

04 Scheduling What does the OS run next?

05 Scheduling
Algorithms

How does it choose?

II Memory Management

06 Virtual Addressing How does the OS protect processes from each other?

07 Paging How to manage virtual addresses from a machine
perspective?

08 Segmentation How to manage virtual addresses from a programmer
perspective?

2 . 2

COURSE SUMMARY

III Input/Output

09 IO Subsystem How does the OS interact with the outside world?

10 Storage How does the OS manage persistence for processes?

IV Case Study

11 Unix I Putting it together: Design, Filesystem

12 Unix II Putting it together: IO, Processes, Shell

2 . 3

RECOMMENDED READING

Tannenbaum, A.S., (1990) Structured Computer Organization (3rd Ed.) Prentice-Hall

1990

Patterson, D., and Hennessy, J. (1998) Computer Organization & Design (2rd Ed.)

Morgan Kaufmann

Bacon, J. (1997) [and Harris, T. (2003)] Concurrent Systems [or Operating Systems].

Addison Wesley

Silberschatz, A., Peterson, J., and Galvin, P. (1998) Operating Systems Concepts (5th

Ed.) Addison Wesley

Leffler, S. (1989). The Design and Implementation of the 4.3BSD Unix Operating

System Addison-Wesley

McKusick, M.K., Neville-Neil, G.N. & Watson, R.N.M. (2014) The Design and

Implementation of the FreeBSD Operating System (2nd Ed.) Pearson Education

3 . 1

RECAP
Course Summary

Recap

Encodings: Text, Numbers, Data Structures, Instructions

A Model Computer and the Fetch-Execute Cycle

Some IO Devices, Buses, Interrupts, DMA

Key Concepts

Operating Systems

3 . 2

TEXT
Two main standards:

ASCII: 7-bit code holding (American) letters, numbers, punctuation and a few
other characters. Regional 8-bit variations. Competitors included EBCDIC (IBM;
very odd, not all characters contiguous)
Unicode: 8-, 12- or 32-bit code intended to support all international alphabets
and symbols

ASCII used to be widespread default. Unicode now becoming popular (esp. UTF-8):

Unicode 9.0 has 128,172 characters assigned out of potential 1,114,112 code
points (—)
Commonly use the 8-bit transformation format called UTF-8; superset of ASCII
which includes "enough" to get by for Roman languages and regional currency
symbols, etc.

3 . 3

UTF-8
Low 128 bits map direct to ASCII which is useful for backward compatibility

Variable length: all other characters are encoded as <len> <codes>, where 0xC0
 len 0xFD encoding the length, while 0x80 codes 0xFD. Top two

bytes unused. Also have UTF-16 and UTF-32.

Unicode distinguishes character (smallest meaningful semantic unit), codepoint (its
encoding) and glyph (character rendering, including directionality, whether text
should be displayed right-to-left, or top-to-bottom, etc.)

Both ASCII and Unicode are represented in
memory as either strings or arrays: e.g. "Pub
Time!" (0x50='P', 0x75='u', etc)

Since |character| |machine word size|, need
to be careful with endianness. Example is
little endian

3 . 4

NUMBERS
-bit register can represent different values

 termed the Most Significant Bit (MSB), and the Least Significant Bit (LSB)

Unsigned numbers: treat the obvious way, i.e.,

e.g.,

Represents values from to inclusive. For large numbers, binary is unwieldy so

use hexadecimal (base 16)

To convert, group bits into groups of 4,

e.g., 1111101010 = 0011|1110|1010 = 3EA
Often use 0x prefix to denote hex, e.g., 0x107
Can use dot to separate large numbers into 16-bit chunks, e.g., 0x3FF.FFFF

3 . 5

SIGNED NUMBERS
Two main options:

Sign & magnitude:
Top (leftmost) bit flags if negative; remaining bits make value
E.g., 10011011 is -0011011 = -27
Represents range to and the bonus value (!)

2's complement:
To get from , invert every bit and add 1
E.g., +27 = 00011011 , -27 = (11100100 + 1) = 11100101
Treat 1000...000 as
Represents range to

3 . 6

FLOATING POINT

To handle very large or very small numbers, use scientific notation, e.g.,
with the mantissa, the exponent, e.g., m/s

For computers, use binary i.e. ,
where includes a "binary point"

In practice use IEEE floating point with
normalised mantissa i.e., use

IEEE floating point reserves and :

 zero: : ; : (!)
 non-zero: : NaNs; : denorms

Normal positive range for single, or for double

NB. still only or values — just spread out

3 . 7

DATA STRUCTURES
Not interpreted by machine — up to programmer (or compiler) where things go, and
how

Fields in records/structures stored as an offset from a base address. In variable size
structures, explicitly store addresses (pointers) inside structure, e.g.,

Address Value Comment
0x0F30 0xFFFF Constructor tags for a leaf

0x0F34 8 Integer 8

. . .

