
1 . 1

[11] CASE STUDY: UNIX



1 . 2

OUTLINE

Introduction
Design Principles

Structural, Files, Directory Hierarchy
Filesystem

Files, Directories, Links, On-Disk Structures
Mounting Filesystems, In-Memory Tables, Consistency

Summary



2 . 1

INTRODUCTION

Introduction
Design Principles
Filesystem
Summary



2 . 2

HISTORY (I)
First developed in 1969 at Bell Labs (Thompson & Ritchie) as reaction to bloated

Multics. Originally written in PDP-7 asm, but then (1973) rewritten in the "new"

high-level language C so it was easy to port, alter, read, etc. Unusual due to need for

performance

6th edition ("V6") was widely available (1976), including source meaning people

could write new tools and nice features of other OSes promptly rolled in

V6 was mainly used by universities who could afford a minicomputer, but not

necessarily all the software required. The first really portable OS as same source

could be built for three different machines (with minor asm changes)

Bell Labs continued with V8, V9 and V10 (1989), but never really widely available

because V7 pushed to Unix Support Group (USG) within AT&T

AT&T did System III first (1982), and in 1983 (after US government split Bells),

System V. There was no System IV



2 . 3

HISTORY (II)
By 1978, V7 available (for both the 16-bit PDP-11 and the new 32-bit VAX-11).

Subsequently, two main families: AT&T "System V", currently SVR4, and Berkeley:

"BSD", currently 4.4BSD

Later standardisation efforts (e.g. POSIX, X/OPEN) to homogenise

USDL did SVR2 in 1984; SVR3 released in 1987; SVR4 in 1989 which supported the

POSIX.1 standard

In parallel with AT&T story, people at University of California at Berkeley (UCB)

added virtual memory support to "32V" [32-bit V7 for VAX] and created 3BSD



2 . 4

HISTORY (III)
4BSD development supported by DARPA who wanted (among other things) OS

support for TCP/IP

By 1983, 4.2BSD released at end of original DARPA project

1986 saw 4.3BSD released — very similar to 4.2BSD, but lots of minor tweaks. 1988

had 4.3BSD Tahoe (sometimes 4.3.1) which included improved TCP/IP congestion

control. 19xx saw 4.3BSD Reno (sometimes 4.3.2) with further improved congestion

control. Large rewrite gave 4.4BSD in 1993; very different structure, includes LFS,

Mach VM stuff, stackable FS, NFS, etc.

Best known Unix today is probably Linux, but also get FreeBSD, NetBSD, and

(commercially) Solaris, OSF/1, IRIX, and Tru64



SIMPLIFIED UNIX FAMILY TREE (NON-EXAMINABLE)

https://commons.wikimedia.org/wiki/File:Unix_history-simple.svg



2 . 53 . 1

DESIGN PRINCIPLES
Introduction
Design Principles

Structural, Files, Directory Hierarchy

Filesystem
Summary



3 . 2

DESIGN FEATURES
Ritchie & Thompson (CACM, July 74), identified the (new) features of Unix:

A hierarchical file system incorporating demountable volumes
Compatible file, device and inter-process IO (naming schemes, access control)
Ability to initiate asynchronous processes (i.e., address-spaces = heavyweight)
System command language selectable on a per-user basis

Completely novel at the time: prior to this, everything was "inside" the OS. In Unix
separation between essential things (kernel) and everything else

Among other things: allows user wider choice without increasing size of core OS;
allows easy replacement of functionality — resulted in over 100 subsystems
including a dozen languages

Highly portable due to use of high-level language

Features which were not included: real time, multiprocessor support



3 . 3

STRUCTURAL OVERVIEW

Clear separation between user and kernel

portions was the big difference between

Unix and contemporary systems — only

the essential features inside OS, not the

editors, command interpreters, compilers,

etc.

Processes are unit of scheduling and

protection: the command interpreter

("shell") just a process

No concurrency within kernel

All IO looks like operations on files: in

Unix, everything is a file



4 . 1

FILESYSTEM
Introduction
Design Principles
Filesystem

Files, Directories, Links, On-Disk Structures

Mounting Filesystems, In-Memory Tables, Consistency

Summary



4 . 2

FILE ABSTRACTION

File as an unstructured sequence of bytes which was relatively unusual at the time:
most systems lent towards files being composed of records

Cons: don't get nice type information; programmer must worry about format of
things inside file
Pros: less stuff to worry about in the kernel; and programmer has flexibility to
choose format within file!

Represented in user-space by a file descriptor (fd) this is just an opaque identifier —
a good technique for ensuring protection between user and kernel



4 . 3

FILE OPERATIONS

Operations on files are:

fd = open(pathname, mode)
fd = creat(pathname, mode)
bytes = read(fd, buffer, nbytes)
count = write(fd, buffer, nbytes)
reply = seek(fd, offset, whence)
reply = close(fd)

The kernel keeps track of the current position within the file

Devices are represented by special files:

Support above operations, although perhaps with bizarre semantics

Also have ioctl for access to device-specific functionality



4 . 4

DIRECTORY HIERARCHY
Directories map names to files (and
directories) starting from distinguished root
directory called /

Fully qualified pathnames mean performing
traversal from root

Every directory has . and .. entries: refer to
self and parent respectively. Also have
shortcut of current working directory (cwd)
which allows relative path names; and the
shell provides access to home directory as ~username (e.g. ~mort/). Note that
kernel knows about former but not latter

Structure is a tree in general though this is slightly relaxed



4 . 5

ASIDE: PASSWORD FILE

/etc/passwd holds list of password entries of the form user-
name:encrypted-passwd:home-directory:shell
Also contains user-id, group-id (default), and friendly name.