0x0F3C 0xFFFE Constructor tag for a node

0x0F40 6 Integer 6

0x0F44 7 Integer 7

0x0F48 0x0F30 Address of inner node

. . .

0x1000 0xFFFE Constructor tag for a node

0x1004 4 Integer 4

0x1008 5 Integer 5

0x100C 0x0F3C Address of inner node

datatype rec = node of int * int * rec
 | leaf of int;
val example = node(4, 5, node(6, 7, leaf(8)));

If example is stored at address 0x1000:

3 . 8

ENCODING: INSTRUCTIONS

Instructions comprise:

An opcode: specify what to do

Zero or more operands: where to get values

E.g., add r1, r2, r3

E.g., ARM ALU operations

Range of options:

Addressing mode (how to interpret operands) either part of opcode, or given

explicitly

Variable length encoding: may give better code density; makes it easier to extend

instruction set (!)

Huffman encoding looks at most probable instructions and assigns them the

shortest opcodes; infrequently used instructions get long ones

But! Makes decoding rather tricky, lose on PC-relative, bad for cache

3 . 9

A MODEL COMPUTER

Processor (CPU) executes programs using:
Memory: stores both programs & data.
Devices: for input and output. Bus:
transfers information

Computers operate on information in
memory from input devices. Memory is a
large byte array that holds any
information on which we operate.
Computer logically takes values from
memory, performs operations, and then
stores result back

CPU operates on registers, extremely fast
pieces of on-chip memory, usually now 64-bits in size. Modern CPUs have between
8 and 128 registers. Data values are loaded from memory into registers before
being operated upon, and results are stored back again

3 . 10

FETCH-EXECUTE CYCLE

CPU fetches & decodes instruction,
generating control signals and
operand information

Inside Execution Unit (EU), control
signals select Functional Unit (FU)
("instruction class") and operation

If Arithmetic Logic Unit (ALU), then
read one or two registers, perform
operation, and (probably) write back
result. If Branch Unit (BU), test condition and (maybe) add value to PC. If Memory
Access Unit (MAU), generate address ("addressing mode") and use bus to read/write
value

Repeat

3 . 11

INPUT/OUTPUT DEVICES

Devices connected to processor via a bus (e.g., ISA, PCI, AGP):

Mouse, Keyboard
Graphics Card, Sound Card
Floppy Drive, Hard Disk Drive, CD-ROM
Network Card, Printer, Modem
etc.

Often two or more stages involved (e.g., IDE, SCSI, RS-232, Centronics, etc.)

Connections may be indirect, e.g.,

Graphics card (on bus) controls monitor (not on bus)

3 . 12

UNIVERSAL ASYNCHRONOUS
RECEIVER/TRANSMITTER (UART)
Stores 1 or more bytes internally, converting parallel to serial

Outputs according to RS-232

Various baud rates (e.g., 1,200 — 115,200)

Slow, simple, and very useful

Make up "serial ports" on PC

Max throughput 14.4kb/s; variants up to 56kb/s (for modems)

Connect to terminal (or terminal emulation software) to debug device

3 . 13

HARD DISKS

Whirling bits of metal, increasingly replaced by Solid State Devices (SSDs). Up to
around 15,000 rpm, 2TB per platter, 2Gb/s

3 . 14

GRAPHICS CARDS

Essentially some RAM (framebuffer) and (older) some digital-to-analogue circuitry

(RAMDAC)

RAM holds array of pixels: picture elements

Resolutions e.g., 640x480, 800x600, 1024x768, 1280x1024, 1600x1200, ...

Depths: 8-bit (LUT), 16-bit (RGB=555), 24-bit (RGB=888), 32-bit (RGBA=888)

Memory requirement = , e.g., 1280x1024 @ 16bpp needs 2560kB

Full-screen 50Hz video requires 125 MB/s (or 1Gb/s)

3 . 15

BUSES
Collection of shared communication

wires: low cost, versatile but potential

bottleneck. Typically comprises address
lines (determine how many devices on

bus), data lines (determine how many bits

transferred at once) and control lines,

plus power and ground. Operates in a master-slave manner, e.g.,

Master decides to e.g., read some data

Master puts address onto bus and asserts read
Slave reads address from bus and retrieves data

Slave puts data onto bus

Master reads data from bus

Mean we don't need wires everywhere! Also can define bus protocol and then do

plug'n'play

3 . 16

BUS HIERARCHY

In practice, many different buses with different characteristics, e.g., data width, max
number of devices, max length. Most are synchronous, i.e. share a clock signal.