Use one-way function to encrypt passwords i.e. a function which is easy to

compute in one direction, but has a hard to compute inverse. To login:

Get user name

Get password

Encrypt password

Check against version in /etc/password

If ok, instantiate login shell

Otherwise delay and retry, with upper bound on retries

Publicly readable since lots of useful info there but permits offline attack

Solution: shadow passwords (/etc/shadow)



4 . 6

FILE SYSTEM IMPLEMENTATION

Inside the kernel, a file is represented by a data structure called an index-node or i-
node which hold file meta-data: owner, permissions, reference count, etc. and
location on disk of actual data (file contents)



4 . 7

I-NODES

Why don't we have all blocks in a simple table?

Why have first few in inode at all?

How many references to access blocks at different places in the file?

If block can hold 512 block-addresses (e.g. blocks are 4kB, block addresses are 8

bytes), what is max size of file (in blocks)?

Where is the filename kept?



4 . 8

DIRECTORIES AND LINKS

Directory is (just) a file which
maps filenames to i-nodes —
that is, it has its own i-node
pointing to its contents

An instance of a file in a
directory is a (hard) link hence
the reference count in the i-
node. Directories can have at
most 1 (real) link. Why?

Also get soft- or symbolic-
links: a 'normal' file which contains a filename



4 . 9

ON-DISK STRUCTURES

A disk consists of a boot block followed by one or more partitions. Very old disks

would have just a single partition. Nowadays have a boot block containing a

partition table allowing OS to determine where the filesystems are

Figure shows two completely independent filesystems; this is not replication for

redundancy. Also note |inode table|  |superblock|; |data blocks|  |inode table|



4 . 10

ON-DISK STRUCTURES

A partition is just a contiguous range of N fixed-size blocks of size k for some N and

k, and a Unix filesystem resides within a partition

Common block sizes: 512B, 1kB, 2kB, 4kB, 8kB

Superblock contains info such as:

Number of blocks and free blocks in filesystem

Start of the free-block and free-inode list

Various bookkeeping information

Free blocks and inodes intermingle with allocated ones

On-disk have a chain of tables (with head in superblock) for each of these.

Unfortunately this leaves superblock and inode-table vulnerable to head crashes so

we must replicate in practice. In fact, now a wide range of Unix filesystems that are

completely different; e.g., log-structure



4 . 11

MOUNTING FILESYSTEMS

Entire filesystems can be
mounted on an existing directory
in an already mounted
filesystem

At very start, only / exists so
must mount a root filesystem

Subsequently can mount other
filesystems, e.g.
mount("/dev/hda2",
"/home", options)

Provides a unified name-space: e.g. access /home/mort/ directly (contrast with
Windows9x or NT)

Cannot have hard links across mount points: why? What about soft links?



4 . 12

IN-MEMORY TABLES

Recall process sees files as file
descriptors

In implementation these are just
indices into process-specific open file
table

Entries point to system-wide open file
table. Why?

These in turn point to (in memory)
inode table



4 . 13

ACCESS CONTROL

Access control information held in each inode

Three bits for each of owner, group and world: read, write and execute
What do these mean for directories? Read entry, write entry, traverse directory

In addition have setuid and setgid bits:

Normally processes inherit permissions of invoking user
Setuid/setgid allow user to "become" someone else when running a given
program
E.g. prof owns both executable test (0711 and setuid), and score file (0600)



4 . 14

CONSISTENCY ISSUES

To delete a file, use the unlink system call — from the shell, this is rm
<filename>

Procedure is:

Check if user has sufficient permissions on the file (must have write access)

Check if user has sufficient permissions on the directory (must have write access)

If ok, remove entry from directory

Decrement reference count on inode

If now zero: free data blocks and free inode

If crash: must check entire filesystem for any block unreferenced and any block

double referenced

Crash detected as OS knows if crashed because root fs not unmounted cleanly



4 . 15

UNIX FILESYSTEM: SUMMARY
Files are unstructured byte streams

Everything is a file: "normal" files, directories, symbolic links, special files

Hierarchy built from root (/)

Unified name-space (multiple filesystems may be mounted on any leaf directory)

Low-level implementation based around inodes

Disk contains list of inodes (along with, of course, actual data blocks)

Processes see file descriptors: small integers which map to system file table

Permissions for owner, group and everyone else

Setuid/setgid allow for more flexible control

Care needed to ensure consistency



5

SUMMARY
Introduction
Design Principles

Structural, Files, Directory Hierarchy
Filesystem

Files, Directories, Links, On-Disk Structures
Mounting Filesystems, In-Memory Tables, Consistency

Summary