E.g., with four buses:

Processor bus: fastest (and widest?), for CPU to
talk to cache

Memory bus: to communicate with memory

PCI and (E)ISA buses: to communicate with
current and legacy devices

Bridges forwards from one side to the other; e.g.,
to access a device on ISA bus, processor generates
magic [physical] address which goes to memory
bridge, then to PCI bridge, and then to ISA bridge,
and finally to ISA device. Same on the way back

3 . 17

INTERRUPTS
Bus reads and writes are transaction

based: CPU requests something and waits

until it happens. But, e.g., reading a block

of data from a hard-disk might take

2ms, which could be 5M clock cycles!

Interrupts provide a way to decouple CPU requests from device responses

CPU uses bus to make a request (e.g., writes some special values to a device)

Device fetches data while CPU continues doing other stuff

Device raises an interrupt when it has data

On interrupt, CPU vectors to handler, reads data from device, and resumes using

special instruction, e.g., rti

NB. Interrupts happen at any time but are deferred to an instruction boundary.

Interrupt handlers must not trash registers, and must know where to resume. CPU

thus typically saves values of all (or most) register, restoring with rti

3 . 18

DIRECT MEMORY ACCESS (DMA)

Interrupts good but (e.g.) livelock a problem. Even better is a device which can read
and write processor memory directly — enter Direct Memory Access (DMA). A
generic DMA "command" might include:

Source address
Source increment / decrement / do nothing
Sink address
Sink increment / decrement / do nothing
Transfer size

Get just one interrupt at end of data transfer. DMA channels may be provided by
dedicated DMA controller, or by devices themselves: e.g. a disk controller that
passes disk address, memory address and size, and give instruction to read or write.
All that's required is that a device can become a bus master. Scatter/Gather DMA
chains requests, e.g., of disk reads into set of buffers

Complexities?

3 . 19

SUMMARY
Computers made up of four main parts:

1. Processor (including register file, control unit and execution unit)

2. Memory (caches, RAM, ROM)

3. Devices (disks, graphics cards, etc.)

4. Buses (interrupts, DMA)

Information represented in all sorts of formats:

Strings

Signed & unsigned integers

Floating point

Data structures

Instructions

4 . 1

KEY CONCEPTS

Course Summary

Recap

Key Concepts
Layering & Multiplexing
Synchronous & Asynchronous
Latency, Bandwidth, Jitter
Caching & Buffering
Bottlenecks, 80/20 Rule, Tuning

Operating Systems

4 . 2

LAYERING
Layering is a means to manage complexity by controlling interactions
between components. Arrange components in a stack, and restrict a
component at layer X from relying on any other component except the one
at layer X 1 and from providing service to any component except the one
at layer X 1

MULTIPLEXING

 by — Own work.

Licensed under via

Multiplexing diagram The Anome

CC BY-SA 3.0 Wikimedia Commons

Traditionally a method by which multiple
(analogue) signals are combined into a single
signal over a shared medium. In this context, any
situation where one resource is being consumed
by multiple consumers simultaneously

4 . 3

SYNCHRONOUS & ASYNCHRONOUS
Loosely, shared clock (synchronous) vs no shared clock (asynchronous). In

networking, an asynchronous receiver needs to figure out for itself when the

transfer starts and ends while a synchronous receiver has a channel over which

that's communicated

In the case of Operating Systems, whether two components operate in lock-step:

synchronous IO means the requester waits until the request is fulfilled before

proceeding, while with asynchronous IO, the requester proceeds and later handles

fulfilment of their request

4 . 4

LATENCY, BANDWIDTH, JITTER

Different metrics of concern to systems designers

Latency: How long something takes. E.g., "This read took 3 ms"

Bandwidth: The rate at which something occurs. E.g., "This disk achieves 2 Gb/s"

Jitter: The variation (statistical dispersal) in latency (frequency). E.g., "Scheduling

was periodic with jitter 50 sec"

Be aware whether it is the absolute or relative value that matters, and whether the

distribution of values is also of interest

4 . 5

CACHING & BUFFERING

A common system design problem is to handle impedance mismatch — a term

abused from electrical engineering — where two components are operating at

different speeds (latencies, bandwidths). Common approaches are:

Caching, where a small amount of higher-performance storage is used to mask

the performance impact of a larger lower-performance component. Relies on

locality in time (finite resource) and space (non-zero cost)

E.g., CPU has registers, L1 cache, L2 cache, L3 cache, main memory

Buffering, where memory of some kind is introduced between two components to

soak up small, variable imbalances in bandwidth. NB. Doesn't help if one

component simply, on average, exceeds the other

E.g., A hard disk will have on-board memory into which the disk hardware reads

data, and from which the OS reads data out

4 . 6

BOTTLENECKS, TUNING, 80/20 RULE

There is typically one resource that is most constrained in a system — the

bottleneck

Performance optimisation and tuning focuses on determining and eliminating

bottlenecks

But often introduces new ones

A perfectly balanced system has all resources simultaneously bottlenecked

Impossible to actually achieve

Often find that optimising the common case gets most of the benefit anyway

Means that measurement is a prerequisite to performance tuning!

The 80/20 rule — 80% time spent in 20% code

If you highly optimise a very rare case, it'll make no difference

5 . 1

OPERATING SYSTEMS

Course Summary
Recap
Key Concepts
Operating Systems

What is and is not an Operating System?

Evolution of Operating Systems

5 . 2

WHAT IS AN OPERATING SYSTEM?

A program controlling the execution of all other programs

Objectives:

Convenience — hide all the gunk we've just recapped

Efficiency — only does articulation work so minimise overheads

Extensibility — need to evolve to meet changing application demands and

resource constraints

There's an analogy to a government: does no useful work, simply legislates on

resource use by competing applications with the intent of achieving best function of

system (society) through policy

(Also difficult to change and can be imposed on users without consent ;)

5 . 3

WHAT IS NOT AN OPERATING SYSTEM

The Operating System (OS) controls all execution, multiplexes resources between

applications, and abstracts away from complexity

Consider the last point particularly — typically involves libraries and tools provided

as part of the OS, in addition to a kernel (e.g., glibc — but what about language

runtime?). Thus no-one really agrees precisely what the OS is

For our purposes, focus on the kernel

5 . 4

IN THE BEGINNING...

First stored-program machine (EDSAC, 1949–1955), operated "open shop": user =

programmer = operator. All programming in machine code. Users sign up for blocks

of time to do development, debugging, etc. To reduce costs, hire a separate

(relatively unskilled) operator: management happy, everyone else hates it. Also

reduces "interactivity" so CPU utilisation reduces

BATCH SYSTEMS

Introduction of tape drives allow batching of jobs:

Programmers put jobs on cards as before

All cards read onto a tape

Operator carries input tape to computer

Results written to output tape

Output tape taken to printer

5 . 5

SPOOLING SYSTEMS

Even better: spooling systems

Spool jobs to tape for input to CPU, on a slower device not connected to CPU

Interrupt driven IO

Magnetic disk to cache input tape

Fire operator

Computer now has a resident monitor:

Initial control is in monitor, which reads job and transfers control

End of job, control transfers back to monitor

Monitor now schedules jobs, so need job control language to separate jobs on tape

and to allow jobs to pass control to the monitor on completion, e.g. FMS had $JOB,

$FTN, $RUN, $DATA, $END, with $FTN being optional for assembly programs

But! Need to "trust" the job will give control back to monitor, and devices still slow

compared to CPU...

5 . 6

MULTI-PROGRAMMING

Use memory to cache jobs from disk, meaning 1

job active (resident) simultaneously

Two stage scheduling: 1. select jobs to load: job
scheduling; 2. select resident job to run: CPU
scheduling. End up with one job computing while

another waits for IO, causes competition for CPU

and space in main memory

Batch Multi-Programming: extension of batch system to allow more than one job to

be resident simultaneously

Users wanting more interaction leads to time-sharing:

E.g., CTSS (first, in 1961), TSO, Unix, VMS, Windows NT, ...

Use timesharing to develop code, then batch to run: give each user a

teletype/terminal; interrupt on return; OS reads line and creates new job

5 . 7

MONOLITHIC OPERATING SYSTEMS

Oldest kind of OS structure ("modern" examples are DOS, original MacOS)

Applications and OS bound in a big lump, without clear interfaces. All OS provides is

a simple abstraction layer, making it easier to write applications

Problem is, applications can trash the OS, other applications, lock the CPU, abuse IO,

etc. Doesn't provide useful fault containment. Need a better solution...

5 . 8

OPERATING SYSTEM FUNCTIONS

Regardless of structure, OS needs to securely multiplex resources, i.e. to protect

applications while sharing physical resources. Many OS design decisions are about

where this line is drawn

Also usually want to abstract away from grungy harware, i.e. OS provides a virtual

machine to:

Share CPU (in time) and provide each application with a virtual processor

Allocate and protect memory, and provide applications with their own virtual

address space

Present a set of (relatively) hardware independent virtual devices

Divide up storage space by using filing systems

Remainder of this part of the course will look at each of the above areas in turn

6

SUMMARY
Course Summary

Recap

Encodings: Text, Numbers, Data Structures, Instructions

A Model Computer and the Fetch-Execute Cycle

Some IO Devices, Buses, Interrupts, DMA

Key Concepts

Layering & Multiplexing

Synchronous & Asynchronous

Latency, Bandwidth, Jitter

Caching & Buffering

Bottlenecks, 80/20 Rule, Tuning

Operating Systems

What is and is not an Operating System?

Evolution of Operating Systems

